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Abstract: This paper investigated the behavioral characteristics of two single tube concrete-filled steel
tube (CFST) arch models under different loads. Applying the numerical shape function (NSF) method,
the limited strain data of arch models were interpolated to obtain more detailed strain information
at unmeasured points. By numerically modeling and characterizing the structural stressing state
of arches, these interpolated strains were calculated as the normalized strain energy density (SED)
sum to plot the corresponding characteristic curves. Utilizing the Mann-Kendall (M-K) criterion,
the qualitative characteristic load was detected from the curve and was referred to as the failure load,
updating the existing definition of structural failure. Then, from the perspective of experimental
strains, strain/stress fields, and stressing state submodes of internal forces obtained based on the
NSF method, the working behavioral characteristics of each respective CFST arch model under loads
were embodied in detail. The mutation features were distinguished from the development trend of
strain/stress fields or distribution patterns of internal forces to verify the rationality of the updated
failure load. Consequently, the NSF method can have a reasonable interpolation on the limited
experimental data. By modeling structural stressing state, it can conduct an accurate estimation of
the structural failure load and provide a reference for the future design of arch bridges.

Keywords: numerical shape function; structural stressing state; mutation; failure load; CFST arch

1. Introduction

Over the past few decades, the prevalence of concrete-filled steel tube (CFST) arches has steadily
increased in the construction industry and bridge engineering, especially in large-span roofs and
bridges. The application of CFST arches owes to their strong bearing capacity, large span potential,
beautiful appearance, and convenient construction [1,2]. Also, as a composite structure, the CFST
arches can enhance structural performance by fully utilizing the compressive and tensile strengths of
steel and concrete, respectively, which greatly promotes the usage efficiency of materials [3]. In China,
it has been roughly estimated that more than 400 CFST arch bridges have been built, and the largest
span is over 500 m [4,5]. Among these various structure forms of CFST arches, single tube CFST arches
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make up a large proportion in small- and medium-span bridge constructions. Compared to arches
with other types of cross-sections, such as dumbbell-shaped sections and truss sections, single tube
CFST arches have simpler structural forms and mechanical behaviors.

However, to date, the extensive use of single tube CFST arches has not led to deeper studies on
their working behaviors. Theoretical and experimental research about arches has simply involved
a calculating method, bearing capacity under in-plane loads or spatial loads [6,7], and dynamic
performance [8,9], inclusive of considering the effects of initial stress [10] and initial imperfection,
geometric and material nonlinearity, et al. [11–13]. Chen [14] conducted a model experiment of two
CFST rib arches under in-plane loads and found that they have outstanding ductility and bearing
properties. Liu et al. [15] used the finite element program to study the ultimate load-bearing capacity of
long-span CFST arch bridges with fly-bird-type and the results indicated that the effect of both geometric
and material nonlinearity could not be neglected. Using a CFST arch bridge with a span of 80 m,
for example, Han et al. [16] studied its stability using the general finite element program. Deng et al. [17]
proposed a co-rotational formulation in the setting of finite elements for three-dimensional nonlinear
analysis of the ultimate bearing capacity of a circular (CFST) arch, considering both geometric and
material nonlinearities. Liu et al. [18] tested six fixed CFST parabolic arches to study the effects of
the rise-span ratio and the non-uniform moment. Wang et al. [19] analyzed the out-plane elastic
stability of typical single tube CFST arch bridges using the finite element method and provided a
calculation method.

From the literature above, the lack of sufficient large-scale experiments on single tube CFST arches to
investigate their complex in-plane or out-plane working behaviors and failure mechanisms can be seen.
In existing experimental analysis, the measured strain data has always not been fully utilized, leading
to the neglect of extensive unseen information of structural working behavior characteristics, which
could have been extracted from experimental strain data using the appropriate methods. Using the
finite element (FE) method, the mechanics performance of structures will have greater clarities.
Inevitably, the finite element model is often simplified or assumed by researchers with experience in
structural design. The problem arises that the calculation results of structural responses using these
simplified models always have deviation from the actual test results in varying degrees. Besides, all the
experimental or simulative studies mainly investigated the effect of configurational/material parameters
on the arch’s responses from the displacement-load or strain-load relations. According to the existing
empirical and statistical approximation, various assumptions and preconditions have been used
to derive formulas for calculating the bearing capacity of specific arches in theoretical studies.
Consequently, these calculation results are always deficient in universality and conservative in
application, leading to the overuse and/or irrational use of materials [20].

