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Abstract: Polyethylene terephthalate (PET) fiber has attracted significant attention for reinforced
concrete (RC) structure rehabilitation due to its large rupture strain (LRS; more than 7%) characteristic
and recyclability from waste plastic bottles. This study presents a dynamic tensile test of PET fiber
bundles performed using a drop-weight impact system. Results showed that the tensile strength and
the elastic modulus of the PET fiber bundles increased, whereas the failure strain and the toughness
decreased with the increasing strain rate from 1/600 to 160 s, In addition, the performance of
concrete confined with the PET fiber-reinforced polymer (FRP) under impact loading was investigated
based on a 75 mm-diameter split Hopkinson pressure bar (SHPB) device and a drop-weight apparatus.
For the SHPB test, owing to the large rupture strain property of PET FRP, the PET FRP-confined
concrete exhibited significantly better performance under impact loading compared to its counterpart
confined with carbon FRPs (CFRPs). During the drop-weight test, the confinement of the PET FRP
composites to the concrete columns as external jackets not only improved the peak impact force, but
also prolonged the impact process.

Keywords: composite materials; polymeric composites; PET FRP; dynamic behavior

1. Introduction

Fiber-reinforced polymers (FRPs) have been widely used for seismic strengthening of existing
reinforced concrete (RC) structures, owing to their advantages of high strength-to-weight ratios,
corrosion resistance, and superior durability [1-14]. Considering the fact that the existing RC columns
may be subjected to not only seismic loading but also dynamic loading such as vehicle/boat impact
during their service life [15], the investigations of impact behaviors of RC structures strengthened
with FRP composites are of vital importance for the application of FRPs in the impact-resistant design
of RC structures. Although extensive studies of impact-resistant behaviors of conventional concrete
and RC structures have been conducted [16-21], only a few studies of impact-resistant behaviors of
FRP-confined concrete were conducted [22-27].

Xiao and Shen [23] conducted the drop-weight test to investigate the impact-resistant behaviors
of the concrete-filled steel tube column confined with carbon FRPs (CFRPs) and found that the damage
of the specimen could be reduced with the application of CFRPs as external jackets. Huang et al. [26]
investigated the impact-resistant behaviors of the glass FRP (GFRP)-SR (spiral reinforcement)-confined
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concrete columns and found that an increase in the thickness of the GFRP tube led to an increase
in the impact-resistant behaviors of the specimen. Yang et al. [27] used a 100 mm-diameter split
Hopkinson pressure bar (SHPB) apparatus to investigate the dynamic mechanical behaviors of the
concrete confined with aramid FRPs (AFRPs). The experimental results showed that the dynamic
compressive strength, ultimate strain, and toughness of the concrete were remarkably increased with
the application of the external AFRP jacket to confine the core concrete.

Considering the fact that the FRP mainly bears tensile force in the strengthening of the structures
and the fiber bundles are the main load-bearing element in FRP composites, the dynamic tensile
mechanical properties of fiber bundles are necessary for studying the failure mechanism between the
FRP and the concrete under impact loading. To address this issue, some studies have been reported to
date. Ou et al. [28] investigated the strain rate effect on the dynamic tensile mechanical properties of
the glass-fiber bundle specimen and found that the tensile strength increased with the increasing strain
rate from 1/600 to 160 s~1. Zhu et al. [29] investigated the effect of the strain rate (20 to 100 s on
the dynamic tensile mechanical properties of the Kevlar 49 fiber bundle specimen. The experimental
results showed that the tensile strength, the elastic modulus, and the toughness increased with the
increasing strain rate.

The past decade has witnessed the emergence of a new type of FRP composite, polyethylene
terephthalate (PET) [30—42]. Research has shown that its very large rupture strain (i.e., more than
7%) may lead to enhanced structural ductility and impact energy dissipation in the impact-resistant
retrofitting/strengthening of RC structures [43]. This paper briefly presents the authors’ recent studies
on the dynamic tensile mechanical properties of PET fiber bundles and the dynamic compressive
behavior of concrete confined by the PET FRP. The preliminary results illustrated the great potential
of the use of PET FRP in impact strengthening applications of RC structures at the material (i.e.,
PET fiber bundle and PET FRP-confined concrete) and component (i.e., PET FRP-confined concrete
column) levels. It is expected that the results presented here will facilitate further investigation of the
impact-resistant behavior of PET FRP-strengthened RC structures.

