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Abstract: It is ascertained that the current communication systems will not be able to support the
future network demands due to the increasing traffic, limitation of frequency resources, and high level
of interference. Recently, beamforming techniques have been introduced to reduce the interference by
redirecting the transmission towards the desired users only. While such beamforming enables better
interference mitigation and improved network performance, the concerns on its effectiveness in dense
deployment environments are arising. In this paper, the prospect of interference avoidance in location
aware small cell environments using time division multiple access (TDMA) and beamforming is
studied. The interference is reduced by identifying the aggressor small cell and transmit the beams
towards the desired users at different times. Simulation results show that the proposed scheme is
able to enhance the signal to interference plus noise ratio (SINR) by approximately 18 dB, enhance
the user throughput by about 10 Mbps in comparison to small cell on/off control scheme with a
discovery signal (SCon/off-DS), and improve the fairness index to about 95% in comparison to the
baseline scheme. It is believed that the presented results promote the proposed scheme as an efficient
interference management paradigm for the fifth generation (5G) communication systems.
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1. Introduction

The future communication systems that operate in higher frequency bands promise to exploit
wider bandwidths to cater higher data rates for the end users [1]. For instance, the highest bandwidth
range that is obtainable in millimetre wave (mmWave) systems is approximately 10 Gigahertz (GHz)
over a frequency range of 30–300 GHz which achieves about 100 bits/sec/Hz spectral efficiency,
and obtains terabyte data rate at the physical layer [2,3]. This is triggered by the limitation of the
current wireless communication systems in terms of spectrum limitation as well as fairness issues.
In wireless systems, different channel conditions and/or improper resource allocation and scheduling
are experienced by signals. Therefore, fairness is one of the issues worth to look at in such systems.
In [4], the downlink throughput of OFDMA small cells is maximised subject to short-term and
long-term fairness indices. This is achieved using a fixed transmission power. The proposed scheme
utilises cumulative fairness constraint to replace the long-term fairness and further improve the
system’s fairness. Similarly, the authors of [5] used non-orthogonal multiple access (NOMA) to
maximise the fairness of drone small cells. More works on fairness can be found in [6–8].

Similarly, extensive researches focused on investigating bandwidths of up to 10 Terahertz (THz)
because it offers extremely broader spectrum leading to huge capacity enhancements. Nevertheless,
THz signals are very fragile in longer distances due to the high frequency. In other words, THz
communication performs best in indoor capacities due to the proximity between transmitters and
receivers [9,10]. On the other hand, multiple input multiple output (MIMO) technique is exploited to
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achieve enhanced beamsteering gains in which multiple antennas are tightly bundled together over a
small spatial area. Subsequently, the technical and hardware complexities are few of many constraints
that researchers had to realise in approaching the technique. The authors of [11] investigated the
performance and the complications of signals phase-uncertainty when deploying low-complexity
indoor wireless units that utilise hybrid beamforming techniques. The study concluded that the
number and the size of antennas are proportional to the performance degradation.

The authors of [12] proposed a hybrid beamforming that is able to map a beamsteering codebook
based on the channel state information (CSI). It consists of a digital beamformer that eliminates
interference by dealing with regulated channel inversion (RCI) to reduce the overall complexity. It is
meaningful to mention that the proposed algorithm is designed to eliminate inter-band-interference
that is caused by orthogonal frequency division multiplexing (OFDM) carrier offsets (CFO) in [13].

The authors of [14] presented an experimental analysis of the in-band full-duplex communication
(IBFD) end-fire arrangement array transceiver and then developed a MIMO testbed that communicates
at 12.9 GHz carrier frequency. However, the scheme suppressed the self generated interference by
using the OFDM techniques and did not show evaluations in terms of data rates and bit error rates.
In view of that, the consideration of transmission and reception, proper channel modelling, and
multipath and fading effects lead to the smart antennas techniques. In [15], smart antennas were
categorised into adaptive arrays and switched beam antennas. While the latter describes the antennas
that have multiple beams and able to switch to any beam at any given time, the former estimates the
arrival direction and in-lines the beams with that direction, thereby resulting less interference.

