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Abstract: Active distribution networks (ADNs) are a typical cyber–physical system (CPS), which
consist of two kinds of interdependent sub-networks: power networks (PNs) and communication
networks (CNs). The combination of typical characteristics of the ADN includes (1) a large number of
distributed generators contained in the PN, (2) load redistribution in both the PN and CN, and (3)
strong interdependence between the PN and CN, which makes ADNs vulnerable to cross-domain
cascading failures (CCFs). In this paper, we focus on the robustness analysis of the ADN against the
CCF. Rather than via the rate of the clusters with size greater than a predefined threshold, we evaluate
the robustness of the ADN using the rate of the clusters containing generators after the CCF. Firstly,
a synchronous probabilistic model is derived to calculate the proportions of remaining normal
operational nodes after the CCF. With this model, the propagation of the CCF in the ADN can be
described as recursive equations. Secondly, we analyze the relationship between the proportions of
remaining normal operational nodes after the CCF and the distribution of distributed generators,
unintentional random initial failure rate, the interdependence between the sub-networks, network
topology, and tolerance parameters. Some results are revealed which include (1) the more distributed
generators the PN contains, the higher ADN robustness is, (2) the robustness of the ADN is negatively
correlated with the unintentional random initial failure rate, (3) the robustness of the ADN can be
improved by increasing the average control fan in of each node in the PN and the average power
fan in of each node in the CN, (4) the robustness of the ADN with Erdos–Renyi (ER) network
topological structure is greater than that with Barabasi–Albert (BA) network topological structure
under the same average node degree, and (5) the robustness of the ADN is greater, when the tolerance
parameters increase. Lastly, some simulation experiments are conducted and experimental results
also demonstrate that the conclusions above are effective to improve the robustness of the ADN
against the CCF.

Keywords: active distribution networks; cyber–physical system; interdependent network;
cross-domain cascading failures; dynamical robustness

1. Introduction

In recent years, many countries strongly support the access of a great many distributed generators
to low/medium voltage distribution networks [1,2], which are called active distribution networks
(ADNs). The basic goal of designing an ADN is to provide users with convenient and real-time
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electricity [3]. As shown in Figure 1, the ADN is a large complex network that consists of two
interdependent sub-networks: power networks (PNs) and communication networks (CNs) [4]. The PN
is composed of the power equipment, such as generators, transmission lines, substations, and loads,
etc. The CN is composed of the information equipment, such as sensors, computers, communication
lines, data storage, and actuators, etc. All these equipment are interconnected according to a certain
topological structure. Some nodes in the PN supply power to the nodes in the CN, meanwhile some
nodes in the CN collect information of the nodes in the PN and thus to control the actions of them.
In general, the operational process of the ADN includes the physical process and the computational
process. The physical process can be described by the continuous change of the PN parameters (e.g.,
voltage, current), which are caused by power consumption or power supply change. The computational
process is the procedure that the CN collects the data from the PN via various sensors and thus to
control the PN via various actuators. The PN and CN are deeply interdependent.
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Figure 1. A brief architecture of an active distribution network (ADN).

Due to the intrinsic complexity and the characteristic of deep interdependence between the PN
and CN, the ADN is vulnerable to cross-domain cascading failures (CCFs) which propagate across
nodes from the PN and CN interchangeably [5,6]. Specifically, when a node or an edge in the CN/PN
fails, some other nodes or edges in the CN/PN may be removed by protective devices, which may incur
the CCF sequence and finally result in large-scale blackouts [7,8].

A simple running example of a CCF in an ADN is shown in Figure 2. Initially, the simplified PN
and CN work normally. The nodes in the PN and CN are coupled through the control relationship,
the power supply relationship and the information collection relationship denoted by dashed arrow
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lines, shown in Figure 2a. In the first step, a substation node in the PN, as well as the edges linked to
this node, fails, shown in Figure 2b. In the second step, two connected clusters in the PN containing
generators (surrounded by red dotted closed curves) are formed. The failed edges in the first step
result in the failure of corresponding nodes in the CN, then two connected clusters (surrounded by red
dotted closed curves) are also formed, shown in Figure 2c. The isolated nodes in the CN fail and the
corresponding edges fail as well, shown in Figure 2d. The CCF finally stops when no failure nodes or
edges exist in both the sub-networks and the ADN enters the steady state as shown in Figure 2e.
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There are many factors that may be related with the steady state of the ADN after the CCF, such as
initial failure rate, interdependence, the distribution of distributed generators, network structure, and
load redistribution and so on. Previous studies are focused on the electrical power system. Various
approaches have been proposed to study the relationship between the steady state of the electrical
power system and the aforementioned factors.

For a single network (i.e., PN or CN), researchers study the relationship mentioned above
using static geometric methods [9,10]. However, the dynamic load redistribution is common in
both the PN and CN. Static geometric methods are not applicable to the case of the dynamic load
redistribution. Therefore, the dynamic methods considering load redistribution are adopted to analyze
the relationship [11–14]. These methods are all designed for a single network only. They are unsuitable
for the electrical power system, which is composed of two coupled networks: PN and CN.

In the electrical power system, the power consumers only get their energy from the grid. However,
in the ADN, the power consumers not only consume power from the grid, but also supply energy
dynamically to the grid using distributed generators.

For coupled networks, researchers analyze the CCF using static geometric methods in the early
stage [15–20]. Then, the dynamic methods considering the load redistribution [21–25] are explored.
These static and dynamic methods are based on the giant cluster assumption [15]. Although this
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assumption can simplify the analysis and alleviate the computational load, it ignores the role of
clusters containing power generation nodes of the PN. It assumes that only when a node belongs to
the giant cluster, this node is considered to be in a normal state. However, we think the giant cluster
assumption dose not accord with the actual situation. As shown in Figure 2c–e, there are two connected
clusters (Cis) containing generators in the PN, and there are also two connected clusters in the CN
interdependent with the Cis. In fact, if a power generation node is in one of the clusters in the PN
(denoted as Ci), meanwhile the state of nodes in the CN that are interdependent with the cluster Ci is
running normally, these nodes in the cluster (Ci) in the PN will be considered as the functional nodes.

In order to overcome the problem of these methods based on the giant cluster assumption, Huang
et al. [26] identify effective clusters using a threshold-based method. However, this method suffers
from poor identification accuracy. To mitigate this problem, Yu et al. [27] use a method based on the
cluster containing power supplies and assume that a node of the CN is in the normal state if it is
powered by the nodes of the PN. However, in reality, even if the node of the CN is power supplied
normally, it still will not be considered to be functional if it does not provide the correct control policy
to improve the operation of the PN.

The previous research results are mainly obtained in the electrical power system environment.
Therefore, these research results could not be directly applied to describe the steady-state behavior
of the CCF in the ADN environment. Consequently, it is necessary to comprehensively study the
relationship between the steady state behavior of the CCF of the ADN and the distribution of generators,
unintentional random initial failure (e.g., the terminal voltage of the node is zero or the current flowing
through this node is zero), interdependence, network structure, and load redistribution. In order to
describe the relationship more accurately, it is necessary to classify the nodes, and adopt more realistic
assumptions (denoted as Ai) that clusters in the PN contain power supplies and the CN clusters are
interdependent with them. If the nodes belong to these clusters, the nodes are judged to be in the
normal state, so as to overcome the limitation of the giant cluster assumption.

In this paper we studied the robustness of the ADN against the CCF. We needed a model to
analyze the relationship between the proportions of remaining normal operational nodes after the CCF
and the distribution of generators, unintentional random initial failure, the interdependence between
the sub-networks, network topology, and load redistribution.

However, several technical challenges existed when the work of evaluating the robustness of
the ADN after the CCF was completed. Firstly, how to describe the propagation process of the
CCF. Secondly, how to characterize the influence of the distribution of generators, unintentional
random initial failure, the interdependence between the sub-networks, network topology, and load
redistribution on the robustness of the ADN based on Ai. Thirdly, how to simulate the propagation
process of the CCF.

The main contributions of this paper are as follows. (1) A synchronous probabilistic percolation
model of the ADN is proposed, and the CCF simulation algorithm is proposed also based on the
model, which can describe the propagation process of the CCF. (2) We propose a method to analyze the
relationship between the robustness of the ADN and distribution of generators, unintentional random
initial failure, interdependence between the sub-networks, network topology and tolerance parameters.
We give five conclusions. The first one is that the distribution of generators improved the robustness of
the ADN against the CCF. The second one is that the robustness of the ADN was negatively correlated
with the unintentional random failure rate. The third one is that given network topology parameters
and the unintentional random initial failure rate, the more the average control fan in of a node in
the PN and the more the average power fan in of a node in the CN, the better the robustness of the
ADN. The fourth one is that the robustness of the ADN with Erdos–Renyi (ER) network topological
structure was greater than that with Barabasi–Albert (BA) network topological structure under the
same average node degree. The last one is that the robustness of the ADN was greater, when the
tolerance parameters increased. (3) We conducted extensive simulation experiments to verify our five
conclusions based on the ER network topological structure and the BA network topological structure.
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2. Problem Definition

In this paper, it was assumed that (1) the CN node will fail if its power supply interruption
happens. (2) Information overload will occur in the CN when severely repeated transmission, packet
congestion, and the invalid information transmission takes place [27]. We assumed that the number of
the nodes in the PN and the CN are NoNI and NoNP respectively.

Table 1 shows the semantic description of the symbols used in this paper. In Table 1, the relationship
can be deduced that the unintentional random initial failure nodes set is the subset of the nodes set
of PN (Vf-initial⊆VP), the connected clusters set SP(Vf-initial,∞) in the PN after the CCF stop is equal to
{GP1(∞), GP2(∞), . . . }, the connected clusters set SI(Vf-initial,∞) in the CN after the CCF stop is equal to
{GI1(∞), GI2(∞), . . . }, the connected clusters set SPg(Vf-initial, ∞) whose elements contain generators
in the PN after the CCF stop is equal to {GPg1(∞), GPg2(∞), . . . }⊆SP(Vf-initial, ∞), and the connected
clusters set SIg(Vf-initial, ∞) in the CN whose elements are interdependent with the elements of the
connected clusters set SPg(Vf-initial,∞) in the PN is equal to {GIg1(∞), GIg2(∞), . . . }⊆SI(Vf-initial,∞).

