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Abstract: Label noises exist in many applications, and their presence can degrade learning
performance. Researchers usually use filters to identify and eliminate them prior to training.
The ensemble learning based filter (EnFilter) is the most widely used filter. According to the
voting mechanism, EnFilter is mainly divided into two types: single-voting based (SVFilter)
and multiple-voting based (MVFilter). In general, MVFilter is more often preferred because
multiple-voting could address the intrinsic limitations of single-voting. However, the most important
unsolved issue in MVFilter is how to determine the optimal decision point (ODP). Conceptually, the
decision point is a threshold value, which determines the noise detection performance. To maximize
the performance of MVFilter, we propose a novel approach to compute the optimal decision point.
Our approach is data driven and cost sensitive, which determines the ODP based on the given noisy
training dataset and noise misrecognition cost matrix. The core idea of our approach is to estimate the
mislabeled data probability distributions, based on which the expected cost of each possible decision
point could be inferred. Experimental results on a set of benchmark datasets illustrate the utility of
our proposed approach.

Keywords: mislabeled data filter; single-voting; multiple-voting; optimal decision point; cost minimization

1. Introduction

Real-world training data often include noises (or errors), which can be mainly categorized into
two types: label error and feature error [1–5]. Label error arises when the class label of data is incorrect,
while the feature error arises when the features of data are corrupted. These noises are made for
various reasons. For example, sensor involved applications (such as WSN and IoT) may make noises
due to the intrinsic instability of sensors [6,7]. In addition, big data further contribute to the emergence
of noise [8]. When training data are noisy, the performance of learning based on it will be degraded.
These two types of error have been individually studied by many works. We focus on the label error to
study in this work.

The label errors are mainly caused by the subjective nature of the labeling task and lack of
information for making the true label. Domain experts usually provide labeling that mainly depends
on their heuristics and domain knowledge. It is a crucial fact that mislabeling cannot be even avoided
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with a thorough inspection of domain experts. It happens commonly when a consensus is not made
during the annotation process by multiple domain experts. Mislabeling is very common in domains
requiring rapid development, such as bioinformatics. For example, in a study on breast tumor [9],
there existed nine subjective mislabelings among forty-nine features in the training data. Furthermore,
mislabeling is also caused by insufficient information available to the expert [10,11]. An example of
such information includes the unavailability of data of certain observation results of tests. Physicians
are not confident to conclude the crisp diagnosis decision in the presence of partial information.

The existence of mislabeled data usually degrades the performance of learning [12–17]. In general,
the goal of a learning algorithm is to search for the best hypothesis from its hypothesis space.
In supervised learning, the best hypothesis is usually decided by the correlations between the features
and the labels of training data. Therefore, searching for the best hypothesis will be influenced by the
mislabeled data, which results in selecting a non-optimal hypothesis. The non-optimal hypothesis can
bring a set of negative effects, including classification accuracy reduction, classifier construction time
and complexity increase, and others.

The approaches dealing with mislabeled data are categorized into two main groups: robust
algorithm design [18–22] and noise filter [23–41]. The first one is mainly good at developing a novel
algorithm that deals with noisy data during model training. The second approach is good at the
identification and filtering of mislabeled data before the training. Evidence exists that it is usually
difficult to develop a robust algorithm that is insensitive to noisy data. Furthermore, it is revealed
that mislabeled noisy data have a severe impact on the approach; even if the design is claimed to be
robust. In comparison, filter based approaches have significant performance leverage over the robust
algorithm. The core contribution of this work is in the area of filter based approaches.

Several filter based approaches are used to deal with mislabeled data, where the ensemble learning
based filter (EnFilter) is a widely used approach based on its promising performance [23,24,30,33].
EnFilter leverages others with a unique approach by employing multiple classifiers to identify noises
based on their voting.

According to the adopted voting mechanism, EnFilter consists of two types: single-voting based
(SVFilter) and multiple-voting based (MVFilter).The SVFilter detects noises only based on one-time
voting of multiple classifiers, and therefore, it has a potential instability problem.

To solve this instability problem, an MVFilter was proposed in our previous work [40]. In essence,
an MVFilter consists of a set of SVFilters (assume this number is t). For the training data, if at least m
(m ≤ t) SVFilters treat it as noisy, then the MVFilter regards it as noisy. The internal mechanism of
the SVFilter makes comparisons between each SVFilter, therefore through their fusion, the MVFilter
can improve the noise detection stability and accuracy compared to the SVFilter. In the design of the
MVFilter, one of the key issues is how to define the value of m (called the decision point), which actually
defines the noise detection rule. An optimal decision point (ODP) could maximize the performance
of an MVFilter. In [40], the decision points were empirically explored with different representative
values. However, a systematic approach to determining the ODP is lacking.

To this end, a novel approach is proposed in this work to compute the ODP for an MVFilter.
Instead of only considering the number of errors, our approach takes cost information into account
because many applications have unequal costs for various errors. When a cost matrix containing
various cost values is given, the ODP selected by our approach is able to identify the noises that
minimize the expected cost.

The core idea of our approach is as follows: firstly, estimating the mislabeled data distribution
in the noisy training dataset; secondly, estimating the expected costs of each possible decision point;
and finally, the optimal decision point determined by minimizing the expected cost.

We tested our approach based on a set of MVFilters. The experimental results show that our
approach can significantly improve the performance of existing MVFilters. Our approach consistently
works well for different datasets and different cost matrices. In addition, our approach is effective and
straightforward. Only a few predefined parameters and prior knowledge are required.
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In the next section, we will briefly review ensemble learning based noise filters. Section 3 analyzes
the performance of the MVFilter when costs are considered. Our novel approach is presented in
Section 4. The experimental evaluations are presented in Section 5. Section 6 concludes this work and
presents future work.

2. Related Work

This work presents an approach to improve multiple-voting based ensemble filters for mislabeled
data recognition. As necessary background knowledge, conventional ensemble learning based filters
(EnFilter) will be introduced firstly. Then, multiple-voting based filter (MVFilter) will be presented.

EnFilter employs an ensemble classifier to detect mislabeled instances by constructing a set of
base level classifiers and then using their classifications to identify mislabeled instances. The general
approach is to tag an instance as mislabeled if x of the m base level classifiers cannot classify it correctly.
The majority filter (MF) and consensus filter (CF) are the representative EnFilter algorithms [27,28]. MF
tags an instance as mislabeled if more than half of the m base level classifiers classify it incorrectly. CF
requires that all base level classifiers must fail to classify an instance as the class given by its training
label for it to be eliminated from the training data.

The reason for employing ensemble classifiers in EnFilter is that the ensemble classifier has better
performance than each base level classifier on a dataset if two conditions hold: (1) the probability of a
correct classification by each individual classifier is greater than 0.,5 and (2) the errors in predictions of
the base level classifiers are independent.

Algorithm 1 enlists the majority filter (MF) algorithm as a representative EnFilter algorithm.
In Step 1, it initializes with the n disjoint subset of the training set E. In Step 2; it initializes the empty
set A to reflect the noisy examples. The main loop in Steps 3–6 processes each subset Ei, in an iterative
manner. Step 4 establishes subset Et having all examples from E except the one existing in Ei. These
examples from Et are used in an arbitrary inductive learning algorithm in Step 6 to induce a hypothesis
(a classifier) Hj. In Step 14, all those examples from Ei are added to A as potential noisy examples for
which the majority of the hypothesis does not hold. CF is more conservative than MF because of the
severer condition for noise identification, which ultimately results in fewer instances being eliminated
from the training set. With a such property, the CF differs from MF in Step 14, and thus, it considers
examples in Ei as noisy only if all of them are classified incorrectly by the hypothesis. Furthermore, CF
has the risk of retaining bad data.