2. Materials and Methods

2.1. Dynamic Tensile Test of PET Fiber Bundles

A typical specimen was fabricated with a gauge length of 25 mm (Figure 1) according to
Ou et al. [28]. A long fiber bundle with a 1800 mm length was extracted from the unidirectional
PET fiber fabric and weighed by an electronic balance to obtain a mass of 0.307 g. The linear density
(1.7 x 1073 g/cm) could be calculated by dividing the mass by the length, and the area of the transverse
section of the bundle (1.23 x 10~3 cm?) could be obtained by dividing the linear density by the bulk
density (1.38 g/cm?) that was provided by the manufacturer (Maeda Kosen Co., Sakai-shi, Japan). A
fiber bundle with a length of 60 mm was cut from the extracted long fiber bundle. Two aluminum
sheets with a length of 20 mm, a width of 15 mm, and a thickness of 0.2 mm were roughhewed by
a serrated steel plate and folded along the long side to catch the fiber bundle using the epoxy resin.
After the resin was fully cured and the redundant fiber bundle at both sides was cut off, a fiber bundle
specimen with a gauge length of 25 mm was completed.

I

Figure 1. Schematic diagram of a fiber bundle specimen.
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Five PET fiber bundle specimens were tested for each displacement rate of 1, 2, 3, and 4 m/s with
the respective strain rates of 40, 80, 120, and 160 s~1, which is the ratio of the displacement rate to the
corresponding gauge length of the specimen, using an Instron drop-weight impact system (Figure 2).
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The impact height of the system ranged from 0.03 to 1.10 m, and the maximum mass of a drop hammer
was 37.5 kg. The drop hammer dropped freely along the guide rail and impacted the specimen after
the release of the drop hammer.

Figure 2. Instron drop-weight impact system.

For comparison, five PET fiber bundle specimens were also tested under quasi-static conditions at
a crosshead speed of 2.5 mm/min (strain rate of 1/600 s~!) using an MTS universal testing machine. The
loading capacity of the MTS system ranges from 0.1 to 30 kN with a data sampling rate of 1 kHz. The
tension of the PET fiber bundle specimen was measured with a force sensor, of which the maximum
range and the data acquisition rate are 1 kNN and 20 Hz, respectively. The deformation of the PET fiber
bundle specimen was considered as the displacement of the upper beam of the system, due to the fact
that the stiffness of the specimen was far lower than that of the loading system [44].

2.2. Split Hopkinson Pressure Bar Test

Concrete cylinders with a diameter of 150 mm and a height of 305 mm were cast with ordinary
Portland cement, river sand, and crushed granitic rocks with a particle size ranging from 5 to 10 mm.
The average 28-day compressive strength of the concrete was 18.5 MPa.

A total of 9 concrete columns with a 70 mm diameter and a 38 mm height were prepared. Among
them, 3 concrete cylinders were wrapped with one layer of the PET FRP, of which the nominal thickness,
the tensile strength, and the elastic modulus were 0.841 mm, 751 MPa, and 17.9 GPa, respectively, 3
concrete cylinders were wrapped with two layers of the PET FRP, and 3 specimens were wrapped with
one layer of the CFRP, of which the nominal thickness, the tensile strength, and the elastic modulus
were 0.165 mm, 4423 MPa, and 240 GPa, respectively, for the purpose of the comparison (Table 1),
according to the manual wet layup way [30]. A continuous fiber sheet saturated with the epoxy resin,
mixed at a ratio of the main resin component L-500AS to the hardener L-500BS of 2:1 (provided by
SANYU Shanghai Company), was wrapped around the concrete cylinder with the fibers orientated
in the hoop direction of the cylinder. To prevent the debonding failure, a fiber sheet with a length
of 350 mm (i.e., one circumference + half circumference of the overlapping zone) was used for the
fabrication of one-layer FRP-confined concrete specimens. To reduce the test scatter, three identical
specimens were tested at each impact velocity using a 75 mm-diameter SHPB device to investigate the
dynamic compressive behavior of the FRP-confined concrete (Figure 3). The apparatus comprised an
energy source, a 600 mm-long projectile, a 5000 mm-long incident bar, a 3000 mm-long transmission
bar, a digital oscilloscope, and a velocity testing system that was used to record the initial velocity of
the projectile.
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Table 1. Summary of specimens for the SHPB test.

Nominal Tensile Unconfined

Type of DxH T Thickness Volufne Strength Number Imm.ll Concrete Numb‘er of
Test (mm) ype of FRP of FRP Frac‘tlon of FRP of Velocity Strenath Iden‘tlcal
of Fiber Layers (m/s) & Specimen
(mm) (MPa) Y (MPa)
Carbon FRP o
70 x 38 (CFRP) 0.165 15% 4423 1 10.9 18.5 3
SHPB Polyethylene
test 70 x 38  terephthalate 0.841 31% 751 1 11.4 18.5 3
(PET) FRP
70 x 38 PET FRP 0.841 31% 751 2 11.1 18.5 3
79

# ” L |
|

é

Figure 3. Split Hopkinson pressure bar (SHPB) apparatus.