Table 1. Notation used in this paper.

Symbol Description

GA Active distribution networks (ADNs).
GP The power networks of the ADN.
GI The communication networks of the ADN.
VP The nodes set of the PN.
VI The nodes set of the CN.

NoNP The number of the nodes in the PN.
NoNI The number of the nodes in the CN.

Vf-initial The unintentional random initial failure nodes set of the PN.
∞ The steady-state of the ADN after the CCF.

GP1(∞), GP2(∞), . . .
∈ SP(Vf-initial,∞) The connected clusters in the PN of the ADN after the CCF stops.

GPg1(∞), GPg2(∞), . . .
∈ SPg(Vf-initial,∞) The connected clusters containing generators in the PN of the ADN after the CCF stops.

GI1(∞), GI2(∞), . . .
∈ SI(Vf-initial,∞) The connected clusters in the CN of the ADN after the CCF stops.

GIg1(∞), GIg2(∞), . . .
∈ SIg(Vf-initial,∞)

The connected clusters in the CN are interdependent with the connected clusters
containing generators in the PN of the ADN after the CCF stops.

Num The number of experiments.
N The number of iterative steps in the propagation of the CCF.

RP(N)/RI(N) The expected proportion of remaining nodes in the PN/CN at step N after the
CCF occurs.

fP(RP(N))
The expectation of the quotient between the number of the remaining nodes in the
clusters that containing generators and the number of the remaining nodes of the
whole PN at step N after the CCF occurs.

fI(RI(N))

The expectation of the quotient between the number of the remaining nodes belonging
to the connected clusters in the CN interdependent with the connected clusters
containing generators in the PN and the number of the remaining nodes of the whole
CN at step N after the CCF occurs.

RPF(N)/RIF(N) The expected proportion of normal operational nodes in the PN/CN at step N after the
CCF occurs.

RPF(∞)/RIF(∞) The final expected proportion of normal operational nodes in the PN/CN after the
CCF stops.

ΘP The probability that a single node in the PN fails randomly.

EdgP(n)/EdgI(n) The edge set (excluding the edges connecting the PN and the CN) of a node n in
the PN/CN.

<K2> The average control fan in of a node in the PN.
<O1> The average power fan in of a node in the CN.
BCtrl The set of the paths involved in an effective control EconI.

TPL(e)/TIL(e) Load threshold of an edge e in the PN/CN.
Run(n)/¬Run(n) A node or an edge n runs normally/ abnormally.

αP/αI
A tolerance parameter of a node n in the PN/CN which represents the ratio of the
maximum capacity to nominal capacity of the node n.
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The final expected proportion of normal operational nodes was an index reflecting the robustness
of the ADN against the CCF. The problem to be solved in this paper was to calculate the relationship
between the final expected proportion of normal operational nodes RPF(∞)/RIF(∞) in the PN and CN
of the ADN and distribution of generators, unintentional random initial failure, interdependence
between the sub-networks, network topology, and load redistribution, when the CCF stops. According
to the notations and relationship in Table 1, it can also be seen that the final expected proportion
RPF(∞)/RIF(∞) of normal operational nodes is shown in Equation (1).

RPF(∞) ≈ 1
Num

∑
Num

∑
s∈SPg(V f _initial ,∞)

|s|

NONP

RIF(∞) ≈ 1
Num

∑
Num

∑
s∈SIg(V f _initial ,∞)

|s|

NONI

. (1)

3. Active Distribution Networks Modeling

There were five types of nodes in the PN, including power generation nodes (distributed
generators) VP1, substation nodes VP2, distribution nodes VP3, load nodes VP4, and external nodes
(the power from transmission grid) VP5. There were four kinds of nodes in the CN, including sensor
nodes VI1, information relay nodes VI2, control nodes VI3, and actuator nodes VI4. They were mutually
disjoint sets.

Definition 1. An effective control EconI in the CN refers to an effective control of the PN nodes by the control
nodes of the CN, and it satisfies three conditions.

(1) There is at least one complete simple directed path of length k − 1 existing in the CN, that is path(nI1,
nI4) = (n1, . . . , nk). The path has k nodes n1, . . . , nk. Where the source node nI1 = n1 ∈ VI1 is the sensor
node, the destination node nI4 = nk ∈ VI4 is the actuator node, and at least one of the remaining nodes
belongs to the VI3 nodes set. A sensor node nI1 ∈ VI1 in the CN is applied to detect failure events in the
PN, and then transmit the event information to a control node nI3 ∈ VI3 through one or more information
relay nodes nI2 ∈ VI2. After that, the control node nI3 ∈ VI3 generates the response information based on
specific algorithms and subsequently the response information is transmitted to an actuator node nI4 ∈ VI4
through one or more information relay nodes nI2 to control the physical process.

(2) All nodes and edges in the path path(nI1, nI4) run normally.
(3) tdelay + treact < tinterval. tdelay denotes the time interval from the occurrence of a failure event to the time

when the response information is generated by a node nI3. treact denotes the time interval from the time
when the response information is generated to the time when the PN has been changed by actuators. tinterval
denotes the minimum time interval between two adjacent failure events.

Definition 2. The PN of the ADN is a sextuple system Gp = (VP, EP, HNP, LoadP, WP, TransP, ThresP), where

(1) VP represents the set of nodes in the PN, and VP = VP1 ∪ VP2 ∪ VP3 ∪ VP4 ∪ VP5.
(2) EP represents the edge set in the PN, and EP⊆VP × VP.
(3) LoadP: VP×Int→ C represents the load (power) of a node n in the PN at step N after the CCF occurs.

Where Int represents a set of positive integer numbers, C represents the set of complex numbers. It is
assumed that the load (power) of a failure node is redistributed to its neighbor node following the nearest
neighbor rule. When the neighbor node nPi of a node nPj in the PN is failed, the original load (power) of
this node nPi is redistributed to the node nPj, and the load (power) of this node nPj changes according to the
following recursive Equation (2).

LoadP(nPj, N + 1) =

 LoadP(nPj, N) +
LoadP(nPi,N)×WP(nPj,nPi)∑
nP∈NeighP(nPi)

WP(nP,nPi)
, nPi ∈ FailP

LoadP(nPj, N), nPi < FailP
(2)
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where NeighP: VP→2VP is a mapping that represents the neighbor nodes set of a node in the PN. FailP
is the set whose elements are the contiguous failed nodes of the node nPj, that is FailP = {nPi | nPi ∈

NeighP(nPj) ∧¬Run(nPi)}.
(4) WP: EP→C represents the edge weight mapping in the PN.
(5) TransP = (VP(N), EP(N)) represents the subgraph generated by the load (power) redistribution after a node

or an edge fails in the PN at step N during the CCF. For example, if the subgraph is generated by a node nPi
∈ VP failure, then VP(N) = VP(N − 1) − OverP(NeighP(nPi)), EP(N) = EP(N − 1) − EdgP(nPi). Where
OverP(NeighP(nPi)) = {n ∈ NeighP(nPi)|loadP(n,N) ≥ TPP(n)} represents the set of overloaded nodes in the
set of neighbor nodes at step N. TPP(n) represents the load threshold of a node n in the PN, when the load
(power) of a node n in the PN is greater than its threshold, then the node will fail. The process of an edge
failure in the PN is similar.

(6) ThresP = ThresPJ ∪ ThresPL represents the thresholds set of nodes and edges in the PN. Where ThresPJ and
ThresPL represent the thresholds sets of nodes and edges in the PN respectively. If the load flowing through
an edge of the PN is greater than its threshold, then the edge will fail. The node situation is similar to the
edge situation.

Since the ADN includes the PN and the CN, they are interdependent with each other. Thereinafter,
the definition of the CN in the ADN is introduced, and the model of interdependence between the PN
and the CN is also given.

Definition 3. The CN of the ADN is also a sextuple system GI = (VI, EI, LoadI, WI, TransI, ThresI), where

(1) VI represents the set of nodes in the CN, and VI = VI1 ∪ VI2 ∪ VI3 ∪ VI4.
(2) EI represents the edge set in the CN, and EI⊆VI × VI.
(3) LoadP: VI × Int→Int represents the load (data packets) of a node n in the CN at step N after the CCF

occurs. When the neighbor node nIi of a node nIj is failed, the original load (data packets) of this node nIi is
redistributed to the node nIj, and the load (data packets) of the node nIj changes according to the following
recursive Equation (3).

LoadI(nI j, N + 1) =

 LoadI(nI j, N) +
LoadI(nIi,N)×WI(nI j,nIi)∑

nI∈NeighI(nIi)
WI(nI ,nIi)

, nIi ∈ FailI

LoadI(nI j, N), nIi < FailI
(3)

where NeighI: VI→2VI is a mapping that represents the neighbor nodes set of a node in the CN. FailI is the
set whose elements are the contiguous failed nodes of the node nIj, that is FailI = {nIi | nIi ∈ NeighI(nIj) ∧
¬Run(nIi)}.

(4) WI: EI→Int represents the edge weight mapping in the CN.
(5) TransI = (VI(N), EI(N))represents the subgraph generated by the load (data packets) redistribution after a

node or an edge fails in the CN at step N during the CCF.
(6) ThresI = ThresIN ∪ ThresIL represents the thresholds set of nodes and edges in the CN.