As Algorithm 1 shows, the core of EnFilter is adopting a voting mechanism to recognize noises.
Training data x, in subset Ei after data partitioning on E, will be voted on by the multiple classifiers,
which are trained based on the data in E \ Ei. Suppose y(x) is the function to determine whether x is
mislabeled, then y(x) = vote(classifiers(E\Ei), x). Like MF and CF, the conventional EnFilter decides
y(x) only based on one-time voting and therefore, is a single-voting based filter (SVFilter).

As pointed out in [40], the SVFilter suffers from an instability problem. For data x, if the
SVFilter runs twice, the first data random partitioning might assign x to subset Ei, while the
second time, it assigns x to subset Ek. Therefore, we have y(x) = vote(classifiers(E\Ei)) and y(x)
= vote(classifiers(E\Ek)). Note that as there is diversity between E\Ei and E\Ek, the voting results of
two SVFilters might be different. Therefore, instead of one-time voting, multiple-voting based filters
(MVFilter) have been proposed to address this instability problem.

MVFilter consists of t SVFilters. Each SVFilter generates its own decision about suspected
mislabeled data index Ai. Finally, all the different decisions Ai(i=1:t) will be combined by the MVFilter
to output the final decision about which data are mislabeled. Therefore, the decision function of
MVFilter can be described as y(x) = vote2(vote1(E\E1), vote1(E\E2), . . . , vote1(E\Et)). In this function,
vote1 is the voting policy used by each SVFilter; vote2 is the voting policy used by MVFilter; Ei is the
subset containing x obtained from the ith SVFilter. Usually, the vote1 policy can either be based on
majority voting or consensus voting. For the vote2 policy, we have developed three policies: majority
voting, consensus voting, and one-time veto. One-time vote means that if at least one SVFilter tags
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data as mislabeled, then the MVFilter will tag these data as mislabeled. In the MVFilter, different
vote1 and vote2 policies can be combined to make various algorithms. As the example of MVFilter,
the MFMF [40] algorithm is presented in Algorithm 2, which utilizes majority voting for both vote1

and vote2.

Algorithm 1 Majority filtering algorithm.
Algorithm: majority filtering (MF)
Input: E (training set)
Parameter: n (number of subsets), y (number of learning algorithms),
A1, A2, . . . , Ay(y kinds of learning algorithms)
Output: A (detected noisy subset of E)
(1) form n disjoint almost equally sized subset of Ei , where

⋃
i

Ei = E
(2) A← ∅
(3) for i=1, . . . , n do
(4) form Et ← E\Ei
(5) for j = 1,. . . y do
(6) induce Hj based on examples in Et and Aj
(7) end for
(8) for every e ∈ Ei do
(9) ErrorCounter ← 0
(10) for j = 1,. . . ,y do
(11) if Hjincorrectly classifies e
(12) then ErrorCounter ← ErrorCounter + 1
(13) end for
(14) if ErrorCounter > y

2 , then A← A ∪ {e}
(15) end for
(16) end for

Algorithm 2 MFMF algorithm.
MajorityFiltering_MajorityFiltering (MFMF )
Input: E (training set)
Parameter: n (number of subsets), y (number of learning algorithms),
t (number of times of subsets partitioning), A1, A2, . . . , Ay(y kinds of learning algorithms)
Output: A (detected noisy subset of E)
(1) for p = 1,. . . , t do
(2) form n disjoint almost equally sized subset of Epi , where

⋃
i

Epi = E
(3) Ap ← ∅
(4) for i = 1, . . . , n do
(5) form Et ← E\Epi
(6) for j = 1,. . . y do
(7) induce Hpj based on examples in Et and Aj
(8) end for
(9) for every e ∈ Epi do
(10) ErrorCounter← 0
(11) for j = 1,. . . ,y do
(12) if Hpj incorrectly classifies e
(13) then ErrorCounter← ErrorCounter + 1
(14) end for
(15) if ErrorCounter > y

2 , then Ap ← Ap ∪ {e}
(16) end for
(17) end for
(18) end for
(19)A← ∅
(20) for every e ∈ E do
(21) ErrorCounter← 0
(22) for j = 1,. . . , p do
(23) if e ∈ Ap

(24) then ErrorCounter← ErrorCounter + 1
(25) end for
(26) if ErrorCounter > p

2 , then A← A∪ {e}
(27) end for

3. Analysis of Decision Point, Error Probability, and Cost for MVFilter

The multiple-voting based filter (MVFilter) consists of several single-voting based filters (SVFilter).
The MVFilter treats data as mislabeled if at least m out of t SVFilters identify these data as mislabeled.
Obviously, for different m values, the recognized noises by an MVFilter will be different. The selection
of the m value plays an important role in an MVFilter. Because the m value decides the noise identifying
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results, it is called the “decision point” in this work. Our goal is to find a way to decide the “optimal
decision point” to maximize the performance of MVFilter.

When a filter works on a noisy training dataset, it is usually hard to recognize all the noises
perfectly. The errors made by a filter include two types: The first type (E1) occurs when declaring a
correctly labeled example as mislabeled and is subsequently discarded. The second type of error (E2)
corresponds to declaring a mislabeled example as correctly labeled. For a well designed filter, it is
desirable to avoid both E1 and E2 errors. However, conceptually, E1 and E2 are conflicting. To reduce
E1 errors, the filter should make a more severe noise detection policy, which tends to increase E2 errors.
In MVFilter, the selection of the decision point will influence the probability to make an E1 or E2 error.

3.1. Relationship between the Decision Point and Error Probability in MVFilter

An MVFilter fuses the noise detection results of multiple SVFilters, while an SVFilter fuses the
classification results of multiple classifiers. Therefore, the errors made by each classifier are the basis to
infer the errors made by an MVFilter.

Let P(E1i) and P(E2i) be the probability that classifier i makes an E1 and E2 error, respectively.
To clarify the analysis, it is assumed that all the various classifiers in an SVFilter have the same
probability of making an error. Therefore, we assume that P(E1i) = P(E1) and P(E2i) = P(E2). The
most commonly used SVFilters include the majority filter (MF) and consensus filter (CF). The analysis
here is based on MF, while a similar analysis can be conducted for CF.

MF makes an E1 (or E2) error when more than half of these classifiers make an E1 (or E2) error.
If the number of classifiers in MF is y, then we have:

P(E1MF) =
j=y

∑
j>y/2

(P(E1)j(1− P(E1))y−j)

(
y
j

)

P(E2MF) =
j=y

∑
j>y/2

(P(E2)j(1− P(E2))y−j)

(
y
j

)

Suppose an MVFilter consists of t majority filters (MMF). Let P(E1MFi ) and P(E2MFi ) denote the
probability that each MF makes an E1 and E2 error, respectively. To simplify the analysis, it is assumed
that P(E1MFi ) = P(E1MF) and P(E2MFi ) = P(E2MF). The decision rule of an MVFilter is “if at least
m of the t SVFilters think data is mislabeled, then these data are identified as mislabeled”. This m
value, called the decision point, will influence the probabilities of making an error for an MVFilter.
Let MMF represent an MVFilter consisting of multiple majority filters, then the following relationships
can be found:

P(E1MMF) =

j=t

∑
j≥m

(P(E1MF)
j(1− P(E1MF))

t−j)

(
t
j

)

P(E2MMF) =

j=t

∑
j>t−m

(P(E2MF)
j(1− P(E2MF))

t−j)