Actually, the existing theories and methods cannot completely reveal the definite working law
hidden in arch structures based on the limited experimental data. Therefore, this investigation attempted
to reveal the untapped working behavioral characteristics of single tube CFST arch models under
different loading processes, applying the innovative methods for analyzing structural stressing state.
First, the numerical shape function (NSF) method was introduced to interpolate experimental strain
data. By modeling structural stressing state, the strain energy density values (SEDs) calculated by the
interpolated strains were normalized to plot the characteristic curves. Then, the Mann-Kendall criterion
was used to reveal the mutation characteristics from these curves. Strain/stress fields constructed based
on NSF method and stressing state submodes of internal forces were also investigated respectively.
The results achieved in this study could provide suggestions to the coming researches and design
improvement of CFST arch bridges and even other structures.
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2. Introduction of Analysis Methods

2.1. Method of Numerical Shape Function

Compared with simulative results, the limited data of structural responses collected from
experiments or monitored from real bridges are the most direct and effective reflection of their
mechanical behavioral characteristics. To some extent, these response data can reflect the working
behavior or evaluate the real working state of the structure under loading. However, it still cannot
provide a full expression of structural mechanical characteristics. In order to obtain detailed
information about structural response based on experiments, the method of numerical shape function
(NSF) was proposed [21], which can accurately interpolate/expand experimental data with clear
physical significance.

NSF is a new and effective interpolation method for interpolating experimental data field directly
through conventional shape function [22,23] and finite element simulation. With reference to the
interpolation method of thin plate splines (TPS) [21], this method applies the finite element (FE)
simulation of a specific thin-plate model to obtain the numerical shape functions of sampled points.
Then, the data at non-sampled points are acquired with the interpolation calculation of numerical shape
functions and the sampled data. To introduce this method, the deflection field of one cross-section in
arch-A (introduced in Section 3.1) is used here as an example, and the parameters of this extracted
section are also seen in Section 3.1. As shown in Figure 1a, the cross-section was constructed and
meshed with element Shell 181 by the software ANSYS [24]. The deflections of four quarter points
were measured as sampled points. In the regular coordinate system (x, y), the element displacement
field u(x, y) is expressed as a node displacement by Equation (1):

u =
4∑

i=1

uiNi(x, y) (1)

where ui is an element displacement at i-th node and Ni is the corresponding shape function.Appl. Sci. 2019, 9, x 4 of 16 
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Figure 1. Finite element (FE) model and numerical shape functions: (a) The FE model of the cross-
section; (b) numerical shape function N1; (c) numerical shape function N3. 
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Figure 1. Finite element (FE) model and numerical shape functions: (a) The FE model of the cross-section;
(b) numerical shape function N1; (c) numerical shape function N3.

Since the FE model is divided into a certain number of elements, the relatively accurate node
displacement can be calculated by establishing the overall equilibrium equation based on the principle
of virtual displacement. Pursuant to the static calculation, the z-directional displacement N1 is
provided in Figure 1b by applying a unit displacement at point 1 along the z-axis, while the other three
points are fixed along the z-axis to restrict rigid displacements. Similar to the calculation of N1, other
numerical shape functions Ni can also be obtained. As an example, N3 was calculated and depicted
in Figure 1c. Due to the central symmetry of the section shape, N1 is in rotational symmetry with
N3. Without considering large deformation or elastoplasticity, the interpolation field constructed by
Castigliano’s theorem is independent of loading paths, and linear superposition can be carried out for
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the simulative results with explicit physical meanings. Therefore, according to the deflection of four
sampled points, the deflection field D of the whole section is obtained by Equation (2):

D =
m∑

i=1

uiNi, Ni =
[
Ni(x1), Ni(x2) · · ·Ni(x j) · · ·Ni(xn)

]
(2)

where Ni is the shape function of i-th point, Ni(xj) is the function value at element node xj, n is the total
number of element nodes, and m = 4 is the total number of sampled points.