We modeled the interdependence between the CN and the PN in the following ways. The symbol
<> represents the average value of the corresponding variable. In the CN, a sensor node nI1 ∈ VI1

collects information of the nodes in the PN, and an actuator node nI4 ∈ VI4 executes the commands
from a control node nI3 ∈ VI3 to control the physical process of the PN. Abstractly, it can be seen that
a control node nK1 ∈ VI3 in the CN can control K1 nodes of the PN, and the average control fan out of
the node nK1 is <K1> = (1/|VI3|) × ΣK1. A node nK2 in the PN is controlled by K2 control nodes in the
CN, and the average control fan in of the node nK2 is <K2> = |VI3| × <K1>/NONP. A sensor node nL1

∈ VI1 in the CN can collect L1 nodes in the PN, and the average information collecting fan in of the
node nL1 is <L1> = (1/|VI1|) × ΣL1. Conversely, a node nL2 in the PN is perceived by L2 sensor nodes in
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the CN and the average information collecting fan out of the node nL2 is <L2> = |VI1| × <L1>/NONP.
Correspondingly, the average power fan out of a node in the PN is <O2> = (1/|VP2|) × ΣO2, and a node
nO1 in the CN can be power supplied by O1 nodes of the PN, then the average power fan in of the node
nO1 is <O1> = |VP2| × <O2>/NONI. For example, as shown in Figure 2a, |VP1| = 2, |VP2| = 3, |VP3| = 1,
|VP4| = 3, |VP5| = 1, |VI1| = 3, |VI2| = 5, |VI3| = 4, and |VI4| = 3. Therefore, <K1> = 10/4 = 2.5, <K2> = 1,
<L1> = 10/3, <L2> = 1, <O1> = 1, and <O2> = 15/3 = 5. (In Appendix D, a special case about how to
find <O1> and <O2> is shown)

According to the aforementioned Definitions 2 and 3, the definition of the ADN is given below.

Definition 4. ADN is a combination of the PN and the CN, so it is also a sextuple system GA = (VA, EA,
LoadA, WA, TransA, ThresA), where

(1) VA represents the set of nodes in the ADN, and VA = VP ∪ VI.
(2) EA represents the edge set in the ADN, and EA = EP ∪ EI ∪ EPI ∪ EIP. The edge set of the ADN includes

the edge set of the PN and the edge set of the CN. In addition, the edge set formed by the interdependence
between the nodes of the PN and CN is added. Where EPI = EPI~ ∪ EPI, it includes the virtual edge set
EPI~formed by the sensor nodes in the CN perceiving the corresponding nodes in the PN, and it indicates
the information gathering relationship between a sensor node nI1 ∈ VI1 in the CN and a node in the PN.
The set EPI also includes the solid edge set EPI of the nodes in the PN supplying power to the nodes in
the CN. EIP represents the virtual edge set formed by the actuator nodes in the CN acting on the nodes in
the PN.

(3) LoadP: VA ×Int→C represents the load of a node n in the ADN at step N after the CCF occurs. Where
Int represents a set of positive integer numbers, C represents the set of complex numbers. It is assumed
that the load of a failure node is only redistributed to its neighbor node of the same network following the
nearest neighbor rule.

(4) WA represents the edge weight mapping in the ADN, and WA: EA→C. C is a set of complex numbers.
(5) TransA represents a subgraph generated by the load redistribution after a node or an edge fails in the ADN at

step N during the CCF, and TransA = (TransP, TransI, EPI-N, EIP-N). EPI-N represents the interdependence
edges set from a node in the PN to a node in the CN. EIP-N represents the interdependence edges set from
a node in the CN to a node in the PN.

(6) ThresA = ThresP ∪ ThresI ∪ ThresPI ∪ ThresIP represents the threshold set of nodes and edges in the ADN.
ThresPI represents the threshold set of edges in the set EPI, ThresIP represents the threshold set of edges in
the set EIP.

In order to analyze the robustness of the ADN against the CCF, we need to show the normal
operation conditions of nodes and edges in the PN and CN respectively. The description of the relevant
conditions of a normal node or an edge in the PN and CN is shown in Table 2.

Table 2. Normal operation conditions.

Domain Type Normal Operation Conditions

PN
Node

nP

(1) It is connected to at least one power generation node nPP in the PN, i.e.,

(∃nPP ∈ (VP1 ∪VP5)). path(nP, nPP)

(2) It has at least one edge between the node nP in the PN and a node nII in the CN, and the
node nII is part of at least one path in the set Btr. i.e.,

∃nII. ((nP, nII) ∈ EPI)∧ (path(nII, nI4) ∈ Btr)

(3) The load flowing through this node nP does not exceed its threshold TPP(nP) at step N.
i.e.,

(load(nP, N) ≤ TPP(nP))∧ (nP ∈ VP)
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Table 2. Cont.

Domain Type Normal Operation Conditions

PN
Edge

eP

(1) The load flowing through the edge eP does not exceed its threshold TPL(eP) at step N. i.e.,

(load(eP, N) ≤ TPL(eP))∧ (eP ∈ EP)

(2) The nodes on both sides of the edge eP are in normal operation. i.e.,(
eP = (nPx ∈ VP, nPy ∈ VP)

)
→ (run(nPx)∧ run(nPy))

CN

Node
nI

(1) There is at least one normal operating node np in the PN that provides power to this
node nI. i.e.,

∃nP. ((e = (nP ∈ VP, nI ∈ VI))→ run(nP))

(2) The data traffic of this node nI in the CN does not exceed its threshold at step N. i.e.,

(load(nI, N), nI ∈ VI) ≤ TIP(nI)

(3) The node nI is part of at least one path in the set Btr. i.e.,

∃nI4. path(nI, nI4) ∈ Btr

Edge
eP

(1) The load (data packets) flowing through the edge eP does not exceed its threshold TIL(eP)
at step N. i.e.,

(load(eP, N) ≤ TIL(eP))∧ (eP ∈ EI)

(2) The nodes on both sides of edge eP are in normal operation. i.e.,(
eP = (nIx ∈ VI, nIy ∈ VI)

)
→ (run(nIx)∧ run(nIy))

The interdependence
between the PN and

the CN

Edge
e

(1) The nodes on both sides of the edge e ∈ (EPI ∪ EIP) are in normal operation. i.e.,

((e = (nPPx ∈ VP, nIIx ∈ VI))∨ (e = (nIIx ∈ VI, nPPx ∈ VP)))→ (run(nPPx)∧ run(nIIx))

4. Robustness Analysis of the ADN against the CCF

We analyzed the relationship between the robustness of the ADN and the distribution of generators,
unintentional random initial failure, interdependence, network topology, and load redistribution
using the percolation-based method. We reached five conclusions and the conditions that prevent the
occurrence of the CCF caused by the load redistribution.

4.1. Robustness Analysis

The following analysis only considered the case of nodes failure. In this section, it was assumed
that the nodes failures started from the PN.

According to the description of RP(N), fP(RP(N)), and RPF(N) in Table 1, the expected proportion
of normal operational nodes after the CCF occurs at step N is RPF(N) = RP(N) × fP(RP(N)).

Furthermore, for the CN, according to the description of RI(N), fI(RI(N)), and RIF(N) in
Table 1, then the expected proportion of normal operational nodes after the CCF occur at step
N is RIF(N) = RI(N)*fI(RI(N)). (Where the derivation of the specific expressions of the mapping fP: R→R
and the mapping fI: R→R are in Appendix B.)

It is assumed that the unintentional-random-initial-failure-rate is ΘP in the PN. We can get the
analysis process represented by a Venn diagram, as shown in Figure 3 (The detailed analysis process
is shown in Appendix C). This figure shows the process of calculating the expected proportions of
normal operation nodes in the first three iterations after the CCF occurs.

4.1.1. Distribution of Generators and Robustness of the ADN

The resulting-iteration-equation-sets are concluded in (4a,b), where RI(0) =1 and RIF(0) = 1.
The iteration Equation (4a) calculates the value of RP(2N + 1) using the value of RIF(2N), and the
iteration Equation (4b) calculates the value of RI(2N) using the value of RPF(2N − 1). As N→∞, the
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iteration Equation (4a,b) calculate the sequences RI(0), RP(1), RI(2) . . . , RP(∞), RI(∞) and RIF(0), RPF(1),
RIF(2) . . . , RPF(∞), RIF(∞). RP(2N + 1)= (1−θP) ×

[
1− (1−RIF(2N))〈K2〉

]
RPF(2N + 1) = RP(2N + 1) × fP(RP(2N + 1))

, N = 0, 1, 2, . . . (4a)

{
RI(2N) = 1−[1−RPF(2N − 1)]〈O1〉

RIF(2N) = RI(2N) × fI(RI(2N))
, N = 1, 2, . . . (4b)
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When the CCF stops, the ADN enters the steady state and then satisfies the equations RP(2N
− 1) = RP(2N) = RP(2N + 1) = λ and RI(2N − 1) = RI(2N) = RI(2N + 1) = γ. According to Equation
(4a,b), a set of steady-state nonlinear equations is obtained after the replacement as above, shown in
Equation (5).  γ = 1−[1− λ× fP(λ)]

〈O1〉

λ= (1−θP) ×
[
1− (1− γ ∗ fI(γ))

〈K2〉
] (5)

At steady state, the final expected proportions RPF(∞) and RIF(∞) of remaining normal operational
nodes in the PN and CN are shown in Equation (6).

RPF(∞) = lim
N→∞

RPF(N) = λ× fP(λ)

RIF(∞) = lim
N→∞

RIF(N) = γ× fI(γ)
(6)

The Equations (5) and (6) are the analytical model to evaluate the robustness of the ADN against
the CCF. The relationship between the final expected proportions RPF(∞) and RIF(∞) of remaining
normal operational nodes and the load redistribution is embodied in the mapping fP: R→R and
mapping fI: R→R (in Appendix B). It can be seen from the conclusion in literature [26] that in the
case of distributed generators existing in the PN, fI(γ) and fP(λ) will become larger. According to
Equations (5) and (6), the distribution of generators will increase the final expected proportions RPF(∞)
and RIF(∞) of remaining normal operational nodes. Therefore, the first conclusion of our analysis is
that the distribution of generators improves the robustness of the ADN against the CCF.