(
t
j

)
The decision point value m can be any number between one and t. Among all possible values,

the representative decision points include m = 1, m = t/2, m = t. When m = 1, data will be identified as
mislabeled if at least one SVFilter thinks these data are mislabeled. When m = t, data will be identified
as mislabeled only if all the t SVFilters think these data are mislabeled. Conceptually, the noise
detection rule is too loose if the decision point is one, while the rule is too strict if the decision point is
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t. In this sense, m = t/2 is usually moderate. For these three representative decision points, we have
the following relationships:

P(E1MMF|m = 1) = 1− (1− P(E1MF))
t

P(E2MMF|m = 1) = P(E2MF)
t

P(E1MMF|m = t/2) =

j=t

∑
j≥t/2

(P(E1MF)
j(1− P(E1MF))

t−j)

(
t
j

)

P(E2MMF|m = t/2) =

j=t

∑
j>t/2

(P(E2MF)
j(1− P(E2MF))

t−j)

(
t
j

)

P(E1MMF|m = t) = P(E1MF)
t

P(E2MMF|m = t) = 1− (1− P(E2MF))
t

For the above relationships, normally we have:

P(E1MMF|m = t) < P(E1MMF|m = t/2) <

P(E1MMF|m = 1)

P(E2MMF|m = 1) < P(E2MMF|m = t/2) <

P(E2MMF|m = t)

As P(E1MMF) and P(E2MMF) are conflicting, the optimal decision point should make a trade-off
between these two probabilities. Therefore, if the probability of making errors is the only concern of
MVFilter, the optimal decision point (ODP) is ODP = arg min

m=1:j
(P(E1MMF) + P(E2MMF)).

3.2. Relationship between the Decision Point and Error Cost

In Section 3.1, for an MVFilter, the relationships between the optimal decision point and
probabilities of making errors are analyzed. In this section, the costs of misrecognitions are considered.
We will further analyze the relationships between the decision point and expected costs.

Misrecognition/error costs allow us to specify the relative importance of different kinds of errors.
In fact, many applications have unequal misrecognition costs. In our previous work [41] while studying
the behaviors of the supervised feature selection algorithm, we noticed a trade-off of a smaller and
bigger number of noise-free data preferences among various algorithms. As a consequence of this
trade-off, different costs should be determined for different errors. A smaller number of noise-free
data yields a higher type 1 error cost compared to the type 2 error cost.

The various misrecognition costs are defined by a cost matrix. The cost matrix reflects the domain
specific costs representing the cost sensitive model in the critical medical domain. Therefore, associative
costs for a different type of error are finalized by the domain expert keeping the clinical context and
consequences in mind.

As shown in Table 1, cost matrix C usually has the following structure, wherein the
cost matrix rows correspond to predicted results, while columns correspond to actual results,
i.e., row/column = predict/actual.
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Table 1. Cost matrix of the mislabeled data filter.

Actual Mislabeled Actual Noise-Free

Predict mislabeled and eliminate C(0,0) = C00 C(0,1) = C01

Predict noise-free and retain C(1,0) = C10 C(0,0) = C11

For correctly classified mislabeled (or noise-free) data, the cost is zero, and hence, it is normally
assumed that C00 = C11 = 0 in the above matrix. With this assumption, the expected cost of an
MVFilter is:

ExpectedCostMVFilter =

P(E1MVFilter)C01 + P(E2MVFilter)C10

As Section 3.1 shows, P(E1MVFilter) and P(E2MVFilter) are correlated with the decision point value.
Therefore, ExpectedCostMVFilter is determined by both the decision point value and the cost matrix.
If the cost matrix is fixed, then ExpectedCostMVFilter is only influenced by the decision point value.
Therefore, the cost concerned optimal decision point should be:

ODP = arg min
m=1:j

(P(E1MVFilter)C01 + P(E2MVFilter)C10)

In this equation, if C01 � C10, P(E1MVFilter) will be the dominant factor to determine ODP value.
The ODP is the decision point that can minimize P(E1MVFilter). From the analysis in Section 3.1,
we know that it is highly probable that ODP = t. On the other hand, if C10 � C01, P(E2MVFilter) will
be the dominant factor to determine the OPD value. In this case, it is likely that ODP = 1.

It should be noted that the ODP can be determined from the above analysis only in some extreme
cases (for example, when C01 � C10 or C10 � C01). However, for the other cases, directly calculating
the ODP is extremely difficult. In addition, the above equation of the ODP is obtained by making
several assumptions. Therefore, it is not very useful to calculate the ODP value through mathematically
inferring since the calculated ODP is influenced by the assumptions.

4. Novel Approach to Determine the Optimal Decision Point

In this section, we present our approach that can select the optimal decision point for an MVFilter
by considering both cost information and the dataset itself.

Given a noisy training dataset, we define that the ODP is the value that can minimize the
expected cost of an MVFilter. As pointed out in Section 3, mathematically inferring the ODP is difficult.
Therefore, instead of directly inferring, we try to estimate the ODP implicitly.

For a noisy training dataset E, if we already know which data in E are mislabeled, it is trivial to
decide the ODP. We just need to explore all the possible decision points. The OPD will be the point
that minimizes the overall costs of misrecognitions.

Of course, the mislabeled data distribution in E is unknown since our mission is to identify
mislabeled data from E. However, if there exists another noisy dataset E’ similar to E and with a known
mislabeled data distribution, then we could implicitly estimate ODP from E’ instead of E since their
ODPs should be similar.

This actually is the key idea of our approach. Given a noisy dataset E to handle, we will generate
another dataset E’. The new generated E’ requires: (1) E’ and E are from the same/similar data
distribution, and (2) the mislabeled data distributions in E and E’ are similar. If such an E’ could be
generated, we can easily get the ODP based on E’ since the mislabeled data distribution in E’ is known.

In many real applications, in addition to the noisy dataset E, usually another validation dataset
En f is available. En f contains only noise-free data and coming from the same data distribution as E.
As there are no mislabeled data in En f , the artificial erroneous labels are put into En f . Here, we assume
that the prior knowledge of the noise ratio in E is available, which is used to determine the erroneous



Appl. Sci. 2019, 9, 5031 8 of 26

labels put into En f . Through the above procedures, En f can be converted to E’. The optimal decision
point from E’ can be used to estimate the actual decision point in E.

As the actual mislabeled data distribution in E is not available, we put erroneous labels in En f
in a random manner based on the prior noise ratio information. Although the mislabeled data in E
are also stochastic, the mislabeled data distribution in E and E’ can have a great difference. In this
case, the ODP value obtained from E’ is actually not optimal for E. To solve this problem, the ODP is
estimated several times. This method uses the numIter parameter to control the specified number of
iterations. Each time E’ changes since random erroneous labels are put into En f . For each time, all the
possible decision points (from one to t) will be explored, and accordingly, the cost of misrecognition
is recorded. The average cost of each decision point value is obtained by taking the mean value of
this decision point multiple times the misrecognition costs. Finally, the decision point having the
least average cost is selected as the optimal decision point. The details of our algorithm are shown in
Algorithm 3.