From Figure 1, it is seen that combining the shape function (data interpolation) and numerical
simulation (NSF) method can provide an estimation of experimental data at unsampled locations,
especially in regions that are difficult and expensive to access. Based on the interpolated strain
data, the corresponding stress data can be also achieved through the constitutive relation of the
material. Then, the contour maps of various fields for structure responses, e.g., strain and stress fields,
can be depicted through the interpolation data above, as well as the internal forces distribution of the
structure. Using this method could meet the requirements for in-depth experimental analysis and
reveal global/local working characteristics of the structure.

2.2. Method of Modeling Structural Stressing State

The stressing state of a structure is the description and reflection of inner or outer response
characteristics featured by the entire structure or a segment of the whole (components, joints, et al.)
with certain parameters under specific loads. It can be interpreted as the structural working behavior
characterized by the numerical mode consisting of the mechanical responses of all concerned points.
This numerical mode is referred to as the stressing state mode. Structural responses, like strains or
stress, are the most direct reflection of the working behavior and deformation of the structure, but are
considered directional and limiting. Therefore, to express and model the stressing state mode of arch
structures, the strain energy density (SED) was applied [25,26]. This parameter is scalar, depending on
stress and strains but evading the directivity effect.

With the application of NSF method, strains were not restricted to the limited ones measured in
the experiment, so the SED of the arch structure under a certain load was calculated as the sum of
SEDs of all elements by Equation (3):

E j =

∫
A

edA =
∑

A

eiAi, ei =

∫ εi

0
σdε (3)

where Ej is the generalized strain energy density (GSED) sum of the arch at load Fj and ei, Ai, and
εi are the SED value, area, and strain of i-th element, respectively. Then, Ej is normalized as Ej,norm

by Equation (4) to plot the Ej,norm-Fj (denoted as E-F for convenience) curve for characterizing the
stressing state mode of the arch:

E j,norm =
E j

EM
(4)

where Ej,norm is the normalized SED sum at load Fj and EM is the maximum SED sum over the whole
loading process.

The stressing states of arch structures are bound to evolve with increasing load and reflect different
stressing state characteristics at different loading stages. As long as the load reaches a certain level,
the structural stressing state may present the qualitative leap characteristic from the quantitative
change. As a trend analysis tool in hydrometeorology, the Mann-Kendall (M-K) criterion [27–29] has
been found to well-detect characteristic loads from the E-F curve without the necessity for statistic
samples to comply with certain distributions or interference of a few outliers. The effectiveness of this
method has been previously verified [30]. Hence, the leap working behavior characteristic of arches
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can be detected approximately by utilizing the M-K criterion, and two characteristic points of the E-F
curve can be judged from the calculation.

3. Introduction of the Experiments

3.1. Experiment on CFST Arches under In-Plane Loads

Wu [31] conducted a experiment of nine parabolic single tube CFST arch models with different
rise-span ratios and load models. Here, the arch under uniform distributed vertical loads was
chosen and abbreviated to arch-A below. Arch-A was 9 m in span, 1:6 in rise-span ratio, 159 mm in
diameter, and the steel tube was 4.5-mm thick. The yield stress, elastic modulus of steel and cubic
compressive strength, and elastic modulus of concrete were 376.2 MPa, 204 GPa and 41.60 MPa,
and 31.3 GPa, respectively. Five loading devices were set at equal intervals along the arch span,
respectively, as five-point loads to simulate the process of in-plane uniformly vertical loads. As shown
in Figure 2, displacement meters and strain gauges were arranged at L/12, L/6, L/4, L/3, L/2, 2L/3, 3L/4,
5L/6, and 11L/12 spans of the arch model, as well as at the arch bases, to monitor displacements and
strains. Each section set four measuring points from ε1 to ε4. Loads were applied in steps during the
loading process.
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Figure 2. The measuring scheme of arch-A.