4.1.2. Unintentional Random Initial Failure Rate and Robustness of the ADN

From the Equation (5), Equation (7) can be further obtained.

γ = 1−
[
1− (1− θP) ×

[
1− (1− γ× fI(γ))

〈K2〉
]
× fP((1− θP) ×

[
1− (1− γ× fI(γ))

〈K2〉
]
)
]〈O1〉 (7)

The solution of Equation (7) can be obtained by the graphic method of two curves as follows in
Equation (8). λ = γ

λ = 1−
[
1− (1− θP) ×

[
1− (1− γ× fI(γ))

〈K2〉
]
× fP((1− θP) ×

[
1− (1− γ× fI(γ))

〈K2〉
]
)
]〈O1〉 (8)

By solving Equation (8), we can get that it has a trivial solution γ = 0, λ = 0. That is, an intersection
point of the two curves is the original point. The meaning of this trivial solution is that for any ΘP,
the expected proportions RIF(∞) and RPF(∞) of normal operational nodes in the PN and CN are zero.
There is another solution which corresponds to the critical value ΘP_critical of ΘP. When the two curves
in Equation (8) are tangent, that is ∂λ/∂γ =1. We can get the equation set for solving ΘP_critical as follows
in Equation (9). 1 = [1− λ× fP(λ)]

〈O1〉−1
×

[
∂λ
∂γ ×

(
fP(λ) + λ×

∂ fP(λ)
∂γ

)]
γ = 1−

[
1− (1− θP_critical) ×

[
1− (1− γ× fI(γ))

〈K2〉
]
× fP((1− θP_critical) ×

[
1− (1− γ× fI(γ))

〈K2〉
]
)
]〈O1〉

(9)

where these equations are nonlinear and the critical value ΘP_critical of ΘP can be solved by
numerical methods.

The relationship between the final expected proportions RIF(∞) and RPF(∞) of remaining normal
operational nodes and the unintentional random initial failure rate ΘP is obtained by solving the
nonlinear Equation (5). From Equation (5), it can be seen that the greater the unintentional random
initial failure rate ΘP is, the smaller γ and λ. When the value of the unintentional random initial
failure rate ΘP is greater than the critical value ΘP_critical, the solution of Equation (7) is only the trivial
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solution γ = 0, λ = 0. Therefore, the second conclusion of our analysis is that the robustness of the
ADN is negatively correlated with the unintentional random failure rate ΘP. Once the value of ΘP is
greater than the critical value ΘP_critical, the whole ADN will collapse totally.

4.1.3. Independence and Robustness of the ADN

The relationship between the final expected proportions RPF(∞) and RIF(∞) of remaining normal
operational nodes and the interdependence between two sub-networks is given by the following
Theorem 1.

Theorem 1. Given network topology parameters and the unintentional random initial failure rate ΘP of a node
in the PN, the robustness of a ADN is better when the value of average control fan in <K2> of a node in the PN
and the value of average power fan in <O1> of a node in the CN are greater.

Proof. In the nonlinear Equation (5) (1 − λ × fP(λ)) < 1, when the value of average power fan in <O1> of
a node in the CN is greater, the value of γ is greater. Correspondingly, given the unintentional random
initial failure rate ΘP, in the nonlinear Equation (5) (1 − γ × fI(γ)) < 1, when the value of average
control fan in <K2> of a node in the PN is greater, the value of λ is greater. In addition, according to
the conclusion in literature [23], given network topology, fI(γ) and fP(λ) are nondecreasing functions.
When the value of average control fan in <K2> of a node in the PN and the value of average power fan
in <O1> of a node in the CN is greater, the final expected proportions RPF(∞) and RIF(∞) of remaining
normal operational nodes in the PN and CN are greater, so the robustness of the ADN is better.

Therefore, the third conclusion of our analysis is that the robustness of the ADN is improved
when the value of average control fan in <K2> of a node in the PN and the value of average power fan
in <O1> of a node in the CN are greater. �

4.1.4. Network Topology and Robustness of the ADN

The relationship between the final expected proportions RPF(∞) and RIF(∞) of remaining normal
operational nodes and the network topology is mainly reflected in the probability of occurrence of
the event EvtP3 and the event EvtI3, then in fP(λ) and fI(γ) (in Appendix B). EvtP3 is an event which
is defined to represent the failure of a node n of the PN due to the load redistribution caused by the
failure of its neighbor nodes. EvtI3 is an event which represents the failure of a node n in the CN
due to the load (data packets) redistribution caused by the failure of its neighbor nodes. Under the
same average node degree, fP(λ) and fI(γ) of a BA network is smaller than that of an ER network (see
Appendix B analysis). Therefore, the fourth conclusion of our analysis is that the robustness of the
ADN with ER network topological structure is greater than that with BA network topological structure
under the same average node degree.

4.2. Relationship Analysis of Robustness and Tolerance Parameters

With the increase of the value of parameter reflecting the nodes thresholds under random attack
strategy, the survivability of the single PN increased gradually against cascading failures, as shown in
Figure 4. Therefore it was necessary to analyze the nodes thresholds influence on the robustness of the
ADN. These nodes thresholds analyses provided conditions for preventing the CCF.

Assuming that the degree (it equals the sum of fan in and fan out) of a node nPi in the PN is dP.
Considering the power fluctuation of the distributed generators and the initial load of the node nPi at
step 0 is shown in Equation (10), which is modified from the conclusions in the literature [23].

〈loadP〉 =
∞∑

dP = 1

FP(dP) × ProbP(dP) + g (10)
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where the load FP(dP) of the node nPi in the PN is the function of its degree dP. According to the Central
Limit Law, this paper used the conclusions in literature [13] to model the randomness of the output
power of distributed generators. So, ξPi is a random variable obeying Gaussian distribution.
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The expected load of the node nPi in the PN is shown in Equation (11).

〈loadP〉 =
∞∑

dP = 1

FP(dP) × ProbP(dP) + g (11)

where g represents the expected output power by the distributed generators at the node nPi, if the node
nPi belongs to the set of generation nodes VP1, g is not equal to zero, otherwise, it is zero. ProbP(dP) is
the probability that the degree of the node nPi is dP.

The threshold of a node nPi in the PN at step N is equal to TPP(nPi,N) = αP × FP(dP). Where αP is
a tolerance parameter of the node nPi and satisfies αP ≥ 1. The expected value of the threshold of the
node nPi in the PN is shown in Equation (12).

〈ThresP〉 = 〈αP〉 ×

∞∑
dP = 1

FP(dP) × ProbP(dP) (12)

Similarly, assuming that the degree of a node nIi in the CN is dI, then the initial load (data packets)
of node nIi at step 0 after the CCF occur is shown in Equation (13).

LoadI(nIi, 0) = FI(dI) (13)

The expected load of the node nIi in the CN is shown in Equation (14).

〈loadI〉 =
∞∑

dI = 1

FI(dI) × ProbI(dI) (14)

where ProbI(dI) is the probability that the degree of the node nIi is dI.
The threshold of a node nIi in the CN is equal to TIP(nIi,N) = αI × FI(dI). Where αI is a tolerance

parameter of the node nIi and satisfies αI ≥ 1. The expected value of the threshold of the node nIi in the
CN is shown in Equation (15).

〈ThresI〉 = 〈αI〉 ×

∞∑
dI = 1

FI(dI) × ProbI(dP) (15)
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It is assumed that the unintentional random initial failure rate of nodes in the PN and CN are ΘP
and ΘI respectively. The expected proportion of the remaining normal operational nodes in the PN is
(1 − ΘP) × fP(1 − ΘP). When the node fails, the load of the original node will be redistributed to the
remaining nodes in the PN, and the total redistributed load in the PN is NONP × (1 − (1 − ΘP) × fP(1 −
ΘP)) × <loadP>. Correspondingly, the total redistributed load (data packets) in the CN is NONI × (1 −
(1 − ΘI) × fI(1 − ΘI)) × <loadI>.

In order to avoid the subsequent nodes failure after the failure of a node, it is required that the
redistributed load should not exceed the margin of the remaining nodes in the PN. After simplification,
the condition is (1 − ΘP) × fP(1 − ΘP) × <ThresP> ≥ <loadP>. Accordingly, the condition in the CN is
(1 − ΘI) × fI(1 − ΘI) × <ThresI> ≥ <loadI>.

Proposition 1. When the tolerance parameters increase to infinity, that are αP→∞ and αI→∞, the expected
proportions RPF(2N + 1) and RIF(2N) of the remaining normal operational nodes reach their upper limits,
which are the results of a pure interdependence model without considering the load redistribution. (The proof of
Proposition 1 is given in Appendix E.)

Therefore, according to Proposition 1, the fifth conclusion of our analysis is that the robustness of
the ADN is greater, when the tolerance parameters increase.

If the redistributed load is equal to its margin of the remaining nodes, then the expected tolerance
parameters are shown in Equations (16) and (17).

〈αP〉 =

∞∑
dP = 1

FP(dP) × ProbP(dP) + g

θP × fP(θP) ×
∞∑

dP = 1
FP(dP) × ProbP(dP)

=

1 +

 g
∞∑

dP = 1
FP(dP)×ProbP(dP)


θP × fP(θP)

(16)

〈αI〉 =

∞∑
dI = 1

FI(dP) × ProbI(dI)

θI × fI(θI) ×
∞∑

dI = 1
FI(dI) × ProbI(dI)

=
1

θI × fI(θI)
(17)

Furthermore, the expected critical tolerance parameters <αP-Critical> and <αI-Critical> can be
obtained in Equations (18) and (19).

〈αP−Critical〉 =

1 +

 g
∞∑

dP = 1
FP(dP)×ProbP(dP)


λ× fP(λ)

(18)

〈αI−Critical〉 =
1

γ× fI(γ)
(19)

If the tolerance parameters αP and αI are greater than these critical ones respectively, the CCF
caused by the load redistribution will not occur, which improves the robustness of the ADN against
the CCF.