Algorithm 3 Optimal decision point estimation for MVFilter.
Algorithm: Searching optimal decision point for MVFilter
Input: E (training set), En f (noise-free dataset)
Parameter: numIter (number of iterations to search ODP), noiseRatio (the noise ratio in E), MVFilter (the
multiple-voting based filter algorithm), t (number of single-voting filters in MVFilter), C (cost matrix)
Output: ODP (optimal decision point)
(1) costMatrix ← ∅
(2) for i = 1,. . . , numIter do
(3) randIndex←RandomPermutation(

∣∣∣En f

∣∣∣)
(4) noiseIndex←randIndex(1:

∣∣∣En f

∣∣∣× noiseRatio)

(5) E′ ← generateNoise(En f , noiseIndex)
(6) costVector ← ∅
(7) for m = 1,. . . , t do
(8) noiseIndexDetected←MVFilter(E’, m)
(9) index←InterSection(noiseIndex, noiseIndexDetected)
(10) indexE1←noiseIndexDetected\index
(11) indexE2←noiseIndex\index
(12) cost← |indexE1| × C01 + |indexE2| × C10
(13) costVector(m)←cost
(14) end for
(15) costMatrix = [costrMatrix; costVector];
(16) end for
(17) ODP← arg min

m=1:t
(costMatrix(1 : end, m))

In Algorithm 3, it is assumed that another noise-free dataset En f exists, which has the same
distribution as E. Usually in a training dataset, some labels are certainly correct. These partial noise-free
data are also used as a validation dataset in many applications. However, for a few applications, if En f
is unavailable, then this algorithm cannot be used directly. To solve this problem, we can directly use
an MVFilter to mine the noise-free data from E. In this case, the loose noise detection policy is preferred
by MVFilter. To generate En f , the main concern is to make less E2 errors. Therefore, a small decision
point value (for example, one) should be used by MVFilter. By this method, En f can be collected from
E. Then, Algorithm 3 can be used. The parameter noiseRatio in Algorithm 3 should also be noted. This
parameter represents the noise ratio in E (mislabeled percentage of E). It is used to decide the number
of erroneous labels to generate in E’. Here, we assume this is prior knowledge. For many applications,
through years of experience, the rough noise ratio in a noisy training set is usually known. If this value
is totally unknown, we also provide a solution. This parameter can be estimated from E by using an
MVFilter. To estimate this parameter more accurately, MVFilter should select a decision point that
considers the E1 and E2 error simultaneously. The value t/2 is a reasonable decision point since this
decision point usually has a good trade-off between E1 and E2 errors.
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5. Experimental Work

In this section, a set of experiments is conducted to verify the effectiveness of our proposed
approach. To test its performance, several representative single-voting and multiple-voting based
filters are used. SVFilters include the majority filter (MF) and consensus filter (CF) [27,28]. MF based
MVFilters include MF1, MFMF, and MFCF [40]. CF based MVFilters include CF1, CFMF, and CFCF [40].
Suppose the number of SVFilters in an MVFilter is t. In MF1 and CF1, the decision point is 1. In MFMF
and CFMF, the decision point is t/2, while in MFCF and CFCF, the decision point is t. When the decision
point is determined by our approach, the MF based MVFilter is denoted by MFODP and the CF based
MVFilter is denoted by CFODP. When filtering noises, the costs incurred by MFODP and CFODP will be
compared to other methods. If our approach is effective, MFODP and CFODP should incur less cost
compared to other methods.

Six bioinformatics datasets from the UCI repository were used in this experiment. Information on
these datasets is tabulated in Table 2, where pos/neg presents the percentage of the number of positive
examples against that of negative examples.

Table 2. Datasets used in the experiment. pos, positive; neg, negative.

Dataset No. of Features No. of Instances pos/neg

Heart 14 270 55.6%/44.4%

Wdbc 30 569 62.7%/37.3%

Wpbc 33 198 76.3%/23.7%

Spect 22 267 79.4%/20.6%

Spect1 44 267 79.4%/20.6%

Promoter 57 106 50%/50%

An SVFilter (referring to Algorithm 1) is configured as follows: the number of subsets is 3 (n = 3);
three learning algorithms are used (y = 3) including naive Bayes, decision tree, and 3-nearest neighbor.
The configurations of an MVFilter (referring to Algorithm 2) are basically identical to the SVFilter
configurations. One additional parameter in MVFilter is the number of SVFilters, which equals nine in
the experiments (t = 9). Our proposed algorithm (referring to Algorithm 3) is based on MVFilter. Its
additional parameter is the number of iterations to search for ODP. Here, it equals ten (numIter = 10).

The experiments were performed on each benchmark dataset by dividing it into a training set
and test set. The filter algorithms were applied to each training set to remove the mislabeled data. Test
data were only used by our algorithm, which is represented as En f in Algorithm 3. It is important to
clarify here that domain experts were involved to establish the noise-free benchmark dataset, which
included the desired labels finalized after coming to a common consensus.

Making the cost value as a baseline computation, the performance of each filter algorithm was
evaluated against each dataset D using the following steps:

1. Evaluating the performance of each filter using three trials derived from the threefold
cross-validation of D. For each trail, 2/3 of D or Tr were used for the training set. We purposely
changed some correct labels in the Tr using the predefined mislabeled ratio to generate the
mislabeled data. For this purpose, three different mislabeled ratios were used: 10%, 20%, and 30%.
As an example, for a 10% mislabeled ratio, 10% of the samples from Tr were randomly selected
and then the correct labels changed.

2. The average cost of each algorithm was calculated by taking the mean cost of errors for each filter
of the three trails.

3. In order to avoid the influence of the partitioning of D on the generated mislabeled data, we
considered ten cost values retrieved from each experiment conducted ten times (i.e., repeating the
previous two steps ten times).
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4. Finally, the reported cost value was obtained as the mean of these ten values.

5.1. Experimental Investigation

Next, the experimental results of each dataset will be presented. Table 3 shows the comparisons
of each filter in terms of cost on the Heart dataset. This table consists of three parts corresponding to
three noise ratios (10%, 20%, and 30%). Under each noise ratio, the experiments were based on nine
different cost matrices. Here, it was assumed that C00 = C11 = 0, so only C01 and C10 were needed to
define a cost matrix. For example, in the second row of Table 3, 1:1 means C01 = C10 = 1, while 1:20
means C01 = 1, C10 = 20. The last column in Table 3, Ave., represents the average cost of each filter
based on all nine cost matrices.

Table 3 shows that for all three noise ratios, CFODP had the lowest average cost among all the CF
based filters. Likewise, MFODP was the best one among all the MF based filters. Moreover, under all
the noise ratios and cost matrices, CFODP and MFODP outperformed other filters in most cases. This
was in contrast to the other filters that heavily depend on cost matrices. For example, CFCF showed
outstanding performance when C01 > C10, but its performance decreased dramatically when C10

increased. When the correlation between the cost and noise ratio was considered, we found that the
cost of all the filters increased with noise ratio growth. However, compared with other filters, the cost
increases of CFODP and MFODP were slow. In detail, when the noise ratio grew from 10% to 30%,
the cost increase of CFODP was 44, MFODP was 12, while the cost increase of other filters was fast
(for example, 97 for CF1 and 102 for MF1). By further comparing CFODP and MFODP, we found that
under this dataset, CFODP had a smaller average cost value. However, with the noise ratio increasing,
the performance difference between them became small.

Table 4 shows the cost comparisons of each filter based on the Wdbcdataset. The experimental
conclusions in Table 4 are similar to those of Table 3. In most cases (under different noise ratios and
cost matrices), CFODP and MFODP were the winners. In addition, their advantages were more obvious
when the noise ratio and cost value increased. When the noise ratio was 10%, CFODP outperformed
MFODP. However, they showed similar performance when the noise ratio grew.

Table 5 presents the experimental results based on the Wpbc dataset. Similar to the experimental
conclusions from Tables 3 and 4, our approach could effectively improve the performance of the MF
and CF based filters. In addition, CFODP and MFODP consistently worked well in different cases.
Except for CFODP and MFODP, the performance of the other filters usually had a dramatic decline
when the noise ratio increased. Moreover, other filters had obvious performance changes when the
relationship of C01 and C10 changed. For example, MFMF worked well when C10 > C01, but its
performance became poor when C01 > C10.