3.2. Experiment on the CFST Arch under Spatial Loads

Chen [32] experimented on a parabolic single tube CFST arch under spatial loads. To distinguish
this arch model from arch-A, it is described as arch-B below. Arch-B was 7.5 m in span, 1:5 in rise-span
ratio, 121 mm in diameter, and the steel tube was 4.5-mm thick. The yield stress, elastic modulus of
steel and cubic compressive strength, and elastic modulus of concrete were 322 MPa, 206 GPa and
66.7 MPa, and 35.6 GPa, respectively. To simulate the process of spatial loads, five sets of loading
apparatus were set at equal intervals along the arch span, respectively, to apply in-plane point loads,
and a set of horizontal loading device was arranged at the arch vault to apply the out-plane point
load. The measuring scheme is depicted in Figure 3. The displacement meters and strain gauges were
installed at 12 equal interval sections along the span and numbered from 1–13. During the loading
process, the value of horizontal load was applied to 10% of vertical loads correspondingly each time
under step loading. In order to differentiate between tensile strain and compressive strain, all tensile
strains are shown positive. Correspondingly, compressive strains are negative.
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4. Interpolation of Experimental Data by NSF Method

4.1. Accuracy Evaluation of NSF Method

Before applying NSF method to interpolate the strain data, the interpolation accuracy of this
method should be evaluated. Here, the leave-one-out (LOO) cross-validation method was used [33].
Each of the four measured strains at the cross-section under a certain load level can be considered as a
dataset of four samples. LOO-based validation was performed with four iterations, such that in each
iteration, the NSF method was trained with three samples to obtain the predictive value and tested
on the remaining one sample. The error δ between the predictive value εp

i (i = 1, 2, 3, 4) with the real
experimental sample εe

i was calculated by Equation (5):

δ =

∣∣∣∣∣∣∣ε
p
i − ε

e
i

εe
i

∣∣∣∣∣∣∣× 100% (5)

Therefore, smaller δ equated to the better fitting degree, indicating the practicality of the method.
As an illustration, the contrast curves of strains on cross-section 4 in arch-A are given in Figure 4a.

It shows that the two curves of one specific section had very high fitting degrees and even overlapped
with each other before 180 kN. Thereafter, the intervals between the two curves were also very small.
Figure 4b lists the validation errors of all 11 sections with different load levels. Because of the small
values of strains, the little difference value between εp

i and εe
i would have caused great error, so the

errors were relatively large in the earlier loading stage. Closer to the later part of load application,
the error presented an increasing trend. This was mainly caused by random factors which started to
gradually affect the structural working behavior, as well as damages in the interior of the arch, which
seriously affected the interpolation accuracy of NSF method.
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For all the measured strains validated by LOO, an average error of 4.79% was obtained. The error
results were relatively small and greatly met the application requirement. Consequently, the NSF
method can be applied with sufficient accuracy to interpolate experimental data for further investigation
of the structural stressing state.

4.2. Interpolation on Strains and Stress

Before modeling the structural stressing state, the limited strains were interpolated to obtain
the strain fields of each cross-section, as well as the stress fields based on the constitutive relation.
Here, the software ANSYS was used to construct FE models of cross-sections, and shell element
Shell 181 was chosen as the element type in consideration of its high precision. After dividing mesh,
the strains of element nodes were interpolated based on the numerical shape functions N1~N4 with
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four measured strains ε1~ε4. Under a certain load, the interpolation strain filed D of one section was
calculated by Equation (6):

D =
4∑

i=1

εiNi (6)

As shown in Figure 5, the interpolation strain field of section 11 in arch-A under 130 kN is listed as
an example. The four measured strains were ε1 = −980 µε, ε2 = −765 µε, ε3 = 13 µε, and ε4 = −1199 µε,
respectively. According to Equation (6), the strain field D can be obtained.
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Based on strain fields interpolated by the NSF method, the corresponding stress fields could be
also achieved through the constitutive relation of materials. The stress field of section 11 in arch A
under 130 kN is also shown in Figure 5. When considering in the construction of constitutive relations,
Equation (7), which reflects the uniaxial stress-strain relation based on numerous results [34,35],
was adopted for the constitutive relationship model of core concrete in compression:

y =

 2x− x2, (x ≤ 1)
x

β0(x−1)2 , (x > 1) (7)

where x = ε/ε0; y = σ/σ0; σ0 = f ′c ; ε0 = ε′ + 800ξ2
× 10−6; ξ = fyAs/ fckAc; ε′c = (1300 + 12.5 f ′c ) ×