The specimen was sandwiched between the incident and transmission bars. The stress wave was
reshaped with a rubber shaper (1 mm in thickness and 20 mm in diameter) installed on the impact end
of the incident bar. The time histories of the strain ¢(f), stress o(t), and strain rate ¢ (t) of the specimen
can be obtained by Equations (1)—(3), according to the two-wave theory [27]:

t

) = = e - et 1)
o(t) = E%etm, @)
£(0) = Zoleilt) - en(), 3)

where ¢;(t) and &(t) are the strain of the incident and transmission bars, respectively; A is the
cross-sectional area of bars; As and L are the initial cross-sectional area and the height of the
specimen, respectively.

2.3. Drop-Weight Test

Twelve concrete cylinders with a diameter of 95 mm, a height of 285 mm, and an average 28-day
compressive strength of 58.5 MPa were prepared. The preparation of the concrete column and the
fabrication of the FRP-confined concrete column were the same as those presented in Section 2.2.
Among them, 8 cylinders were wrapped with one layer of the PET FRP, 2 cylinders were confined with
one layer of the AFRP, of which the nominal thickness, the tensile strength, and the elastic modulus
are 0.169 mm, 3732 MPa, and 115 GPa, respectively, and 2 remaining unconfined concrete cylinders
were tested as control specimens (Table 2). All specimens were denoted as “A-B-C”, where A, B, and C
stand for the type of FRP, the number of FRP layers, and the drop height, respectively. Two nominally
identical specimens were tested at each drop height to reduce the data scatter.
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Table 2. Summary of specimens for the drop-weight impact test.

Nominal Tensile Unconfined
. Volume Number  Impact Number of
Type of DxH T £ FRP Thickness Frachi Strength p Height Concrete Identical
Test (mm) ypeo of FRP raclion ¢ FRP ° 8 Strength entiea
(mm) of Fiber (MPa) Layers (m) (MPa) Specimen
95 x 285 - - - - - 2 58.5 2
95 x 285 AFRP 0.169 19% 3732 1 2 58.5 2
Drop-weight 95 X 285 PET FRP 0.841 31% 751 1 2 58.5 2
test 95 x 285 PET FRP 0.841 31% 751 1 3 58.5 2
95 x 285 PET FRP 0.841 31% 751 1 4 58.5 2
95 x 285 PET FRP 0.841 31% 751 1 5 58.5 2

A large-capacity drop-weight setup was used for the impact test [23], consisting of a hammerhead
with a weight of 188 kg, 14 balancing weights each with a weight of 68 kg, a steel frame, a track, a
control system, and a lifting device (Figure 4). The maximum drop height was 16 m. Different impact
energies can be obtained by adjusting the mass of the drop weight and the drop height. In this test, the
drop weight was held the same at 256 kg (the hammerhead + one balancing weight), and different
impact energies were achieved by varying the impact height (i.e., 2, 3, 4, and 5 m).

Figure 4. Drop-weight test setup.
3. Results and Discussion

Figure 5 shows the typical stress—strain curves of the PET fiber bundle specimens at different
strain rates. The curves exhibit a bilinear stress-strain relationship and a rapid drop from the peak
stress to zero, which indicates a brittle fracture of the PET fiber bundle. The tensile strength, the elastic
modulus, the failure strain, and the toughness are sensitive to the strain rate. When the strain rate
increased from 1/600 to 160 s~1, there was an increase in the tensile strength, which can be attributed
to the fact that there was not enough time for the defects of filaments in the fiber bundle to develop
at a high strain rate [45]. The initial elastic modulus and the second elastic modulus (i.e., slopes of
the two portions of the stress—strain curve) increased with an increase in the strain rate from 1/600 to
160 s~1. Conversely, there was a decrease in the failure strain and the toughness with the increasing
strain rate from 1/600 to 160 s!. Figure 6 shows the failure modes of the PET fiber bundles at different
strain rates. At a low strain rate (e.g., 1/600 s_l), the fracture surface of the fiber bundle had a chaotic
appearance with different fracture positions of filaments. At a high strain rate (e.g., 160 s71), the fiber
bundle ruptured with a relatively trim fractography.
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Figure 5. Tensile stress—strain curves of the PET fiber bundle at different strain rates.

Figure 6. SEM images of failure modes at the strain rates of 1/600 s71(a); 4071 (b); 8057 (c); 120571 (d);
160 s~ (e).

Figure 7a shows the failure mode of one layer of the CFRP-confined concrete at a strain rate of
218 s~1 from SHPB tests. At a strain rate of about 220 s~!, one layer of the CFRP-confined concrete was
smashed together with the external FRP rupture, whereas, due to its very large rupture strain, two
layers of the PET FRP-confined concrete could not be destroyed (Figure 7b). Therefore, to investigate the
failure mechanism of the concrete confined with the PET FRP, the specimen was repeatedly impacted
under the same impact velocity until failure (Figure 7b). As shown in Figure 7b, only a small piece of
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the concrete was peeled off the surface of concrete confined with the PET FRP after the second impact
with a strain rate of 272 s71. Under the third impact at a strain rate of 280 s~!, partial concrete was
crushed with no rupture of the external PET FRP.