Tables 6–8 show the experimental results on the datasets of Spect, Spect1, and Promoter. Similar
to the above analysis, these three tables clearly indicate the superiority of CFODP and MFODP.
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Table 3. Cost comparisons on Heart. Ave., average; CF, consensus filter; MF, majority filter.

C01:C10 (10% Noise Ratio)

1:1 1:3 1:5 1:10 1:20 3:1 5:1 10:1 20:1 Ave.

CF 22 33 45 74 132 54 86 167 328 105

CF1 34 39 44 56 81 98 161 320 638 164

CFMF 22 34 46 77 138 52 83 161 315 103

CFCF 17 40 64 123 241 27 37 62 112 80

CFODP 17 35 44 60 79 27 37 62 112 52

MF 34 41 48 65 100 96 157 311 619 164

MF1 59 63 67 76 95 174 288 574 1146 282

MFMF 31 37 43 59 90 87 143 282 561 148

MFCF 20 32 44 74 134 49 78 150 295 98

MFODP 20 34 43 63 87 49 78 150 295 91

C01:C10 (20% Noise Ratio)

CF 29 62 95 177 342 55 81 145 274 140

CF1 39 53 67 102 172 104 169 331 656 188

CFMF 26 55 83 153 295 51 76 137 261 126

CFCF 29 82 136 269 536 33 38 49 71 138

CFODP 27 53 66 102 172 34 38 49 71 68

MF 41 58 75 118 203 105 170 331 653 195

MF1 70 77 84 101 136 204 338 672 1341 336

MFMF 36 52 67 106 184 93 151 293 579 174

MFCF 27 58 89 166 320 50 73 131 247 129

MFODP 28 51 68 99 139 50 73 131 247 98

C01:C10 (30% Noise Ratio)

CF 42 101 160 308 604 68 93 156 283 202

CF1 50 73 96 153 268 128 205 399 787 240

CFMF 39 97 156 301 592 59 80 130 231 187

CFCF 48 142 236 471 941 51 53 59 71 230

CFODP 38 75 96 153 268 52 53 59 71 96

MF 49 80 111 189 344 115 181 347 678 233

MF1 80 88 95 113 150 234 387 770 1537 384

MFMF 44 72 100 169 308 104 164 315 616 210

MFCF 41 105 168 328 647 59 76 121 210 195

MFODP 39 71 89 116 150 59 76 121 210 103
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Table 4. Cost comparisons on Wdbc.

1:1 1:3 1:5 1:10 1:20 3:1 5:1 10:1 20:1 Ave.

CF 16 29 41 72 134 36 56 105 204 77

CF1 21 26 30 42 65 59 96 190 378 101

CFMF 14 24 34 59 109 33 52 99 194 69

CFCF 16 40 63 123 242 24 31 51 90 75

CFODP 14 23 28 43 70 25 33 56 100 43

MF 24 28 32 44 66 66 109 216 429 113

MF1 38 40 43 49 61 112 185 369 737 182

MFMF 20 25 29 40 63 57 93 184 367 98

MFCF 15 23 31 51 91 36 57 111 217 70

MFODP 15 24 30 45 60 36 57 111 217 66

C01:C10 (20% Noise Ratio)

CF 26 64 102 198 389 39 52 86 152 123

CF1 23 36 49 82 147 55 87 167 327 108

CFMF 24 57 91 175 342 37 51 86 155 113

CFCF 50 148 246 490 979 54 57 64 80 241

CFODP 21 36 49 82 147 38 49 65 81 63

MF 27 40 52 83 146 70 112 218 431 131

MF1 69 75 81 96 126 200 331 660 1316 328

MFMF 22 30 39 62 106 56 90 176 347 103

MFCF 23 55 88 170 333 35 47 79 141 108

MFODP 17 29 40 68 117 34 47 79 141 64

C01:C10 (30% Noise Ratio)

CF 50 133 217 426 844 66 82 123 204 238

CF1 28 48 69 121 224 62 96 183 355 132

CFMF 43 116 190 373 740 56 68 100 163 205

CFCF 90 267 445 888 1775 92 95 101 113 429

CFODP 28 48 69 121 224 52 71 100 111 91

MF 42 64 85 139 247 105 169 326 642 202

MF1 85 91 97 110 138 251 416 829 1656 408

MFMF 28 44 59 97 174 69 110 213 419 135

MFCF 45 121 196 386 765 59 72 107 176 214

MFODP 26 43 57 90 147 51 76 107 176 86
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Table 5. Cost comparisons on Wpbc.

C01:C10 (10% Noise Ratio)

1:1 1:3 1:5 1:10 1:20 3:1 5:1 10:1 20:1 Ave.

CF 22 39 56 98 182 49 76 143 277 105

CF1 45 50 55 68 94 131 216 429 856 216

CFMF 19 34 49 86 160 41 64 121 234 90

CFCF 14 40 66 131 261 16 19 24 35 67

CFODP 14 35 52 65 91 16 19 24 35 39

MF 39 45 51 67 98 110 182 361 719 186

MF1 80 82 83 87 95 239 398 795 1590 383

MFMF 36 40 45 56 78 103 171 339 676 171

MFCF 18 35 53 96 183 37 56 103 198 87

MFODP 18 35 45 63 90 37 56 103 198 72

C01:C10 (20% Noise Ratio)

CF 32 67 102 190 366 61 90 162 306 153

CF1 50 68 86 131 221 131 212 416 822 237

CFMF 28 65 101 192 374 48 68 117 216 134

CFCF 27 79 130 260 519 29 31 36 46 128

CFODP 26 60 82 131 221 30 33 36 46 74

MF 45 65 84 132 229 117 188 366 723 217

MF1 78 84 90 104 133 229 380 757 1512 374

MFMF 42 60 79 126 219 106 170 332 654 199

MFCF 27 67 107 207 407 42 57 94 169 131

MFODP 28 59 77 102 132 42 57 94 169 85

C01:C10 (30% Noise Ratio)

CF 40 95 150 286 560 67 93 158 290 193

CF1 53 73 92 141 239 140 226 443 876 254

CFMF 38 97 157 306 603 53 69 109 188 180

CFCF 39 116 194 387 774 39 40 41 43 186

CFODP 37 77 92 141 239 39 40 41 43 83

MF 50 80 110 185 335 120 190 365 715 239

MF1 75 79 83 94 115 220 365 728 1453 357

MFMF 48 74 101 168 301 116 185 357 700 228

MFCF 39 102 165 324 640 52 66 101 169 184

MFODP 39 75 82 94 115 52 66 101 169 88
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Table 6. Cost comparisons on Spect.

C01:C10 (10% Noise Ratio)

1:1 1:3 1:5 1:10 1:20 3:1 5:1 10:1 20:1 Ave.