10−6; β0 =
(
2.36× 10−5

)[0.25+(ξ−0.5)7]
× f ′0.5

c × 0.5 ≥ 0.12; f ′c is the cylinder concrete compressive strength;
fy and fck are the yield strength of steel and the axial compressive strength of concrete; As and Ac are
the section areas of steel and concrete; fcu is the axial compressive strength of normative cube concrete;
and fck = 0.67fcu; ε′c is the peak strain of concrete. Equation (8) shows the tensile constitutive relation of
concrete [36]:

y =

 1.2x− 0.2x6, x < 1
x

αt(x−1)1.7+x
, x > 1 (8)

where y = σ/ ft; x = ε/εt, αt = 0.312 f 2
t , σ is the tensile stress of concrete, ft is the axial tensile strength

of concrete and ft = 0.26 f 2/3
cu ε is the strain of concrete, and εt is the peak strain of concrete and

εt = 31.4 f 0.36
cu × 10−6.

A five-stage stress-strain curve for steel tube [2] was adopted in calculation, as shown in Figure 6.
At point a, there was

εe = fp/Es (9)

where f p is the proportional limit of steel, f p = 0.8 fy; fy is the yield strength of steel, and Es is the
elastic modulus of steel. At point b, εe1 = 1.5εe. At point c, εe2 = 10εe1. At point d, εe3 = 100εe2.
Finally, the strain/stress fields of all these cross-sections can be established for structural stressing
state analysis.
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Figure 6. The stress-strain curve of steel.

Additional illustration for the method is noted. Because the experimental data itself is the
reflection of structural elastic-plastic deformation, the elastoplastic behavior of the structure could be
well-embodied in the interpolated strain field. Therefore, this method was used to analyze structures
under the linear/non-linear state of materials. The more experimental data are measured, the more
accurate interpolation results will be obtained.

5. Stressing State Analysis of CFST Arch Models

5.1. Investigation into Parameter SED for Modeling Structural Stressing State

Pursuant to the method of modeling the structural stressing state, the stressing state modes of
experimental arch models were expressed by the normalized SED values to characterize their working
behavior. Based on the strain/stress data interpolated by NSF method, SED values of arch-A or arch-B
were calculated by Equations (3) and (4) for the expression of stressing state mode. The corresponding
characteristic parameter Ej,norm under load Fj was used to plot the E-F curve in order to investigate
the developing tendency and sensitivity of the arch’s stressing state mode. Using the M-K criterion,
characteristic loads in the curves were detected, namely PA (140 kN), QA (180 kN) for arch-A and loads
PB (66 kN), QB (85 kN) for arch-B, successively.

As depicted in Figure 7, the E-F curve of arch-A is plotted for example. It is shown that the curve
grew rather slowly as long as the acting load remained below 140 kN (PA), indicating that the arch
model was basically in the linear-elastic working state. From 140 kN to 180 kN (loads PA to QA),
there was a slight growth trend of the curve, implying that the CFST arch was in the elastic-plastic
working state and local plastic development existed. As the load exceeded 180 kN (QA), the curve
thoroughly deviated from this loading path and began to undergo a fast development with rapid
growth/mutation. At this stage, the arch model entered the unstable stressing state until the ultimate
load (206 kN). The E-F curve of arch-B had similar developing features, so it was not discussed here.
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Two common stressing state characteristics could be summarized from the above: (1) Characteristic
load P is the load where the arch’s stressing state transitioned from elasticity to elastoplasticity.
Although some parts in the arch model may have interred plastic states during the stages, the whole
arch structure maintained a stable stressing state until characteristic load Q. In other words, the arch’s
stressing state maintained quantitative change instead of qualitative change during the stages.
(2) Characteristic load Q is the load where the arch’s stressing state qualitatively changed/leapt
to the other state, which was different from the previous state. The arch model maintained the stable
stressing state modes before load Q and then entered the gradually developing failure states until
the ultimate load. It is an essential and general working behavior feature, which structures certainly
present during their loading process. Hence, the load corresponding to characteristic load Q can be
defined as the failure load of the structure.