Subsequently, the switched beam antennas do design the multi-user constellation depending on
how interference is perceived. Interference is mostly eliminated or suppressed through minimum
mean square error (MMSE) [16], zero-forcing (ZF) [17,18], or time division multiple access (TDMA)
techniques [19]. TDMA techniques usually utilise time division multiplexing (TDM) training sequences
to assist at the demodulating terminal. In that regard, the authors of [20] focused on achieving
better synchronisation to realise the adaptive beamforming algorithms in real time co-channel
communication systems.

The small cell technology on the other hand have expanded the capacity of the current
communication systems by allowing more users to utilise more network resources with enhanced
signals quality. Given the fact that most of future data exchange will originate from indoor
environments along with the fragility of higher frequency signals; small cells are the most attractive
solution that will solve for all the highlighted issues. With regards to that, service areas are often
divided into equal set of squares whereby each square is served by single small cell to suppress
interference power [21]. This is achieved by forcing other small cells within the service area to switch
off to save power. However, interference caused by edge users transmitting with the maximum power
may lead to grave performance deterioration. In [22] adaptive power control mechanism was proposed
to reduce the interference by adaptively adjusting the transmission power to enhance the signal to
interference plus noise ratio (SINR) and minimise the outage probability. The adaptation was done
by either increasing or reducing the transmission power by a certain value and concurrently measure
the SINR to achieve an optimal value. Additional works on interference management using power
suppression techniques can be found in [23–25].

The authors of [26] presented a smart virtual antenna array that is deployable in 5G-IOT systems to
avoid the interference by precisely directing the beams towards specific users. While transmitter signals
are assumed to be in the form of generalised frequency division multiplexing (GFDM), the user signals
are assumed to be OFDM signals. However, the authors of this paper understand that current wireless
systems should be investigated extensively especially in views of small cells, beamforming, and TDMA
technologies due to the existence of limited realistic channel models for future 5G communication
systems and applications.

To the best of the authors knowledge, all works on beamforming techniques in long term
evolutions (LTE) communication systems utilise location aware principles in approaching the objectives
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of the work. Without loss of generality, the authors have found no works that consider exploiting
beamforming and TDMA techniques together to suppress the interference in dense small cell systems.
Therefore, this paper proposes an interference avoidance algorithm that exploits beamforming and
TDMA techniques in location aware small cell communication systems. This is achieved by redirecting
the beams towards the users at different times in which the locations of the users are assumed to be
known. The main contributions of this paper are summarised below:

1. Realistic interference estimation and avoidance based on line-of-sight conditions. Therefore,
favourable settings for propagation conditions are noted.

2. Effective beamforming and TDMA algorithm for interference avoidance in dense
indoor environments.

3. The proposed scheme improves the network data rate in broader bandwidth transmissions.
4. Realistic network model that is suitable for future communication systems.
5. Motivation for further research directions, such as: interference avoidance in ultra-high

frequencies and beamsteering techniques.

The remainder of this paper is divided as follows; Section 2 describes the system modelling and
problem formulation, the proposed model is described in Section 3, Section 4 presents the evaluations
of the numerical results, and Section 5 concludes the paper.

2. System Modelling and Problem Formulation

Crucial challenges and limitations in terms of the practicality of any simulation-based wireless
communication system, need to be addressed especially channel and network representations. Here,
the realisation of the channel and the annotations used in this simulation are introduced. As highlighted
earlier, indoor facilities are expected to embrace the greatest portion of data exchange since higher
frequencies are assumed to be effective within indoor capacities. Therefore, all simulation parameters
including channel modelling parameters are tailored with respect to line-of-sight indoor environments.

In this paper, the set of small cells is denoted by S whereby each small cell is assigned K
subchannels. The set of users associated to each small cell is denoted by U . Moreover, P− and P+

describe the maximum transmission power and the received power of each small cell, respectively.
Without loss of generality, the necessary assumptions used in this paper are described below:

• Small scale fading (Rayleigh fading) is represented by the instantaneous received signal strength,
which varies frequently in response to the separation between the transmitter and receiver. This is
theoretically modelled using zeros-mean exponential distribution with unity deviation. However,
for more practical analysis, Jake’s model [27] can be taken into account because it considers
multipath, subchannel frequency, and the user speed.

• The service area (single indoor facility) is virtually controlled by small cell management system
(ScMS) that is later connected to the LTE core network through the packets gateway (P-GW) [28].

• The network bandwidth B = 20 MHz.
• The locations of small cells and users are entirely random (random distribution) in the simulation.