CF 23 39 56 98 181 51 79 151 293 108

CF1 39 50 60 86 139 108 176 347 690 188

CFMF 19 37 55 100 190 40 61 113 218 93

CFCF 16 42 68 133 263 22 28 43 73 76

CFODP 16 40 54 93 139 22 28 43 73 56

MF 42 50 58 78 118 117 192 380 755 199

MF1 71 74 78 87 104 208 346 690 1377 337

MFMF 36 43 51 70 108 100 164 325 646 171

MFCF 20 37 54 98 184 42 64 120 231 94

MFODP 20 39 51 69 92 42 64 120 231 81

C01:C10 (20% Noise Ratio)

CF 34 71 108 201 386 65 95 172 325 162

CF1 48 69 90 144 250 122 196 381 751 228

CFMF 31 69 107 203 394 55 79 138 257 148

CFCF 31 90 148 295 588 34 38 46 63 148

CFODP 32 68 95 144 250 36 38 46 63 86

MF 45 63 81 125 214 119 192 374 740 217

MF1 77 83 89 104 134 226 375 747 1492 370

MFMF 42 60 77 121 209 108 175 341 673 201

MFCF 30 72 113 216 423 50 70 118 216 145

MFODP 31 60 78 108 134 50 70 118 216 96

C01:C10 (30% Noise Ratio)

CF 49 113 177 336 655 83 117 203 374 234

CF1 59 89 118 193 342 147 234 454 893 281

CFMF 45 109 174 335 657 71 96 160 288 215

CFCF 51 148 246 490 978 55 59 69 89 243

CFODP 46 89 118 193 342 55 59 69 89 118

MF 56 89 122 203 367 136 216 416 816 269

MF1 89 100 111 137 191 258 426 846 1688 427

MFMF 54 88 123 208 379 128 203 388 759 259

MFCF 45 115 186 361 712 65 86 136 237 216

MFODP 45 86 109 137 191 65 86 136 237 121
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Table 7. Cost comparisons on Spect1.

C01:C10 (10% Noise Ratio)

1:1 1:3 1:5 1:10 1:20 3:1 5:1 10:1 20:1 Ave.

CF 28 45 62 104 189 67 107 205 402 134

CF1 50 57 64 82 117 142 234 464 924 237

CFMF 23 41 60 106 198 50 77 145 280 109

CFCF 19 48 78 153 301 26 33 52 88 89

CFODP 19 42 59 85 117 26 33 52 88 58

MF 47 56 65 89 135 131 215 426 847 223

MF1 82 84 87 95 109 242 402 803 1604 390

MFMF 41 50 59 80 124 115 189 373 742 197

MFCF 23 42 60 106 198 51 79 148 287 110

MFODP 23 43 60 83 120 51 79 148 287 99

C01:C10 (20% Noise Ratio)

CF 35 76 116 217 419 65 95 170 320 168

CF1 51 69 87 131 220 136 221 433 858 245

CFMF 34 78 122 232 452 57 80 138 253 160

CFCF 34 98 162 323 644 37 40 48 63 161

CFODP 33 66 88 131 220 37 40 48 63 81

MF 53 75 97 152 262 137 222 432 853 254

MF1 86 92 99 114 145 252 419 834 1665 412

MFMF 47 68 89 142 247 119 191 371 731 222

MFCF 32 77 123 237 465 50 68 114 205 152

MFODP 32 65 85 112 143 50 68 114 205 97

C01:C10 (30% Noise Ratio)

CF 53 125 198 379 741 87 120 204 372 253

CF1 71 101 131 205 354 184 296 577 1139 340

CFMF 49 128 207 405 800 68 86 133 226 234

CFCF 53 158 263 524 1048 55 57 61 70 254

CFODP 51 104 131 205 354 54 56 62 70 121

MF 66 105 143 240 433 159 252 485 950 315

MF1 102 109 115 131 164 301 499 994 1985 489

MFMF 61 99 136 229 416 147 232 445 872 293

MFCF 52 136 221 432 854 71 90 138 233 247

MFODP 52 103 125 131 164 71 90 138 233 123
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Table 8. Cost comparisons on Promoter.

C01:C10 (10% Noise Ratio)

1:1 1:3 1:5 1:10 1:20 3:1 5:1 10:1 20:1 Ave.

CF 10 19 29 52 99 20 31 57 109 47

CF1 23 26 29 38 54 65 107 212 422 108

CFMF 8 19 29 54 106 15 22 38 72 40

CFCF 7 22 37 73 147 7 7 7 7 35

CFODP 8 19 29 37 54 8 7 7 7 20

MF 20 24 29 41 64 55 90 177 351 94

MF1 43 44 44 46 49 128 213 426 851 205

MFMF 17 20 23 30 45 48 80 158 315 82

MFCF 8 18 29 55 107 13 18 31 56 37

MFODP 8 18 23 32 41 13 18 31 56 27

C01:C10 (20% Noise Ratio)

CF 16 34 51 96 185 30 44 79 149 76

CF1 26 32 39 54 85 72 118 233 463 125

CFMF 13 33 53 101 199 21 28 46 83 64

CFCF 15 44 72 145 289 15 16 17 19 70

CFODP 14 34 40 54 85 15 16 17 19 33

MF 24 32 41 63 106 63 102 199 393 114

MF1 42 43 44 47 52 124 207 413 825 200

MFMF 22 31 40 62 107 58 94 183 362 107

MFCF 14 35 56 108 212 20 27 44 77 66

MFODP 14 29 44 46 50 20 27 44 77 39

C01:C10 (30% Noise Ratio)

CF 22 49 76 144 279 38 54 95 176 104

CF1 32 44 57 88 150 83 133 261 515 151

CFMF 20 52 84 164 324 29 37 58 100 97

CFCF 21 64 106 212 424 21 21 21 21 101

CFODP 21 44 57 88 150 21 21 21 21 49

MF 27 43 58 98 177 65 103 198 388 128

MF1 41 45 48 56 73 120 199 397 793 197

MFMF 24 38 52 88 159 57 90 174 340 114

MFCF 20 54 88 173 343 25 30 43 68 93

MFODP 20 40 48 56 73 25 30 43 68 45
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Several important conclusions can be drawn by summarizing the above evaluation results:
(1) Selecting the optimal decision point by our approach could effectively improve the

performance of an MVFilter. (2) CFODP and MFODP adapted to various noise ratios. In particular, even
in a high noise ratio environment, the cost increases of CFODP and MFODP were not great. (3) Under
different cost matrices, CFODP and MFODP consistently outperformed other filters. The advantages of
CFODP and MFODP were more obvious when the difference between C01 and C10 was big. (4) Given a
noisy training dataset, our proposed approach proved to be effective under different noise ratios and
cost matrices if two conditions hold: (a) the noise ratio of this dataset is known; (b) there exists another
noise-free training dataset that is drawn from the same distribution as this noisy dataset.

5.2. Extended Experimental Investigation

As pointed out above, our approach was verified to work well if the noise ratio and additional
noise-free dataset were available. To further confirm the usability of our approach, we evaluated it
in an environment where the two kinds of information were not available, that is the noisy training
dataset E was the only available information.

The noise ratio was estimated by the CFMF algorithm. As an MVFilter, CFMF consists of t
consensus filters. The decision point here equals t/2. In other words, if at least t/2 CFs identify data as
mislabeled, then CFMF will regard that these data are mislabeled. For a noisy training dataset E, if n
data are identified by CFMF, then the estimated noise ratio is n/ |E|. The parameter configurations of
CFMF were consistent with before (referring to the beginning of Section 4).

The noise-free dataset was obtained by applying CF1 algorithm on E. CF1 consists of t consensus
filters. If at least one of CF identify data as mislabeled, then CF1 will regard these data as mislabeled.
Conceptually, the noise detection is loose, which aims to remove all the potential mislabeled data.
Suppose the noises recognized by CF1 are A. Then, the noise-free dataset is the subset of E, which
excludes A. The configurations of CF1 were in accordance with above experiments.

Tables 9–14 show the experimental results on the benchmark datasets. Under all five datasets
and all the noise ratios, CFODP and MFODP still showed outstanding performance, which defeated
other filters in most cases. When compared to the experiment results in Tables 3–8, we found that
the performances of CFODP and MFODP had a certain extent of degradation in a few cases. However,
in general, the performance change was moderate. This indicates that even without a noise ratio and
an additional noise-free dataset, our proposed approach still worked well. One of the reasons was
that in our approach, the mislabeled data distribution was estimated multiple times. Although the
estimated mislabeled distribution for each time might be distorted, their fusion approached the real
distribution. Then, the estimated ODP was also close to the real optimal decision point.