The present failure at the ultimate load is a state in which structures have already been destroyed
and have lost stability. To ensure sufficient safety and the normal applicability of structures, safety factors
were used to multiply the ultimate load so as to be the design value for structural design. This traditional
uncertain value is commonly conservative, and material is often wasted. Meanwhile, the updated
failure load was revealed by the inherent mutation of the structural stressing state characteristics
instead of any assumption and was in accordance with the natural law regarding the quantitative
change to qualitative change of a system. That is to say, the load to structural stressing state mutation
is determinate while the structural ultimate load is indeterminate. After the ultimate load was reached,
the structure created a great potential safety hazard and was unsuitable for load bearing. A relatively
rational safety reserve existed from the failure load to the ultimate load. Significantly, the qualitative
mutation of the structural stressing state could be the common characteristic for structures and
structural failure. In essence, the design load for a structure is natural law-based and definite, rather
than empirical and random. Therefore, it could be a better reference to adopt the definite failure load
as structural design value.

5.2. Investigation into Measured Strains of Two Arch Models

Based on the NSF method, the hidden value of structural response can be exploited by SEDs,
and deep mining and analysis can be made on structural stressing state modes. However, for arches
under different loading conditions, their working behaviors will have distinct performance features
around the failure load (characteristic load Q). Since the measured strains of arches are the most direct
reflection of their mechanical behaviors, these strains were initially selected to concretely observe their
different features.

As shown in Figure 8a, the measured strain’s absolute value (|εi|), which reached the yield point
(εy), was chosen. The ratio of the strain to the yield strain (|εi|/εy) was taken as a parameter to reflect
the development/magnitude level of strains. The yield strains of arch-A (εyA) and arch-B (εyB) were
1844µε and 1563µε, respectively. It should be noted that the load Fj for arch-B here represented vertical
load values, and the horizontal load was 10% of corresponding vertical loads. As seen in the figure,
no yield deformations appeared before load P, and relatively small yield deformations appeared from
loads P to Q. Compared with small ratios of |εi|/εy for arch-B, the strains of arch-A developed with
much greater extent, especially after the failure load. Obviously, materials of arch-A were utilized
to a higher degree. This is because that materials of arch-B, the failure of arch model was mainly
controlled by great horizontal displacements with the action of out-plane loads, rather than material
damage. To observe the distribution of strains on each cross-section, the distribution mode of the
sectional maximum strain (|εi|max, i = 1, 2, 3, 4) was plotted. As shown in Figure 8b, the |εi|max of
arch-A or arch-B maintained a slight and stable increase before the failure loads. From then on, strains
of some sections showed great mutation/increment. Although the arches were loaded symmetrically,
the distribution modes of |εi|max were asymmetric, especially under high-level loading. The primary
cause of this phenomenon was the initial geometrical imperfections of arch models.
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Generally, from the perspective of experimental strain data, the arch will have a higher supporting
capacity under in-plane loads than that under spatial loads and strains will have more obvious
mutation characteristics around the failure load. Since the out-plane stiffness of the arch is smaller
than the in-plane one, the arch model will have larger displacement under small horizontal loads, even
if the materials still have subsequent bearing capacity. So, it is important to strengthen the out-plane
stiffness of arch bridges, for example, by adding enough transverse supporting in practical engineering.
Because the area around the arch feet is vulnerable to damage due to the impact of initial imperfection,
it also should be given attention during structural design.

5.3. Change Characteristics Reflected by Strain/Stress Fields of Arch Models

In the light of experimental strain data, performance features of two arch models around the
updated failure loads and their respective working behavior characteristics under loading can be
embodied in some extent. Unfortunately, these limited data could only reflect the distribution and
the development of strains of each measured point. The NSF method was applied for the strains at
unmeasured points on the surface or the inside of cross-sections. Constructing strain/stress fields of
cross-sections can provide an intuitive description of the structural stressing state during the loading
process, as well as a clear observation of change characteristics of arch models around the failure loads.
It can be seen from Figure 8 that some cross-sections of arch models had small strain values throughout
the loaded process, while some others had large variation ranges and had a well-controlled effect on
the arch models. Thus, the change characteristics of these key sections were the focus of attention,
namely sections 7, 9–11 of arch-A, and sections 2, 7, 10, 12, and 13 of arch-B.