However, once the locations of the small cells are generated, they remain unchanged until the
iteration cycle completes. It later changes when the number of users is changed. Moreover, all
locations and angles are assumed to be known to the ScMS.

Other simulation parameters are described in Table 1.
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Table 1. Simulation settings.

Parameter Value

Service area 100 m × 100 m
P− [29] 23 to 33 dBm

Frequency 3.5 GHz
SINR threshold [30] 2.2 dB
Antenna elements 6

Elements type Patch
Inter-element spacing λ

2

Signal propagation in the given scenario is dominated by line-of-sight path whereby any other
reflected, scattered, or refracted signals are entirely neglected. Therefore, the channel gain gsku between
small cell and a user that are separated by a distance dsu is obtained by the following [31]:

gsku = −[PLsku + LHsku + LF
sku ] (1)

whereby PLsku is the pathloss that is calculated by 127 + 30log10dsu [31], PHsku is the shadowing loss, and
PFsku is the fading loss. It is also important to state that noise is Gaussian [31] whereby it equals to:

N = N0 ×Nd ×B− (2)

N0 is the noise factor ≈2.5,Nd is the noise spectral density≈−174 dBm/Hz, and B− is the subchannel
bandwidth ≈180 kHz.

Additionally, the simulation of the array antenna with respect to the parameters of Table 1 gives
a beamwidth of 40◦ in which the main lobe is directed towards the desired user at a specific angle.
The antenna polar beam pattern is presented in Figure 1.

Figure 1. Polar beam pattern of an array antenna that has 6 elements, inter-element spacing = λ
2 , and

δ = 0◦.

2.1. Problem Formulation

Channel and interference in dense environments are unpredictable especially in random
deployment scenarios where cells are distributed uniformly, which increases the complexity of channel
estimation and interference cancellation processes. Omni-directional antennas (wider beamwidths) in
conventional wireless communication systems have higher interference levels due to the reception
from multiple angles. However, antennas in beamforming environments have narrow beamwidths
and reception is limited to specific angles from the user point of view. Therefore, if the user has certain
knowledge of the arrival angles of transmitted signals, it would curb down huge levels of interference.
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Nevertheless, it increases the complexity of the system and addresses more challenges such as the
synchronisation issue.

The ratio of the desired signals in comparison to other channel factors is familiarly described by
the SINR metric that is obtained by the following [31]:

SINRsu = ∑
k∈K

P+
sku gsku

∑
i∈S/{s}

P+
iku giku +N

× αsu (3)

whereby α is the user association matrix of [s × u] and that αsu = 1 if the user u is associated to the
small cell s , otherwise αsu = 0 .

Looking at Equation (3), it can be concluded that if the interference power (denominator) is reduced,
SINR is enhanced. Therefore, the problem is formulated as follows:

arg min ∑
i∈S/{s}

∑
k∈K
P+

iku

s.t.

∑
i∈S/{s}

αij 6= 0

, ∀j ∈ U/{u}

(4)

2.2. Evaluation Metrics

In this section, the parameters used to assess the performance of the proposed algorithm
are introduced.

1. Throughput [31]: this describes the competence of the network to deliver data. It also describes
the effects of interference on the signals quality. Higher throughput means less interference, high
SINR, and efficient resource allocation scheme. Throughput is obtained by the following:

Ts = ∑
u∈U
Tu = ∑

u∈U
[B− × log2(1 + SINRsu)] (5)

It is noteworthy to mention that Equation (5) is valid for the maximum obtainable throughput.
However, the amount of successful packets delivery in real-time scenarios represents the
network throughput.

2. Jain’s Fairness model [32]: described by Equation (6); it is used to analyse how fairly the users
can access the required throughput. Fairness index varies between 0 and 1 whereby the higher
the index, the fairer the system.

Rs =

[
∑

u∈U
Tsu

]2

[
U × ∑

u∈U
T 2

su

] (6)

3. SINR: this compares the ratio of the received signal to interference plus noise.

3. Proposed Algorithm

As highlighted in Section 2, the synchronisation of both users and base stations increases the
complexity of the beamforming system. To avoid this, we introduce the parameter β at the ScMS,
which is a matrix of [s × u] that describes which user is receiving from which base station, βsu is
described below:



Appl. Sci. 2019, 9, 4979 6 of 11

βsu =

{
1 θsu − wsu

2 ≤ θsu ≥ θsu +
wsu
2

0 else
(7)

whereby wsu is the beamwidth, and θsu is the angle at which the user is located. Algorithm 1 describes
how βsu and βiu∀i ∈ S/{s} are derived from αsu . When user u is associated to small cell s , αsu is said to
equal 1. Subsequently, if the angle of user u is located within angles of the beam of small cell s , βsu is
set to 1. Similarly, βiu is set to 1 if user u is located within angles of the beam of small cell i , ∀i ∈ S/{s}

Algorithm 1 Initialise βsu

1: function SCMS
2: for s = 1 : S do
3: for u = 1 : U do
4: Set βsu = 0
5: if αsu = 1 then
6: if θsu − wsu

2 ≤ θsu ≥ θsu +
wsu
2 then

7: Set βsu = 1
8: end if
9: for i = 1 : S do

10: if i 6= s then
11: if dsi > 2× radiuss then
12: Set βiu = 0
13: if θiu − wiu

2 ≤ θsu ≥ θiu +
wiu
2 then

14: Set βiu = 1
15: end if
16: end if
17: end if
18: end for
19: end if
20: end for
21: end for
22: end function

Additionally, we introduce the parameter τ, which is also a matrix of [s × u]. It describes the
transmission time slot for user u, and obtained by the following:

τsu = (u − 1)× [U ×TTI] + 1 (8)

whereby TTI is the transmission time interval for a user in LTE.
In view of that, the ScMS forces s to transmit at the angle θsu where the user is located.

The maximum signal response will result at θsu if γ = − 2π
λ l sin θsu , which is used in obtaining the

summation of all antenna elements radiations i.e., array factor [33] as given by Equation (9).

F (θsu) = ∑
c∈C
Xc ej( 2π

λ cl sin θsu+cγ)
(9)

whereby Xc is the complex weight of the cth antenna element, λ is the wavelength, l is the inter-element
spacing, and γ is the phase lead of the cth element.

At the ScMS, the base station transmission can now be described in terms of time and angle
whereby the transmission of small cell s is set with respect to Table 2. Note that in Table 2 subchannels
are considered in the transmission whereby the transmission is said to be in the downlink only i.e.,
only the small cells are instructed to adjust the transmission. For two interfering small cells s and i ,
and after τsu is set according to Equation (8), βiu is updated if user u is not receiving small cell s i.e., no
interference. This is shown in Algorithm 2.
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Table 2. ScMS transmission codebook for cell s .

User u

1 2 3 . . . U
Su

bc
ha

nn
el

k 1 F (θs11), τs11 F (θs12), τs12 F (θs13), τs13 . . . F (θs1U ), τs1U

2 F (θs21), τs21 F (θs22), τs22 F (θs23), τs23 . . . F (θs2U ), τs2U
3 F (θs31), τs31 F (θs32), τs32 F (θs33), τs33 . . . F (θs3U ), τs3U

...
...

...
...

...
...

K F (θsK1), τsK1 F (θsK2), τsK2 F (θsK3), τsK3 . . . F (θsKU ), τsKU

Algorithm 2 Update βiu

1: function SCMS
2: for s = 1 : S do
3: for u = 1 : U do
4: if βsu = 1 then
5: for i = 1 : S do
6: if i 6= s then
7: if βiu = 1 then
8: if τsu 6= τiu then
9: βiu = 0

10: else
11: Break
12: end if
13: end if
14: end if
15: end for
16: end if
17: end for
18: end for
19: end function

It can now be claimed that the maximum SINRs is obtained if ∑i∈S/{s} βiu = 0. However,
enhancements can be obtained if βiu is minimised. Therefore, the SINRs in Equation (3) can now be
obtained by the following:

arg maxSINRS

= ∑
u∈U

∑
k∈K

P+
sku gsku × βsu

∑i∈S/{s} P+
iku giku × βiu +N

s.t. :

∑
s∈S

βsu = 1

(10)

Obtaining the correct angles where the users are located makes it easier to redirect the beams
towards the desired user. Therefore, the minimum β is obtained by Algorithm 2.