The two independent experimental evaluations in Sections 5.1 and 5.2 proved that our proposed
approach was effective and able to improve the performance of any MVFilter by selecting the optimal
decision point. In particular, in the high noise ratio and high cost values, our approach showed
significant improvements compared to other filters.
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Table 9. Cost comparisons on Heart in the case that the noise ratio and noise-free dataset
are unavailable.

C01:C10 (10% Noise Ratio)

1:1 1:3 1:5 1:10 1:20 3:1 5:1 10:1 20:1 Ave.

CF 23 37 50 82 148 57 91 175 344 112

CF1 34 39 45 57 83 98 161 320 638 164

CFMF 21 34 47 79 144 51 80 154 302 101

CFCF 16 39 62 119 233 24 33 55 98 75

CFODP 26 35 41 56 83 51 69 106 185 72

MF 36 42 48 63 93 101 166 330 656 170

MF1 61 64 67 73 87 181 301 600 1199 293

MFMF 31 36 41 55 81 87 143 283 563 147

MFCF 21 32 44 73 131 51 81 156 306 99

MFODP 23 33 41 57 85 53 85 160 306 94

C01:C10 (20% Noise Ratio)

CF 28 57 86 158 302 55 82 149 283 133

CF1 40 51 62 91 147 107 175 345 683 189

CFMF 28 60 92 172 332 53 78 139 263 135

CFCF 30 85 141 280 558 34 38 48 68 142

CFODP 29 52 66 96 146 53 69 81 98 77

MF 39 52 65 98 164 104 169 331 655 186

MF1 67 72 77 88 112 197 327 651 1300 321

MFMF 36 48 60 90 150 97 158 309 613 174

MFCF 27 60 93 174 338 50 72 127 239 131

MFODP 30 48 60 84 119 55 78 127 239 93

C01:C10 (30% Noise Ratio)

CF 43 102 162 312 610 68 93 157 283 203

CF1 45 68 91 147 261 114 182 352 694 217

CFMF 40 99 158 307 603 59 79 129 227 189

CFCF 48 143 239 476 952 50 51 55 63 231

CFODP 38 76 99 147 261 56 65 80 84 101

MF 51 79 108 178 319 125 199 384 754 244

MF1 76 83 91 108 144 222 367 731 1459 365

MFMF 43 69 95 160 290 103 162 312 611 205

MFCF 40 103 167 326 644 56 72 112 192 190

MFODP 37 75 96 127 178 59 78 112 192 106
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Table 10. Cost comparisons on Wdbc in the case that the noise ratio and noise-free dataset
are unavailable.

C01:C10 (10% Noise Ratio)

1:1 1:3 1:5 1:10 1:20 3:1 5:1 10:1 20:1 Ave.

CF 17 32 47 86 162 35 53 99 190 80

CF1 21 29 36 53 89 57 93 182 361 102

CFMF 16 29 42 75 140 34 52 98 189 75

CFCF 19 50 81 159 315 27 34 52 89 92

CFODP 17 27 35 52 88 37 55 89 154 62

MF 22 28 34 49 79 61 100 196 390 107

MF1 38 41 44 52 68 111 184 367 733 182

MFMF 20 25 30 43 68 54 88 174 345 94

MFCF 16 26 37 64 117 36 57 109 212 75

MFODP 16 25 31 43 67 36 57 109 212 66

C01:C10 (20% Noise Ratio)

CF 26 64 102 197 387 41 56 93 168 126

CF1 22 34 46 75 134 54 86 167 328 105

CFMF 22 52 83 159 311 35 48 81 146 104

CFCF 47 138 228 454 906 51 55 65 85 226

CFODP 21 35 46 75 134 37 49 80 121 66

MF 28 39 50 78 133 72 116 226 446 132

MF1 60 64 69 81 104 174 289 576 1149 285

MFMF 22 31 39 59 100 59 95 186 369 107

MFCF 21 48 74 142 276 35 50 86 158 99

MFODP 21 30 40 61 96 40 54 86 158 65

C01:C10 (30% Noise Ratio)

CF 56 152 248 489 970 71 86 125 201 266

CF1 32 60 88 158 298 67 103 192 370 152

CFMF 49 134 219 431 856 63 77 112 182 236

CFCF 92 274 456 911 1821 93 95 99 107 438

CFODP 34 60 88 158 298 59 79 119 137 115

MF 46 78 109 188 346 106 167 318 620 220

MF1 96 102 109 125 157 282 467 931 1859 459

MFMF 30 49 67 113 205 72 114 219 429 144

MFCF 48 131 214 422 838 61 74 107 173 230

MFODP 30 50 68 103 166 56 74 112 173 92
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Table 11. Cost comparisons on Wpbc in the case that the noise ratio and noise-free dataset
are unavailable.

C01:C10 (10% Noise Ratio)

1:1 1:3 1:5 1:10 1:20 3:1 5:1 10:1 20:1 Ave.

CF 23 40 58 102 189 50 78 148 287 108

CF1 43 51 59 78 117 121 199 395 786 205

CFMF 21 39 57 103 194 44 68 127 245 100

CFCF 15 40 66 131 260 18 22 31 48 70

CFODP 23 42 57 79 118 30 38 53 64 56

MF 41 49 56 74 111 117 192 380 757 197

MF1 79 80 81 85 91 235 391 781 1561 376

MFMF 38 46 54 73 112 107 176 348 693 183

MFCF 19 38 56 102 194 39 59 108 207 91

MFODP 22 42 51 73 101 40 59 108 207 78

C01:C10 (20% Noise Ratio)

CF 30 63 95 175 336 59 87 158 301 145

CF1 52 65 79 113 181 142 232 457 907 247

CFMF 29 66 102 193 375 51 73 128 238 140

CFCF 26 77 128 256 512 28 29 32 39 125

CFODP 30 63 86 123 181 42 42 52 81 78

MF 45 61 77 116 195 121 196 383 759 217

MF1 81 85 89 99 119 238 396 790 1578 386

MFMF 44 59 74 112 188 118 191 374 741 211

MFCF 27 64 102 195 382 44 61 103 188 130

MFODP 30 61 83 109 169 46 64 103 188 95

C01:C10 (30% Noise Ratio)

CF 39 97 154 297 584 61 82 135 242 188

CF1 53 81 109 178 317 132 210 406 798 254

CFMF 37 96 155 301 595 53 69 108 187 178

CFCF 40 117 194 388 774 41 43 48 56 189

CFODP 38 87 125 208 333 45 47 55 60 111

MF 51 82 113 191 346 121 192 368 720 243

MF1 74 80 86 101 131 217 360 716 1430 355

MFMF 49 80 110 187 340 116 183 351 686 234

MFCF 38 101 164 320 634 52 66 101 171 183

MFODP 39 85 114 180 240 53 68 101 171 117
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Table 12. Cost comparisons on Spect in the case that the noise ratio and noise-free dataset
are unavailable.

C01:C10 (10% Noise Ratio)

1:1 1:3 1:5 1:10 1:20 3:1 5:1 10:1 20:1 Ave.