218 s 1stimpact (222 s™) 2rd impact (272 s7) 3rd impact (280 s™)
(a) (b)
Figure 7. Failure modes of the concrete confined with the CFRP (a) and the PET FRP (b).

Figure 8 shows the dynamic stress—strain curves of specimens confined with the CFRP and the PET
FRP at a strain rate of around 220 s™!. The PET and CFRPs were designed for a comparison based on
ultimate jacket strengths (i.e., the product of tensile strength and thickness of FRP jacket). One layer of
the CFRP provides an ultimate jacket strength of 729.8 N/mm that falls between the values provided by
one layer and two layers of the PET FRPs (631.6 N/mm and 1263.2 N/mm, respectively). The dynamic
compressive strength of the specimen confined with one layer of the CFRP was 89.4 MPa, whereas
the corresponding value for one layer of the PET FRP-confined concrete was 82.9 MPa with a larger
compressive strain of 4.58%. In addition, the dynamic compressive strength and the corresponding
strain of two layers of the PET FRP confined-concrete were remarkably higher than those of the
CFRP-confined counterpart, indicating the superior impact performance of the PET FRP-confined
concrete due to the large rupture strain characteristic.

140

—=—CFRP 218 5"
120 1.layer PET FRP 2315’
100 |—a— 2-layer PET FRP 222 s

80
60

Stress (MPa)

40

20

Strain (%)

Figure 8. Comparison of the dynamic compressive stress—strain curves of the specimen at a strain rate
of around 220 s71.

Figure 9 shows the dynamic compressive stress—strain curves of the specimen confined with two
layers of the PET FRP under multiple impacts. The compressive strength of two layers of the PET
FRP-confined concrete decreased after the second impact due to the progressive concrete damage,
which reveals superior impact-resistant behavior as far as deformability is concerned due to the large
rupture strain characteristic.



Appl. Sci. 2019, 9, 4987 8of 11

120

—s— " 2225
100 f—e—2™ 2725
—a—3" 280 5"

2-layer PET600 FRP

80

60

40

Stress (MPa)

20

Strain (%)

Figure 9. Dynamic compressive stress—strain curves of the specimen confined with two layers of the
PET FRP under multiple impacts.

Figure 10a shows the time histories of specimens with three different confining conditions (i.e., no
FRP, one layer of AFRP, and PET FRP) under the same drop height of 2 m from the drop-weight tests.
It can be seen that, compared to the unconfined specimen, the application of AFRP led to an increase
in the peak impact force. It can also be seen in Figure 10a that the application of PET FRP not only
improved the peak impact force, but also prolonged the impact process, leading to a superior impact
resistance. Figure 10b shows the time histories of the identical PET FRP-confined specimens tested at
different drop heights. As can be seen in Figure 10b, the peak impact force of the specimen slightly
increased, and the impact duration gradually decreased with the increasing drop height from 2 to 5 m.
It is worth noting that the duration of the specimen impacted under a 4 m drop height was longer than
that of the counterpart under a 3 m drop height, which can be considered a test scatter in this study.

1200 r r r r 1200 r r r r

—=a— Control —a—PET-1-2
900 - —e— AFRP-1-2 A 900 - —e—PET-1-3 4

= —a—PET-1-2 = ‘ —A—PET-1-4

2 600 2 600

g g

=} =}

S 300 <300

Q Q

= g

E 0 £ 0

2300 1 1 1 1 2300 1 1 1 1
-1 0 1 2 3 4 -

Time (ms) Time (ms)
(a) (b)

Figure 10. Impact force time histories of the FRP-confined concrete with different confining conditions
(a) and different drop heights (b).

4. Conclusions

Based on the dynamic tensile test of PET fiber bundles, the SHPB test, and the drop weight test of
the PET FRP-confined concrete, the following conclusions can be drawn:

1. PET fiber bundle is a strain rate-sensitive material. The tensile strength and the elastic modulus
increased, whereas the failure strain and the toughness decreased with the increasing strain rate from
1/600 to 160 571

2. Two layers of the PET FRP-confined concrete survived after a single impact compared to its
counterpart confined with one layer of the CFRP that can be crushed into pieces under a similar strain
rate of about 220 s71.

3. The dynamic compressive strength of the PET FRP-confined concrete experienced a decrease
under multiple impacts with the same impact energy due to the progressive damage of concrete.
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4. The application of the PET FRP for the concrete column not only increased the peak

impact-resistance force of columns, but also led to a prolonged impact duration.
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