4.3. Evaluation Robustness

Based on the normal operation conditions of nodes and edges and the nearest neighbor rule of
the load redistribution, a CCF simulation algorithm for the ADN is proposed in Algorithm 1, which
is called stead-state subgraph generating algorithm. This algorithm accepts the ADN and its initial
failure set, and then generates subgraphs of the ADN at steady state after the CCF stop.
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Algorithm 1 Stead-state Subgraph Generating Algorithm (taking nodes failures of the PN as an example)

Input: ADN GA = (VA, EA, LoadA, WA, TransA, ThresA). Initial failure set Vf-initial⊆VP.

// Initialization
1 t← 0, FLP(t)← Vf-initial, FLI(t)← Ø, VP(t)← VP, VI(t)← VI;
2 while additional failures are possible do
3 t← t+1;

// Load redistribution for GP and GI
4 for n ∈ (VP ∪ VI) do
5 Load redistribution according to the nearest neighbor rule;

// Intra-network failures for GP
6 for uP ∈ VP(t) do
7 for qP ∈ VP1(t) do
8 if ((loadP(uP, t) >TPP(uP)) ∨ ( run(qP) ∧path(uP, qP) = Ø) ) then
9 FLP (t)← FLP(t) ∪ {uP};

// Inter-network failures for GP
10 for vP ∈ VP(t) do
11 for uI ∈ VI(t) do
12 if ((vP, uI) ∈ EPI)) ∧ (¬run(uI) ) then
13 FLP(t)← FLP(t) ∪ {vP};
14 VP(t)← VP(t−1) − FLP(t);

// Intra-network failures for GI
15 for vI ∈ VI(t) do
16 for nI4 ∈ VI4do
17 if (loadI(vI, t) >TIP(vI)) ∨ (path(vI,nI4) < Btr) then
18 FLI(t)← FLI(t) ∪ {vI};

// Inter-network failures for GI
19 for vI ∈ VI(t) do
20 for uP ∈ VP(t) do
21 if ((vI, uP) ∈ EIP)) ∧ (¬run(uP) ) then
22 FLI(t)← FLI(t) ∪ {vI};
23 VI(t)← VI(t−1) − FLI(t);

Output: Sub-graphs of the ADN at steady state after the CCF stops.

After the steady state subgraphs were generated, we needed to evaluate the robustness of the
ADN using Equation (1). The evaluation algorithm is proposed in Algorithm 2, which is used to
evaluate the proportion of normal operational nodes in the ADN.

Algorithm 2 Evaluation Algorithm

Input: Sub-graphs of the ADN at steady state after the CCF stops.

// Initialization
1 RPF(∞)← 0, RIF(∞)← 0, NONP ← |VP|, NONI ← |VI|;
2 Count the number of connected clusters in Sub-graphs of the ADN, generate sets SP(Vf-initial,∞) and SI(Vf-initial,∞);
3 Decide generators in sets SP(Vf-initial,∞) and SI(Vf-initial,∞), generate sets SPg(Vf-initial,∞) and SIg(Vf-initial,∞);

// Evaluate the proportion of normal operational nodes in the ADN
4 for sP ∈ SPg(Vf-initial,∞) do
5 RPF(∞)←RPF(∞) + | sP |;
6 for sI ∈ SIg(Vf-initial,∞) do
7 RIF(∞)← RIF(∞) + | sI |;
8 RPF(∞)← RPF(∞)/NONP;
9 RIF(∞)← RIF(∞)/NONI;

Output: The proportion of normal operational nodes in the ADN.
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According to Equation (1), the robustness evaluation algorithm is proposed in Algorithm 3, which
is used to evaluate the robustness of the ADN.

Algorithm 3 Robustness Evaluation Algorithm

Input: Number of experiments Num.
ADN GA = (VA, EA, LoadA, WA, TransA, ThresA).
Initial failure set Vf-initial⊆ VP.

// Initialization
1 RPF(∞)← 0, RIF(∞)← 0, count← Num, NONP ← |VP|, NONI ← |VI|;

// Evaluate the robustness of the ADN
2 while count , 0 do
3 count–;
4 Subgraphs← Run the Stead-state Subgraph Generating Algorithm;
5 RPF(∞), RIF(∞)← Run the Evaluation Algorithm;
6 RPF(∞)← RPF(∞)/(Num×NONP);
7 RIF(∞)← RIF(∞)/(Num×NONI);

Output: RPF(∞) and RIF(∞).

5. Numerical Simulations

In this section, we validate the above theoretical analysis by the data obtained from the simulation
examples. We first describe the simulation experiment settings and then explain the simulation results.

5.1. Simulation Experiment Setting

An Erdos–Renyi model and a Barabasi–Albert model were used to construct a random network
and a scale-free network respectively.

We designed a simulation experiment to illustrate the robustness of the ADN against the CCF
in the following way. All the parameters used below are involved in the numerical simulations of
References [6–8,15,16] except the proportion of distributed generators.

(1) We constructed a PN and a CN respectively, and the topological structure of the PN and CN was
divided into two cases: one was that the topology of the PN and CN was both scale-free, the other
one was that the topology of the PN and CN was both random. There were two cases about the
values of the tolerance parameters of the nodes in the PN and CN: one was both 1.5 and the other
was both 2.0.

(2) The interdependence model between the PN and CN could be divided into two situations: one
was to use one-to-one interdependence model between the two networks (PN and CN), the
second one was to use three-to-three interdependence model to combine the two sub-networks
(PN and CN) to form a coupling network (ADN).

(3) The unintentional random initial failure mode was to select the failure nodes in the PN randomly
according to a uniform distribution.

Generators were randomly distributed with uniform distribution in the PN. The number of nodes
in the PN and CN were 500 respectively and the average degree of the nodes in the PN and CN was
both 5. The unintentional random failure rate ΘP was from 0.002 to 0.7 with an interval of 0.002, and
there were 350 non-repetitive points in total. The proportion of distributed generators was from 0.0 to
0.8 with an interval of 0.1. A total of 74 groups were run, and there were 1000 simulation experiments
in each group.

5.2. Simulation Results

After finishing the simulation experiments, we used Equation (1) to calculate the robustness
indicator (RPF(∞) and RIF(∞)). Our main aim was to find the relations between the distribution of the
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generators, unintentional random initial failure rate, interdependence, the network topology, tolerance
parameters, and the ADN robustness against the CCF. The concrete results were as follows.

5.2.1. Distribution of Distributed Generators and Robustness

We first discuss the relationship between the distribution of distributed generators and the ADN
robustness, where the unintentional random initial failure rate ΘP was from 0.002 to 0.7 with interval
0.002 and the value of the tolerance parameters of the nodes is 1.5.

The relationship between the final expected proportions RPF(∞) of the remaining normal
operational nodes in the PN and the number of distributed generators (distribution of distributed
generators) is shown in Figures 5 and 6. In Figures 5 and 6, each contains four sub-graphs respectively.
In the following four sub-graphs, the first one shows 50 different curves and the rest sub-graphs
show 101 different curves respectively. Each of the following eight sub-graphs show different curves
representing the different unintentional random initial failure rate under the ER and BA topological
structures respectively.

Of the nodes in the PN, 17.76% survived for ΘP = 0.002 with one-to-one interdependence under
the ER topological structure, when the proportion of distributed generators was 0.2. Of the nodes
45.1% survived for ΘP = 0.002 with one-to-one interdependence under the ER topological structure,
when the proportion of distributed generators was 0.4. Of the nodes55.17% survived in the PN for
ΘP = 0.002 with one-to-one interdependence under the ER topological structure, when the proportion
of distributed generators was 0.8.

As shown in Figures 5a and 6a, RPF(∞) fluctuated with the proportion of distributed generators
due to the uncertainty of the CCF, and they were positively correlated as a whole. Therefore, this
agreed with our first conclusion. That is, the robustness of the ADN was improved when the number
of distributed generators was greater.

In the other sub-graphs, ΘP is too high, which led to the whole network crashing, thus making
RPF(∞) almost equal to zero. The relationship between the final expected proportions RIF(∞) of the
remaining normal operational nodes in the CN and the number of distributed generators was similar.
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Figure 5. The final expected proportion of normal operational nodes in the power network (PN) after
the CCF stops (RPF(∞)) of different distributed generators proportions in the PN with Erdos–Renyi
(ER) topological structure.
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Figure 6. RPF(∞) of different distributed generators proportions in the PN with Barabasi–Albert
(BA)topological structure.

5.2.2. ΘP and Robustness

We then investigated the relationship between the unintentional random initial failure rate ΘP
and the ADN robustness under the ER topological structure, where the proportion of distributed
generators was 0.8 and the value of the tolerance parameters of the nodes was 1.5.

Figure 7 clearly shows the relationship between the final expected proportions RPF(∞)/RIF(∞) of
the remaining normal operational nodes in the PN/CN and the unintentional random initial failure
rate ΘP. Of the nodes in the PN, 55.17% survived for ΘP = 0.002 when the proportion of distributed
generators was 0.8 under the ER topological structure. Of nodes in the PN, 27.27% survived for
ΘP = 0.004 when the proportion of distributed generators was 0.8 under the ER topological structure.
Accordingly, 55.17% of nodes in the CN survived for ΘP = 0.002 when the proportion of distributed
generators was 0.8 under the ER topological structure. Of nodes in the CN, 27.27% survived for
ΘP = 0.004 when the proportion of distributed generators was 0.8 under the ER topological structure.
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As shown in Figure 7, it can be seen that the robustness of the ADN deteriorated when the
unintentional random initial failure rate ΘP in the PN was greater. That is, the more the unintentional
random failure rate was, the robustness of ADN against the CCF was worse. We also observed that the
transition phase of RPF(∞) was very sharp, and this indicated that the PN and CN either collapsed or
was whole totally. Therefore, this agreed with our second conclusion. That is, the robustness of the
ADN was negatively correlated with the unintentional random failure rate ΘP. Once the value of ΘP
was greater than the critical value ΘP_critical, the whole ADN collapsed totally.