4. Results and Discussion

Here, the simulation results are presented to evaluate the relevance of the findings. The results
of the algorithm presented in Section 3 are compared with the small cell on/off control scheme with
a discovery signal (SCon/off-DS), location-aware self-optimisation (LASO) in [29]. When a nearby
user requests specific amount of data rate from the small cell, the macrocell can provide the required
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coverage and mobility. Therefore, the SCon/off-DS scheme achieves downlink interference avoidance,
and mitigation at the macrocell and the small cells, respectively. The LASO scheme improves the
throughput by adjusting the power offset in downlink transmission by effectively locating the users.
The authors have categorised the coverage area into two categories, namely: the non-dominantly
interfered region (NDIR), and the interfered region (IR). The users in the NDIR experience high SINR,
whereby the users in the IR experience low SINR. Additionally, beamforming scheme without TDMA
technique is referred to as Pl-beamforming, the proposed algorithm is referred to as Sl-beamforming.
Subsequently, the fairness of the beamforming schemes is later compared with baseline (BL) scheme
in which interference is assumed to be zero i.e., the best performance, which is used to assess the
feasibility and reliability of the proposed algorithm. Simulation results presented in this section are
in-line with the assumptions of U = [10–100] users, 20 MHz bandwidth, B− = 180 kHz, service area
= 100 m× 100 m, and 100 iterations.

The user throughput performance is illustrated in Figure 2a. Although the throughput achieved by
the SCon/off-DS and the LASO in NDIR is relatively high when there are 10 users, the number quickly
degrades as the number of users increase. However, both the Pl-beamforming and the Sl-beamforming
schemes maintain a throughput level of approximately 16 Mbps and 18 Mbps, respectively. This is
because the beams are effectively redirected towards the desired users only. Thus, reduces the
interference to other users.

This is evidenced by the SINR levels shown in Figure 2b whereby the superiority of the
beamforming schemes is clear. This shows how significantly can the beamforming schemes reduce
the interference in comparison to the other schemes. However, interference can still occur when the
number of users increase due to the proximity of users.

(a) Throughput (b) SINR
Figure 2. Throughput and SINR comparison when increasing the number of users in the service area
for all schemes.

Figure 3 shows the fairness level obtained by the Sl-beamforming. It is noteworthy to mention
that the fairness results are compared to the BL scheme because the fairness was not evaluated in [29].
Nevertheless, the Sl-beamforming is able to perform better than the Pl-beamforming because narrower
beamwidth and TDMA leads to less interference. Therefore, the Sl-beamforming is able to achieve
about 95% fairness levels for 100 users. The overall performance of the Sl-beamforming promotes it as
an efficient interference mitigation paradigm for future communication systems where the number of
base stations is expected to increase.
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Figure 3. Network fairness in comparison to the baseline scheme.

5. Conclusions

In this paper, the applicability of TDMA beamforming for future communication systems
is studied and assessed. The paper addressed the concerns of future wireless communication
followed by the features and the operations of beamforming. Subsequently, the Sl-beamforming
is proposed for line-of-sight small cell systems in LTE architecture. The modelling of the network
is tailored to give insights on the technical concerns and the achievements of the proposed scheme.
Empirical simulations are demonstrated to enforce the applicability of the Sl-beamforming scheme
whereby it is shown that the proposed scheme enhances the network SINR by about 18 dB, and user
average throughput by about 10 Mbps in comparison to the NDIR schemes. It also increases the
network fairness to approximately 95%. Future research directions will demonstrate the performance
over non-line-of-sight scenarios, uplink communication, and ultra-dense environments. Resource
scheduling algorithms should be added to the design, such as round robin and proportional fairness for
more factual simulation. Furthermore, investigations over 5G communication channels and frequencies
are recommended.
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Abbreviations

The following abbreviations are used in this manuscript:

5G Fifth Generation
BL Base Line
CFO Carrier Offsets
CSI Channel State Information
GFDM Generalised Frequency Division Multiplexing
GHz Giga Hertz
IBFD In-Band Full-Duplex
IoT Internet of Things
IR Interfered Region
LASO Location Aware Self-Optimisation
LTE Long Term Evolution
MIMO Multiple Input Multiple Output
MMSE Minimum Mean Square Error
mmWave Millimetre Wave
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NDIR Non-Dominantly Interfered Region
OFDM Orthogonal Frequency Division Multiplexing
P-GW Packets Gateway
RCI Regulated Channel Inversion
ScMs Small cell Management System
SCon/off-DS Small Cell on/off control scheme with Discovery Signal
SINR Signal to Interference plus Noise Ratio
TDM Tim Division Duplexing
TDMA Time Division Multiple Access
THz Tera Hertz
ZF Zero Forcing
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