To observe the changes around characteristic load P, section 11 of arch-A was taken as an example.
As shown in Figure 9, the strain fields were basically symmetrically distributed along the vertical.
Only the densities and values of isopleth curves had slight changes before and after characteristic load
P (140 kN). The strains of the whole cross-section were almost compressive, indicating that the section
was mainly subjected to compression. Similar features were observed on other sections of arch-A and
arch-B, and quantitative changes existed instead of qualitative changes on the shapes of isopleth and
the magnitude of strain values around loads P.
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Figure 9. Strain fields of section 11 of arch-A around characteristic point PA.

To delineate the variations around characteristic point Q, section 11 of arch-A was selected.
As depicted in Figure 10a, from 170 kN to 180 kN, the whole cross-section was fundamentally in
the compressive state with very little tensile strains. Neither the shapes nor the values of isopleth
curves had a notable distinction. From 180 kN to 190 kN, the strains of the section were still mainly
compressive, even though tensile strains had obvious increments and occupied more area of the
section. Especially, the compressive strain values had a dramatic growth, with a range changing from
−2930~0 µε at 180 kN to −12,200~0 µε at 190 kN. During this stage, the oversized strain values around
the lower part of the section demonstrated that the section/structure underwent an unstable stressing
state with potential risk after 180 kN. Therefore, the failure load 180 kN was a watershed for the arch,
implying that the arch model was considered unsuitable for resisting load from then on. Differing from
arch-A, the strain values of section 13 of arch-B had a relatively small developing range due to the
effect of great horizontal displacements, as shown in Figure 10b. It is seen that the area of compressive
region occupied almost the whole section. With the action of spatial loads, the distribution shape of
isopleth curves was asymmetric. From 80 kN to 85 kN, strains at the lower-left corner of the section
had visible changes in values. When the load reached 90 kN, the changes of strains were more obvious
in values and isopleth curve shapes. Potential mechanical instability caused by outer displacements
limited the development of strains. Hence, the maximum compressive strain was −2570 µε at 90 kN,
remaining subsequent bearing capacity if the development of outer displacements can be restricted.
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The stress fields of the arch models can be gained to receive a more specific stress description of
steel tubes and core concrete on cross-sections. As shown in Figure 11, stress fields of typical sections
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are plotted. In order to clearly demonstrate stress changes of steel tube, its thickness was approximately
increased without following the actual proportion of steel tube and concrete. The solid lines in steel
tubes and dashed lines in core concrete signify that the stress was approaching zero. Because of the
variation of section size, these lines did not overlap, but were parallel with each other. In this regard,
the rationality of NSF method is shown. Considering diverse stress levels of steel and concrete, their
stress color legends are listed separately in figures.
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For section 11 of arch-A in Figure 11a, both concrete and steel tube underwent compressing
stress before 180 kN with very small tensile stress. Obvious tensile area existed at 190 kN. The steel
tube, especially, showed great tensile stress values considering that the concrete material was hardly
capable of tension. The maximum tensile value, 226 MPa, was at the upper-right corner of the steel
tube. Meanwhile, compressive stress born by core concrete also increased rapidly compared with
the previous stable stress state. At this stage after the failure load, the mechanical behavior of both
concrete and steel tube had a qualitative development. Section 13 of arch-B in Figure 11b depicts
the different stressing features. Like the strain fields, the stress of the lower-left corner of the section
showed obvious changes in values from 85 kN to 90 kN, while the tensile stress of the right side
maintained small values.

By delineating strain/stress fields of typical sections of the two arch models, their change
characteristics around failure loads can be found. Generally, owing to their different instability modes,
the strain/stress fields of arch-A represent a more recognizable variation after the failure load, which
can be easily distinguished from the changes of isopleth curve shapes or values in strain/stress fields.