CF 19 34 49 87 163 42 65 122 236 91

CF1 37 45 54 75 117 102 168 331 658 176

CFMF 21 37 53 93 173 46 72 136 264 99

CFCF 17 43 70 137 270 24 31 48 82 80

CFODP 20 38 51 76 117 33 43 64 100 60

MF 40 48 56 77 118 110 181 359 713 189

MF1 69 72 75 81 95 205 341 681 1361 331

MFMF 36 45 53 74 116 100 164 323 642 173

MFCF 20 36 52 91 170 44 68 129 250 96

MFODP 20 38 51 75 100 44 68 129 250 86

C01:C10 (20% Noise Ratio)

CF 35 75 115 215 415 64 94 168 316 166

CF1 48 69 90 143 249 123 198 385 759 229

CFMF 31 71 111 212 413 53 75 129 238 148

CFCF 32 92 152 302 602 35 39 48 66 152

CFODP 32 69 95 149 260 38 42 48 65 89

MF 45 66 86 138 241 115 184 358 706 216

MF1 78 86 93 112 150 226 375 746 1488 373

MFMF 44 61 77 119 202 115 186 364 719 210

MFCF 32 74 116 221 431 53 74 128 234 151

MFODP 32 62 82 112 164 53 74 128 234 105

C01:C10 (30% Noise Ratio)

CF 51 113 175 331 642 90 129 227 422 242

CF1 61 87 112 175 302 159 256 499 986 293

CFMF 45 105 166 319 623 73 101 172 313 213

CFCF 51 150 250 498 995 53 56 62 74 243

CFODP 47 88 118 175 302 67 64 67 84 113

MF 61 91 122 198 350 153 244 473 931 291

MF1 92 97 101 113 136 271 451 899 1796 440

MFMF 50 79 108 180 324 120 191 368 721 238

MFCF 45 117 189 369 729 63 80 125 214 214

MFODP 44 81 110 136 192 64 80 125 214 116
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Table 13. Cost comparisons on Spect1 in the case that the noise ratio and noise-free dataset
are unavailable.

C01:C10 (10% Noise Ratio)

1:1 1:3 1:5 1:10 1:20 3:1 5:1 10:1 20:1 Ave.

CF 25 43 60 103 190 59 93 176 344 122

CF1 45 51 56 70 98 130 216 428 854 217

CFMF 24 43 61 109 203 52 81 152 294 113

CFCF 17 45 73 144 285 23 29 43 72 81

CFODP 27 45 56 71 101 41 47 63 96 61

MF 45 53 61 82 123 126 207 410 815 213

MF1 84 86 89 96 109 248 413 825 1648 400

MFMF 41 49 57 77 117 115 190 375 746 196

MFCF 23 41 59 104 194 50 77 145 280 108

MFODP 28 45 58 80 109 51 79 150 280 98

C01:C10 (20% Noise Ratio)

CF 38 83 127 239 462 69 100 178 333 181

CF1 52 70 89 134 225 138 224 439 869 249

CFMF 35 79 123 234 455 59 84 147 271 165

CFCF 35 102 169 336 670 38 41 49 65 167

CFODP 36 70 97 134 225 55 63 67 68 91

MF 55 78 102 161 278 140 226 441 870 261

MF1 91 96 102 116 143 266 442 882 1761 433

MFMF 46 66 87 138 240 117 189 367 724 219

MFCF 34 79 124 236 460 57 80 137 251 162

MFODP 36 68 94 136 197 59 80 137 251 118

C01:C10 (30% Noise Ratio)

CF 57 134 211 405 791 93 129 220 401 271

CF1 68 105 141 232 414 168 268 517 1016 325

CFMF 51 128 205 397 781 76 101 163 287 243

CFCF 53 158 262 522 1044 56 59 65 79 255

CFODP 51 105 149 232 414 62 62 65 79 136

MF 65 106 147 249 454 155 245 470 920 313

MF1 96 104 113 133 174 280 464 924 1844 459

MFMF 58 93 127 213 385 140 222 427 837 278

MFCF 49 129 209 409 809 67 84 129 218 234

MFODP 48 102 131 190 254 67 84 129 218 136
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Table 14. Cost comparisons on Promoter in the case that the noise ratio and noise-free dataset
are unavailable.

C01:C10 (10% Noise Ratio)

1:1 1:3 1:5 1:10 1:20 3:1 5:1 10:1 20:1 Ave.

CF 9 19 29 53 102 17 25 46 87 43

CF1 22 25 29 38 56 62 102 203 404 105

CFMF 7 15 24 47 91 11 15 26 47 31

CFCF 7 21 34 69 138 7 7 7 7 33

CFODP 7 16 24 41 68 8 8 8 9 21

MF 18 24 29 43 71 49 79 156 309 87

MF1 43 44 45 49 55 127 211 422 843 204

MFMF 17 21 25 36 57 46 75 148 293 80

MFCF 7 16 25 48 93 11 15 26 47 32

MFODP 7 15 22 35 53 11 15 26 47 26

C01:C10 (20% Noise Ratio)

CF 15 34 53 101 197 26 37 64 118 72

CF1 27 34 42 59 95 75 122 241 479 131

CFMF 13 33 53 102 201 19 25 41 72 62

CFCF 14 42 71 141 282 14 14 14 14 67

CFODP 13 30 43 65 100 15 14 14 14 34

MF 22 30 38 57 96 58 94 185 366 105

MF1 42 44 46 51 61 123 204 408 814 199

MFMF 20 29 37 58 101 53 85 165 326 97

MFCF 13 33 53 102 201 20 26 42 74 63

MFODP 14 28 39 50 72 20 26 42 74 41

C01:C10 (30% Noise Ratio)

CF 21 49 77 148 289 34 47 80 145 99

CF1 28 40 51 79 136 73 118 231 457 135

CFMF 19 50 82 160 317 26 32 49 82 91

CFCF 21 64 106 212 425 22 22 22 23 102

CFODP 21 44 61 84 137 23 22 22 23 49

MF 27 42 58 96 173 65 104 200 392 128

MF1 38 40 42 46 55 113 187 373 745 182

MFMF 25 40 56 94 171 60 94 181 354 119

MFCF 21 55 88 173 342 29 36 56 95 99

MFODP 21 46 55 83 93 29 36 56 95 57

6. Conclusions and Future Works

In mislabeled data detection, the multiple-voting based filter (MVFilter) is generally superior
to the conventional single-voting based filter (SVFilter). However, one important unsolved
issue in the MVFilter is how to choose the optimal decision point (ODP) to maximize its noise
detection performance.
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In this paper, a novel approach was proposed to solve this issue. This approach implicitly
computed the ODP by estimating the mislabeled data distribution in the noisy training dataset. Our
approach took a noisy dataset and a cost matrix as input, then output an ODP, which aimed to minimize
the expected cost of errors. Note that minimizing cost was one important contribution of this work,
because most existing works were not aware of the importance of cost. They just implicitly assumed
that all errors were equally costly, but in most real applications, this is far from the case.

A set of experimental evaluations was conducted, which proved the effectiveness of our approach.
With the aid of our approach, an MVFilter could effectively reduced the cost. In particular, in the
difficult noise detection environment (when the noise ratio was high or cost was big), the advantages
of our approach were more obvious. Furthermore, the proposed methodology could also be extended
to a multi-class problem. One possible strategy is the naive way to divide the multi-class problem into
several two-class problems, and then, the proposed approach can solve each two-class problem.

Although the clean dataset (i.e., validation cases) and cost matrix are available in most cases,
the prior information of noise ratio is not easily available; therefore, the current solution needs to be
improved to alleviate the prior information requirement. Therefore, in future work, we will focus on
developing more elegant approaches to further improve the current proposed approach.

7. Availability of Data and Material

All the datasets are available at http://archive.ics.uci.edu/ml/datasets.html.
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