The relationship between the final expected proportions RIF(∞) of remaining normal operational
nodes in the CN and the unintentional random initial failure rate ΘP is similar.

5.2.3. Independence and Robustness

We then investigated the relationship between the interdependence and the ADN robustness
under the ER/BA topological structure, which is shown in Figure 8, where the proportion of distributed
generators was 0.2 and the value of the tolerance parameters of the nodes was 1.5. One-to-one
interdependence represented <K2> = 1, and <O1> = 1; three-to-three Interdependence represented
<K2> = 3, and <O1> = 3.
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Of the nodes in the PN, 26.01% survived for ΘP = 0.022 with one-to-one interdependence under
the ER topological structure and 62.49% of nodes in the PN survived for ΘP = 0.022 with three-to-three
interdependence under the ER topological structure. Of the nodes in the CN, 26.01% survived for
ΘP = 0.022 with one-to-one interdependence under the ER topological structure and 64.13% of nodes in
the CN survived for ΘP = 0.022 with three-to-three interdependence under the ER topological structure.
Accordingly, 21.02% of nodes in the PN survived for ΘP = 0.004 with one-to-one interdependence under
the BA topological structure and 25.6% of nodes in the PN survived for ΘP = 0.004 with three-to-three
interdependence under the BA topological structure. Of the nodes in the CN, 21.02% survived for
ΘP = 0.004 with one-to-one interdependence under the BA topological structure and 25.6% of nodes in
the CN survived for ΘP = 0.004 with three-to-three interdependence under the BA topological structure.

As shown in Figure 8, we observed that RIF(∞) and RPF(∞) of three-to-three interdependence
were greater than that of one-to-one interdependence both in the ER topology and in the BA topology
structure. This agreed with our third conclusion. That is, the robustness of the ADN was improved
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when the value of average control fan in <K2> of a node in the PN and the value of average power fan
in <O1> of a node in the CN were greater.

5.2.4. Network Topology and Robustness

Generally, the robustness of the ADN against the CCF was affected by the different topological
structure. In Figure 9, the left side shows the node degree distribution comparison diagram when
the PN and CN adopted the ER network topological structure, while the right side shows the degree
comparison diagram when the BA network topological structure was adopted. We observed from
Figure 9 that the degree distribution of the ER network was more uniform than the BA network.
The degree distribution of the BA network followed the power law. The average degree of the ER and
BA network was 5 and 5 respectively for comparison.Appl. Sci. 2019, 9, 5021 20 of 31 
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Figure 9. Comparison of node degree distribution in the CN and PN.

The relationship between the final expected proportions RPF(∞) of remaining normal operational
nodes in the PN and network topology is shown in Figures 10 and 11. In Figure 10, the interval of
the proportion of distributed generators was from 0.0 to 0.8. Of the nodes, 54.57% survived in the
PN when the proportion of distributed generators was 0.6 with unintentional random initial failure
rate ΘP = 0.002 under the ER topological structure and 16.87% of nodes survived in the PN when the
proportion of distributed generators was 0.6 with unintentional random initial failure rate ΘP = 0.002
under the BA topological structure. Of the nodes, 54.57% survived in the CN when the proportion
of distributed generators was 0.6 with unintentional random initial failure rate ΘP = 0.002 under the
ER topological structure and 16.87% of nodes survived in the CN when the proportion of distributed
generators was 0.6 with unintentional random initial failure rate ΘP = 0.002 under the BA topological
structure. In Figure 11, the interval of unintentional random initial failure rate ΘP is from 0.002 to 0.008.
Of the nodes, 27.27% survived in the PN for ΘP = 0.004 when the proportion of distributed generators
was 0.8 under the ER topological structure and 25.6% of nodes survived in the PN for ΘP = 0.004
when the proportion of distributed generators was 0.8 under the BA topological structure. Of the
nodes, 27.27% survived in the CN for ΘP = 0.004 when the proportion of distributed generators was
0.8 under the ER topological structure and 25.6% of nodes survived in the CN for ΘP = 0.004 when the
proportion of distributed generators was 0.8 under the BA topological structure.
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As shown in Figures 10 and 11, the RPF(∞) of the ER network intersected with that of BA network
due to the uncertainty of the CCF, and the RPF(∞) and RIF(∞) of the ER network were greater than that
of BA network as a whole. Therefore, this agreed with our fourth conclusion. That is, the robustness of
the ADN with ER network topological structure was greater than that with BA network topological
structure under the same average node degree.

5.2.5. Tolerance Parameters and Robustness

We investigated the relationship between the tolerance parameters and the ADN robustness when
the proportion of distributed generators was 0.2.
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The relationship between the final expected proportions RPF(∞) and RIF(∞) of remaining normal
operational nodes and the tolerance parameters αP and αI is shown in Figure 12. Of the nodes,
1.188% survived in the PN for ΘP = 0.01 with the tolerance parameters αP = αI = 1.5 under the ER
topological structure. Of the nodes, 93.37% survived in the PN for ΘP = 0.01 with the tolerance
parameters αP = αI = 2.0 under the ER topological structure. Of the nodes, 1.188% survived in CN for
ΘP = 0.01 with the tolerance parameters αP = αI = 1.5 under the ER topological structure and 93.37%
of nodes survived in the CN for ΘP = 0.01 with the tolerance parameters αP = αI = 2.0 under the ER
topological structure. Accordingly, 0% of nodes survived in the PN for ΘP = 0.01 with the tolerance
parameters αP = αI = 1.5 under the BA topological structure and 1.386% of nodes survived in the PN
for ΘP = 0.01 with the tolerance parameters αP = αI = 2.0 under the BA topological structure. None
of the nodes survived in the CN for ΘP = 0.01 with the tolerance parameters αP = αI = 1.5 under the
BA topological structure and 1.386% of nodes survived in the CN for ΘP = 0.01 with the tolerance
parameters αP = αI = 2.0 under the BA topological structure.
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Figure 12. RPF(∞)/RIF(∞) of different tolerance parameters in the PN and CN.

As shown in Figure 12, RPF(∞) and RIF(∞) with the tolerance parameter 2.0 were greater than that
of the tolerance parameter 1.5. Therefore, this agreed with our fifth conclusion. That is, the robustness
of the ADN was positively correlated with the tolerance parameters. The robustness of the ADN
was improved when the values of the nodes tolerance parameters αP in the PN and αI in the CN
were greater. This also shows that the larger the tolerance parameters, the smaller the impact of load
redistribution on the robustness of the ADN.

6. Related Work

Earlier studies mainly focused on the electrical power system. Research on the cascading failures
of the electrical power system has a long history. Over the past two decades, the research on cascading
failure propagation modes in the electrical power system has focused on two aspects: one is the
single network cascading failure propagation modes [9,11,13,28] and the other is the interdependent
cascading failure modes between a PN and a CN [16,22,23]. The theories for analyzing cascading
failures of large blackouts include self-organization theory [28], percolation theory [15,17,21], power
flow model [14,22,24], and so on.

Research on cascading failures in a single network, including random failure modes, with single
or multiple nodes removal, the following problems are specifically solved: (1) The impacts exerted
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on cascading failures are analyzed when the power overloads lead to nodes or edges failures [11].
(2) Considering the intermittent and random nature of new energy generation, the impacts exerted on
the cascading failures are analyzed in a single PN [9,11,13].

Research on the CCF of interdependent networks between a PN and a CN includes: (1) The
characteristics of the CCF across the PN and CN are summarized: (a) The accidents caused by the CCF
have the characteristics of power law distribution [6], and the probability distribution of large-scale
blackouts caused by the increasing load or unbalanced power flow changes from the exponential tail to
the power law tail. (b) Total demand or pressure leads to the operation of the interdependent network
under extreme conditions, which is one of the main factors leading to the CCF. (2) After analyzing
the CCF propagation mechanisms of different kinds of networks, the conclusions are as follows:
(a) Scale-free networks for a single network are robust to random attacks, but two interdependent
scale-free networks are sensitive to random attacks [24]. (b) Even if the small disturbances in one
network can lead to failures in another network, many clusters can be isolated from the whole network
after the CCF stops [15,17,21,23]. (c) From the security point of view, an interaction model is established
for the importance of the coupling relationship between a PN and a supervisory control and data
acquisition (SCADA) system. (d) A model has been established to analyze the process of cascading
failure propagation between the PN and the CN [8,19,21,25]. Its basic idea is to calculate the power
flow redistribution after cascading failures occur by the dynamic power flow. (e) A topological model
of a CN and a PN is established by the graph theory, and their transmission characteristics are analyzed.
The ability of different topologies to resist the CCF under different coupling conditions is analyzed and
compared [20,24].

However, the above current research work does not comprehensively consider the impact of the
distribution of distributed generators, network topology, interdependence, and load redistribution on
the robustness of the ADN against the CCF.

7. Conclusions and Future Work

In this paper, we analyzed the relationship between the final expected proportion of remaining
normal operational nodes and distribution of generators, unintentional random initial failure,
interdependence, network topology, and load redistribution. We gave a CCF simulation algorithm
and a robustness evaluation algorithm. The robustness of the ADN against the CCF was simulated
based on the ER network topological structure and the BA network topological structure. The model
analysis and the simulation analysis showed that given the specific network topology parameters and
the unintentional random initial failure rate, the more the average control fan in of a node in the PN
and the more the average power fan in of a node in the CN, the better the robustness of the ADN,
the distribution of generators improved the robustness of the ADN against the CCF. In addition, the
robustness of the ADN was improved when the values of the nodes tolerance parameters were greater.
Compared with the traditional power distribution network, because of the physical distribution of
generators, the CCF caused by the interdependence between the PN and CN were more difficult
to occur.