5.4. Investigation into Structural Stressing State Submodes on Internal Forces

The CFST arch models mainly underwent axial compression and bending moment.
After constructing the strain/stress fields based on the NSF method, the distribution modes of
sectional internal forces can also be obtained. Thus, the stressing state submodes of sectional axial
forces and bending moments were built respectively to reflect their various working characteristics
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and evaluate their roles on arch models. Equations (10) and (11) were proposed to calculate sectional
internal forces of axial force (N) and bending moment (My), respectively:

N =

∫
A
σdA =

∑
A

σiAi (10)

My =

∫
A
σydA =

∑
A

σiyiAi (11)

For arch-A, the out-plane bending moment was not analyzed, owing to the lateral restraint.
Therefore, Figure 12 only shows the stressing state submodes of axial forces (N) and in-plane bending
moments (Min). In Figure 12a, N at section 8 was smaller than other sections. Closer to the later
part of load, this phenomenon became more pronounced. Combining the great displacements and
Min at sections 7 and 9 indicates that the bending moment played a control role in the section.
Before the load exceeded 140 kN, the distribution mode of N was stable with light undulation.
Then, the distribution mode began to show obvious fluctuations at some sections, such as sections 2, 7,
and 11. However, the mutation features around the failure load could not be clearly distinguished from
the curve. In Figure 12b, it is seen that the curves were in asymmetrical distribution, especially under
high-level loading. Excluding sections 7 and 9, which were mentioned previously, section 11 also
had large bending moments, indicating that the area near the arch feet was subjected to heavy force.
The developing trend of Min after 180 kN changed with great increments, especially at sections 7–9,
which reflected the qualitative change of stressing submodes at the failure load.
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(b) the distribution mode of Min.

For arch-B, Figure 13 shows the stressing state submodes of axial forces (N), in-plane bending
moments (Min), and out-plane bending moments (Mout). Under normal circumstances, axial forces in
arch appeared as compression, but N presented positive at section 1 while others were all negative.
This may have been caused by an inaccurate measurement or geometric and material nonlinearity
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of the arch, and local buckling of steel tube may have also been produced. The same phenomenon
occurred in the curve of Mout. Nevertheless, this did not have a large effect on the trend features of
the arch’s stressing state. As shown in Figure 13a,b, the curves developed steadily with no obvious
mutation changes, reflecting that the arch maintained excellent in-plane stability in all loading processes.
As depicted in Figure 13c, except the Mout near the arch feet, the curves from sections 3–11 were
symmetrically distributed around section 7 (the arch vault), demonstrating that the development of
Mout was not sensitive to initial imperfections. Out-plane point load was applied at the arch vault,
so the maximum Mout occurred at section 7. The distribution mode of Mout clearly showed great
increments after 85 kN, which verifies that the updated failure load was reasonable.
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(b) the distribution mode of Min; (c) the distribution mode of Mout.

From the description of stressing state submodes of internal forces, their distribution modes and
developing trends were reflected. For arch-A, both the axial compression and in-plane bending moment
had great effects on the structural working behavior, ultimately leading to the instability failure of the
arch model. The stressing state submode curve of the in-plane bending moment clearly embodied the
mutation characteristic at failure load 180 kN. For arch-B, the out-plane bending moment played the
dominant role in the structural development process under spatial loads. From its distribution mode
curve, it also demonstrated a leap feature at failure load 85 kN.

6. Conclusions

In this research, two single tube CFST arch models, arch-A and arch-B, with different configurations,
material properties, and loading conditions, were introduced to investigate CFST arches from a unique
perspective. Due to the limited strain data which could not have a clear reflection of structural working
behavior, the NSF method was proposed to rationally interpolate the strains at non-sampled points.
Based on the interpolation data, the strain energy density (SED) was used to model structural stressing
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state. With application of the M-K criterion, characteristic loads were well-distinguished and divided
the stressing state into different loading stages. The revealed characteristic load Q was defined as
the updated failure load, which represented the starting point of the failure process of the arch and
revealed the qualitative change of structural stressing state from the stable one to the unstable one.

From the perspective of measured strains, the development degrees of strains were investigated,
and it was found that the structural materials had a low exploitation and utilization under the action
of out-plane loads. Based on the strain data interpolated by NSF method, the strain/stress fields
of cross-sections were investigated to reflect the internal stressing features of steel tubes and core
concrete, and the mutation characteristics around failure load were proved. In addition, through
the stressing state submodes of internal forces, the developing tendencies of axial compression and
bending moments were well-presented.

In total, the effectiveness and practicability of NSF method and the method of modeling structural
stressing state were verified for revealing the stressing state characteristics of arches under different
load types. The verification of these methods may provide guidance to promote engineering practice
and improvement in design codes, which could considerably promote the benefits in saving material,
structural safety, and structural working rationality.
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