This work is helpful in understanding the CCF in the ADN. Based on our above analysis on
numerical simulation results, if we want to improve the robustness of the ADN against the CCF,
we should take the following measures: using the more uniform degree distribution of the ADN
network topology, improving the values of <O1> and <K2>, improving the number of distributed
generators, improving the tolerance parameters of the nodes in the ADN and protecting the nodes from
the random failures. In practice, the PN and CN of the ADN are non-linear and the topological structure
of the network is asymmetric due to natural and artificial factors. Considering the effect of factors of
non-linear and asymmetry on the robustness of the ADN is one of our future directions. Accordingly,
making preventive control measures for the CCF in the ADN is also one of our future directions.
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Appendix A. Symbolic Descriptions Used in Appendix

Table A1. Symbolic Descriptions used in Appendices A–D.

Symbol Description

DP1 A random variable representing the number of neighbor nodes of a node in the PN of the ADN.

DP2

A random variable representing the number of nodes in neighbor nodes set (excluding the
dependent nodes in the CN) NeighP(n) of a node n in the PN that can cause the node n to fail
through load redistribution.

DI1 A random variable representing the number of neighbor nodes of a node in the CN of the ADN.

DI2

A random variable representing the number of nodes in the neighbor nodes set (excluding the
dependent nodes in the PN) NeighI(n) of a node n in the CN that can cause the node n to fail
through data traffic redistribution.

dP Node degree in the PN of the ADN.
dI Node degree in the CN of the ADN.

EvtP1
An event represents a particular neighbor node (not the dependent nodes in the CN) of a node
n in the PN of the cyber–physical distribution network.

EvtP2
An event where a particular node connects to the connected clusters containing generators in
the PN of the ADN.

EvtP4
An event represents a node with a degree dP belonging to the connected clusters containing
generators in the PN of the ADN.

EvtI1
An event represents a particular neighbor node (not the dependent nodes in the PN) of a node
n in the CN of the ADN.

EvtI2
An event where a particular node connects to the connected clusters in the CN depending on
the connected clusters containing generators in the PN of the ADN.

EvtI4
An event that a node in the CN with a degree dI belongs to the connected clusters depending
on the connected clusters containing generators in the PN of the ADN.

Appendix B. Derivation of Mapping fP and fI

Firstly, it is assumed the degree of the node nPi is dP, and the number of neighbor nodes set
NeighP(nPi) of a node nPi in the PN of the ADN is DP1 = dP − O2. In order to calculate the conditional
probabilities ProbP(EvtP3/|NeighP(nPi)|), then the probability needed is shown in Equation (A1).

ProbP(
EvtP3

DP2 = d′P
) = ProbP

d′P ×

 ∞∑
dP = 1

(FP(dP)+g)×WP(nPj,nPi)∑
nP∈NeighP(nPi)

WP(nP,nPi)
× ProbP(dP)

+ FP(dP) + ξi > αP × FP(dP)

 (A1)

where

 ∞∑
dP = 1

(FP(dP)+g)×WP(nPj,nPi)∑
nP∈NeighP(nPi)

WP(nP,nPi)
× ProbP(dP)

 is the expected load redistributed to the node nPi after

the failure of a neighbor node nPj connected to the node nPi, and then there is Equation (A2).

ProbP(
EvtP3

DP2 = d′P
) =


1, d′P >

(αP−1)×FP(dP)−ξi ∞∑
dP = 1

(FP(dP)+g)×WP(nPj ,nPi)∑
nP∈NeighP(nPi)

WP(nP ,nPi)
×ProbP(dP)


0, other

. (A2)
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The probability of selecting d′P nodes from the neighbors set NeighP(nPi) of the node nPi in the PN
is shown in Equation (A3).

ProbP(
DP2 = d′P

DP1 = dP −O2
) =

(
dP −O2

d′P

)
2dP−O2

, (A3)

where

2dP−O2 = (

(
dP −O2

0

)
+

(
dP −O2

1

)
+ . . .+

(
dP −O2

dP −O2

)
). (A4)

Therefore, under the condition of the number of neighbor nodes of a node nPi is DP1 = dP − O2,
the probability of an event EvtP3 occurrence is shown in Equation (A5).

ProbP(
EvtP3

DP1 = dP −O2
) =

dP−O2∑
d′P = 0

ProbP(
EvtP3

DP2 = d′P
) × ProbP(

DP2 = d′P
DP1 = dP −O2

). (A5)

After simplification, it is obtained in Equation (A6).

ProbP(
EvtP3

DP1 = dP −O2
) =

1
2dP−O2

dP−O2∑
d′P =

(αP−1)×FP(dP)−ξi

(
∞∑

dP = 1

(FP(dP)+g)×WP(nPj ,nPi)∑
nP∈NeighP(nPi)

WP(nP ,nPi)
×ProbP(dP))

(
dP −O2

d′P

)
. (A6)

The following analysis is simplified by referring to the idea of percolation theory. A node nPi in
the PN does not belong to the connected clusters with distributed generators belonging to one of the
following four situations:

(1) This node nPi has been removed due to random failures, including power fluctuations (intermittent
or random) of distributed generators, etc.

(2) This node nPi exists but does not belong to the connected clusters containing generators. It belongs
to a small connected component containing no generators.

(3) This node nPi is removed due to overload.
(4) This node nPi is removed due to the failure of the node in the CN associated with the node nPi.

In Case (1), the probability is ΘP. In Case (2), the probability is shown in Equation (A7).

(1− θP) × ProbP(
Evt′P2

EvtP1
)

dP−O2

. (A7)

The probability in the third case is shown in Equation (A8).

ProbP(
EvtP3

DP1 = dP −O2
). (A8)

In the fourth case, the probability is considered in Section 4.1. In summary, the probability that
a node nPi with the node failure probability ΘP belongs to the connected clusters containing generators
is shown in Equation (A9).

ProbP(EvtP4) = 1−
(
θP + (1− θP) ×

(
ProbP(

Evt′P2
EvtP1

)
dP−O2

+

(
1− ProbP(

Evt′P2
EvtP1

)
dP−O2

)
× ProbP(

EvtP3
DP1 = dP−O2

)

))
. (A9)
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After simplification, it is obtained in Equation (A10).

ProbP(EvtP4) = (1− θP) ×

1− ProbP(
Evt′P2

EvtP1
)

dP−O2
× (

1− ProbP(
EvtP3

DP1 = dP −O2
)

)
. (A10)

Thus, the expected probability that any node belongs to the connected clusters containing
generators is shown in Equation (A11).

∞∑
dP = max{0,O2}

ProbP(dP) × ProbP(EvtP4). (A11)

Therefore, considering the power fluctuations (intermittent or random) of distributed generators,
it is defined fP(1 − ΘP) as the expected probability of the connected clusters containing generators
divided by 1 − ΘP, then it is as shown in Equation (A12).

fP(1− θP) =

∞∑
dP = max{0,O2}

ProbP(dP) × ProbP(EvtP4)

1− θP
. (A12)

The above formula is further equal to Equation (A13).

fP(1− θP) =
∞∑

dP = max{0,O2}

ProbP(dP) ×

(
1− ProbP(

Evt′P2
EvtP1

)
dP−O2

)
×

(
1− ProbP(

EvtP3
DP1 = dP−O2

)
)
. (A13)

In addition, ProbP(Evt′P2/EvtP1) is the probability that there is a particular neighbor node nP
of a node nPi, and this node nP is not connected to the connected clusters containing generators
in subsequent neighbor nodes except this node nPi. Thus, the conclusion is drawn as shown in
Equation (A14).

ProbP(
Evt′P2

EvtP1
) =

1
〈dP〉

∞∑
dP = 0

[(dP + 1) × ProbP(dP + 1)] × (1− ProbP(EvtP4)). (A14)

Secondly, the number of neighbor nodes of a node nIi in the CN of the ADN is DI1 = dI −O1. In order
to calculate the conditional probability ProbI(EvtI3/|NeighI(nIi)|), we need to know the conditional
probability ProbI(EvtI3/DI2 = d′I) which is equal to Equation (A15).

ProbI(
EvtI3

DI2 = d′I
) = ProbI

d′I ×

 ∞∑d = 1

FI(d)×WI(nI j,nIi)∑
nI∈NeighI(nIi)

WI(nI ,nIi)
× ProbI(d)

+ FI(dI) > αI × FI(dI)

, (A15)

where
∞∑

d = 1

FI(d)×WI(nI j,nIi)∑
nI∈NeighI(nIi)

WI(nI ,nIi)
× ProbI(d) is the expected data traffic flow redistributed to the node nIi

after the failure of the neighbor node nIj connected to the node nIi. Then there is Equation (A16).

ProbI(
EvtI3

DI2 = d′I
) =


1, d′I >

(αI−1)×FI(dI)
∞∑

d = 1

FI(d)×WI(nI j ,nIi)∑
nI∈NeighI(nIi)

WI(nI ,nIi)
×ProbI(d)

0, other

. (A16)
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The probability of selecting a node from the neighbor nodes set NeighI(nIi) of the node nIi in the
CN is shown in Equation (A17).

ProbI(
DI2 = d′I

DI1 = dI −O1
) =

(
dI −O1

d′I

)
2dI−O1

, (A17)

where

2dI−O1 = (

(
dI −O1

0

)
+

(
dI −O1

1

)
+ . . .+

(
dI −O1

dI −O1

)
). (A18)

Therefore, under the condition that the number of neighbor nodes set is DI1 = dI − O1, the
probability of an event EvtI3 occurring is shown in Equation (A19).

ProbI(
EvtI3

DI1 = dI −O1
) =

dI−O1∑
d′ = 0

ProbI(
EvtI3

DI2 = d′
) × ProbI(

DI2 = d′

DI1 = dI −O1
). (A19)

After further simplifications, the results are obtained as shown in Equation (A20).

ProbI(
EvtI3

DI1 = dI −O1
) =

1
2dI−O1

dI−O1∑
d′I =

(αI−1)×FI(dI)
∞∑

d = 1

FI(d)×WI(nI j ,nIi)∑
nI∈NeighI(nIi)

WI(nI ,nIi)
×ProbI(d)

(
dI −O1

d′I

)
. (A20)

Furthermore, it is assumed that NONI × ΘI nodes fail in the CN. A node nIi does not belong to the
connected clusters depending on the connected clusters containing generators in the PN due to the
following four situations:

(1) This node nIi has been removed due to random failures, etc.
(2) This node nIi exists but does not belong to the connected clusters depending on the connected

clusters containing generators in the PN.
(3) This node nIi has been removed due to the excessive data traffic flow.
(4) This node nIi fails due to the failure of its depending node in the PN.

The probability in Case (1) is ΘI. In Case (2), the probability is shown in Equation (A21).

(1− θI) × ProbI(
Evt′I2
EvtI1

)

dI−O1

. (A21)

In Case (3), the probability is shown in Equation (A22).

ProbI(
EvtI3

DI1 = dI −O1
). (A22)

In summary, the probability that a node nIi with a degree dI belongs to the connected clusters
depending on the connected clusters containing generators in the PN under the node failure probability
ΘI is shown in Equation (A23).

ProbI(EvtI4) = 1−
(
θI + (1− θI) ×

(
ProbI(

Evt′I2
EvtI1

)
dI−O1

+

(
1− ProbI(

Evt′I2
EvtI1

)
dI−O1

)
× ProbI(

EvtI3
DI1 = dI−O1

)

)
+ 1− 〈O1〉 × (1− fP(θP))

)
. (A23)

After further simplifications, the results are obtained as shown in Equation (A24).

ProbI(EvtI4) = (1− θI) ×

1− ProbI(
Evt′I2
EvtI1

)

dI−O1
× (

1− ProbI(
EvtI3

DI1 = dI −O1
)

)
. (A24)
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Thus, the expected probability that any node in the CN belongs to the connected clusters depending
on the connected clusters containing generators in the PN is shown in Equation (A25).

∞∑
dI = max{0,O1}

ProbI(dI) × ProbI(EvtI4). (A25)

Define fI(1 − ΘI) as the expected probability of the connected clusters depending on the connected
clusters containing generators in the PN divided by 1 − ΘI, and it is equal to the Equation (A26).

fI(1− θI) =

∞∑
dI = max{0,O1}

ProbI(dI) × ProbI(EvtI4)

1− θI
. (A26)

Further

fI(1− θI) =
∞∑

dI = max{0,O1}

ProbI(dI) ×

1− ProbI(
Evt′I2
EvtI1

)

dI−O1
× (

1− ProbI(
EvtI3

DI1 = dI −O1
)

)
. (A27)

In addition, ProbI(Evt′I2/EvtI1) is the probability that there is a particular neighbor node nI of
a node nIi, and this node nI is not connected to the connected clusters depending on the connected
clusters containing generators in the PN in subsequent neighbor nodes except this node nIi. Thus,
the conclusion is drawn as shown in Equation (A28).

ProbI(
Evt′I2
EvtI1

) =
1
〈dI〉

∞∑
dI = 0

[(dI + 1) × ProbI(dI + 1)] × (1− ProbI(EvtI4)). (A28)

Appendix C. Analysis of Cross-Domain Cascading Failures

The first iteration N=1 of the CCF is shown in Equation (A29).{
RP(1)= 1−θP

RPF(1) = RP(1) × fP(RP(1))
. (A29)

The number of nodes removed in the PN will further lead to failures of the corresponding nodes
in the CN according to the power supply dependence relationship, and its number is shown in
Equation (A30).

bNONP×(1−RPF(1))c∑
i = 1

O2i ≈ NONP × (1−RPF(1)) × 〈O2〉. (A30)

The expected proportion of the failure of a power supply edge between the PN and CN is shown
in Equation (A31).

NONP × [1−RPF(1)] × 〈O2〉

NONP × 〈O2〉
= [1−RPF(1)]. (A31)

Thus, the expected proportion of the node failure in the CN is shown in Equation (A32).

[1−RPF(1)]
〈O1〉. (A32)

Then the second iteration N=2 of the CCF is shown in Equation (A33).{
RI(2) = 1−[1−RPF(1)]

〈O1〉

RIF(2) = RI(2) × fI(RI(2))
. (A33)



Appl. Sci. 2019, 9, 5021 29 of 32

When the number of nodes in the CN and the number of nodes in the PN are both large, the above
equations hold.

The nodes in the CN with the expected proportion of 1 − RIF(2) fail. Among these failed nodes in
the CN, the number of nodes belonging to the control nodes set VI3 is shown in Equation (A34).

NONI × [1−RIF(2)] × ProbI(VI3), (A34)

where ProbI(VI3) = |VI3|/NONI.
The number of failure control edges which are owned by these failure nodes in the CN is shown

in Equation (A35).
NONI × [1−RIF(2)] × ProbI(VI3) × 〈K1〉. (A35)

The total number of control edges is shown in Equation (A36).

NONI × ProbI(VI3) × 〈K1〉. (A36)

Thus, the expected proportion of failure control edges is shown in Equation (A37).

NONI × [1−RIF(2)] × ProbI(VI3) × 〈K1〉

NONI × ProbI(VI3) × 〈K1〉
= [1−RIF(2)]. (A37)

Then the expected failure proportion of a node in the PN due to failure control edges is shown in
Equation (A38).

[1−RIF(2)]
〈K2〉. (A38)

Then the corresponding expected proportion of a normal operational node in the PN due to failure
control edges is shown in Equation (A39).

1− [1−RIF(2)]
〈K2〉. (A39)

According to the assumption in literature [26], then the third iteration N=3 of the CCF is shown in
Equation (A40).  RP(3)= (1−θP) ×

[
1− (1−RIF(2))

〈K2〉
]

RPF(3) = RP(3) × fP(RP(3))
. (A40)

Appendix D. A Special Case of Evaluation <O1> and <O2>

For a node nPi belonging to the substation node set VP2 in the PN of the ADN, it is assumed that
the number of nodes in the CN that the node nPi can supply power is proportional to the degree of this
node nPi [23]. The specific relationship is shown in Equation (A41).

O2(nPi) = µPdP, (A41)

where µP is constant. The expected number of nodes in the CN is supplied by a node nPi in the PN is
shown in Equation (A42).

〈
O2(nPi)

〉
=

∞∑
dP = 0

ProbP(dP)×µPdP = µP〈dP〉, (A42)

where ProbP(dP) represents the probability of a node nPi with a degree dP belonging to the substation
node set VP2. <dP> represents the average node degree in the substation node set VP2.
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The probability that only one node nIj in the CN will receive power from a node nPi with a degree
dP belonging to the substation node set VP2 in the PN is shown in Equation (A43).

ProbP(O2(nPi) = 1) =
O2(nPi) × ProbP(dP)

|VP2|× < O2(nPi) >
. (A43)

Then, the probability that o nodes in the CN will receive power from a node nPi with a degree dP
belonging to the substation node set VP2 in the PN is shown in Equation (A44).

ProbP(O2(nPi) = o) =

(
dP

o

)(
NoNI

o

)
× ProbP(O2(nPi) = 1)o

× [1− ProbP(O2(nPi) = 1)]NONI−o (A44)

where o is less than or equal to dP.
Furthermore, the probability that an arbitrary node nPi belonging to the substation node set VP2

in the PN supplies power to o nodes in the CN can be obtained as shown in Equation (A45).

ProbP(O2 = o) =
∞∑

dP = 0

ProbP(O2(nPi) = o) × ProbP(dP). (A45)

Finally, the expected number of nodes in the CN is power supplied by any one node in the
substation node set VP2 in the PN is shown in Equation (A46).

〈O2〉 =

NONI∑
o = 1

o× ProbP(O2 = o). (A46)

The expected number of nodes belonging to the substation node set VP2 in the PN which
supplies power to any one node in the CN is derived in a similar way. The probability that any one
communication node is powered by o nodes belonging to the substation node set VP2 in the PN is
shown in Equation (A47).

ProbI(O1 = o) =
( 1
|VP2| × 〈O2〉

)o
. (A47)

Thus, the expected number of nodes belonging to the substation node set VP2 in the PN which
supplies power to any one node in the CN is shown in Equation (A48).

〈O1〉 =

|VP2 |∑
o = 1

o× Prob(O1 = o). (A48)

The process of obtaining other quantities such as <K1>, <K2>, <L1>, and <L2> is similar.

Appendix E. A Proof of Proposition 1

Proof: According to Equation (A6), if the tolerance parameter αP of the node in the power network
is bigger, then the probability ProbP(EvtP3/DP1 = dP − O2) is smaller. Correspondingly, according to
Equations (A9) and (A14), it can be seen that the probability ProbP(Evt′P2/EvtP1) is smaller as well.
Then according to Equation (A13), fP(1 − ΘP) becomes bigger as the tolerance αP of the node in the
power network is bigger. As the tolerance αP→∞, ProbP(EvtP3/DP2 = d′P)→0, ProbP(EvtP3/DP1 = dP −

O2)→0, and then the Equation (A49) can be obtained.

lim
αP→∞

fP(1− θP) =
∞∑

dP = max{0,O2}

ProbP(dP) ×

1− ProbP(
Evt′P2

EvtP1
)

dP−O2
. (A49)
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According to Equation (A49) and Equation (6), if RP(2N + 1) , 0, RPF(2N + 1) , 0, RI(2N) , 0, and
RIF(2N) , 0, then RP(2N + 1), RPF(2N + 1), RI(2N), and RIF(2N) will be bigger. Therefore the expected
proportions RPF(2N + 1) of the remaining normal operational nodes reach their upper limits, which are
the results of a pure interdependence model without considering the load redistribution. The similar
proof process applies to the expected proportions RIF(2N) of the remaining normal operational nodes
in the communication network.
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