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Abstract: The statistical properties of photon emission counting, especially the waiting time 
distributions (WTDs) and large deviation statistics, of a cavity coupled with the system of double 
quantum dots (DQDs) driven by an external microwave field were investigated with the particle-
number-resolved master equation. The results show that the decay rate of the WTDs of the cavity 
for short and long time limits can be effectively tuned by the driving external field Rabi frequency, 
the frequency of the cavity photon, and the detuning between the microwave driving frequency and 
the energy-splitting of the DQDs. The photon emission energy current will flow from the thermal 
reservoir to the system of the DQDs when the average photon number of the cavity in a steady state 
is larger than that of the thermal reservoir; otherwise, the photon emission energy current will flow 
in the opposite direction. This also demonstrates that the effect of the DQDs can be replaced a 
thermal reservoir when the rate difference of a photon absorbed and emitted by DQDs is larger than 
zero; otherwise, it is irreplaceable. The results deepen our understanding of the statistical properties 
of photon emission counting. It has a promising application in the construction of nanostructured 
devices of photon emission on demand and of optoelectronic devices. 
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1. Introduction 

Counting statistics is now at the center of attention in the quantum statistical description of a 
given process, counting the random number of events up to a given point. For example, one can count 
up to a given time the number of photons emitted by a quantum optical system and the number of 
electrons transported through a nanoscopic structure. The distribution of waiting times between 
elementary physical events is an important tool to investigate temporal correlations and the counting 
statistics of stochastic processes [1]. Short-time physics and correlations can be described by waiting 
time distributions (WTDs), which give the distribution of the time interval between two successive 
events. Additionally, most counting statistical properties can be obtained from the WTDs alone in 
Markovian and renewal systems [2]. WTDs play a significant role in various branches of science and 
technology—for instance, in quantum optics [3,4] and nanososcopic electron transport [5,6]. 
Moreover, the theory of large deviations (LD) is concerned with the exponential decay of probabilities 
of large fluctuations in random systems. For a long time limit, the measurement of random systems 
will focus around the average value, and large deviations away from this value are exponentially 
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suppressed [7]. The LD method provides a deep description of a stochastic counting process, and it 
can be applied to characterize photon counting processes in different quantum optical systems [8,9] 
and electron transport properties through mesoscopic conductors [10,11]. WTDs and the LD method 
are particularly useful and represent a fundamental theory and tools in investigating nanososcopic 
devices. 

Experimentally, obtaining all cumulants of photon or electron counting distribution requires 
time-resolved single-particle detection techniques. By capacitively coupling a single-electron 
transistor to a quantum dot (QD), real-time counting statistics has been carried out experimentally 
by detecting single electron tunneling through a quantum dot [12,13]. The single-electron detection 
has also been used to measure electron–electron interference in the QD system [14], as well as the full 
counting statistics of superconducting junctions [15]. Furthermore, full counting statistics and spin 
dynamics in a quantum dot have been investigated using resonance fluorescence [16]. Usually, most 
experiments have been carried out at ultralow temperatures in the milliKelvin range; however, 
recently, single-electron detection has begun to be operated at room temperature by the optical 
blinking of a nearby semiconductor nanocrystal [17]. As for the single photon detector, a quantum 
nondemolition detector for propagating microwave photons was realized [18]. Such single-photon 
detectors have a wide range of applications within quantum thermodynamics [19] and quantum 
information processing [20]. Further progress in the measurements of photon counting statistics in 
quantum coherent optics is anticipated in the coming years, and with the rapid progress in single-
photon detection, the measurement of single photon counting statistics could soon be within reach. 

Theoretically, Brandes was the first one to study the WTDs of mesoscopic quantum transport by 
defining jump operators from a quantum master equation [21]. To date, WTDs have been investigated 
for double-quantum dots [22,23], quantum dot spin-valves [24], non-Markovian transport [25], 
superconducting devices [26,27], and coherent conductors [6,28,29]. Recently, the photon counting 
statistical characteristics of photon emission from a microwave cavity, such as WTDs and LD 
statistics, have been investigated [30]. Furthermore, photon counting statistics for a microwave cavity 
with multiple heat baths have also been studied. It is found that WTDs contain information about 
few-photon processes, which cannot easily be extracted from standard correlation measurements, 
and the large-deviation statistics of the photon current are helpful in understanding earlier results of 
heat-transport statistics and work distributions. These results can be generalized to a microwave 
cavity coupled with nanoscopic devices. 

On the other hand, a system of double quantum dots (DQDs) interacting through microwave 
resonators has been proposed, and it is thought that this setup can be used to entangle 
macroscopically separated electron transport, which has applications in nanoscale quantum 
information processing [31]. This also provides a new way to study light–matter interactions [32] and 
implement a QD laser [33]. Because semiconductor DQDs’ energy level differences and electron–
photon coupling strength are electrically tunable, the interaction of photons and electrons in DQDs 
has been studied extensively in the circuit QED architecture, where the charge dipole of DQDs is 
coupled to a microwave cavity. 

In this paper, the photon counting statistics of a microwave cavity coupled with double quantum 
dots will be investigated. The influences of DQDs on the WTDs and LD statistics of a microwave 
cavity will be studied. The differences between a microwave cavity coupled with DQDs and coupled 
with a thermal bath are discussed. The photon emission counting statistical characteristics of the 
microwave cavity coupled with DQDs can be tunable because of the electrical tenability of the DQDs’ 
energy level differences and electron–photon coupling strength. The methods and results in this 
paper can also be applied to many similar quantum systems, such as opto-mechanics system and so 
on [34–38]. 

The paper is organized as follows. In Section 2, we present the model and theoretical formalism 
with a master equation, as well as WTDs and LD statistics. In Section 3, we study the effects of the 
driven microwave Rabi frequency, detuning between the microwave driving frequency and the 
DQDs energy-splitting and other parameters regarding the WTDs and LD statistics of photon 
emission. The conclusions will be given in Section 4.  
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2. Model and Theoretical Formalism 

2.1. Hamiltonian Model 

Figure 1 shows the system schematic of the DQDs with metal leads and the left quantum dot 
(QD) coupled to a one-mode microwave cavity, and each QD is modeled as a one-level system. An 
external driving microwave field has been applied between the two QDs; the vital advantage of this 
system is that one can adjust the gate voltage to tune both the energy-level splitting and the decay 
rate of the DQDs. The loss of the microwave cavity field is considered here by adding the interaction 
of the thermal bath and microwave cavity field. 

In our DQD system, the distance between the two QDs is so small that only one electron can 
occupy the DQDs at a time. Thus, the states of DQDs can be presented as follows: |0⟩ (vacuum state), |1⟩ (the left dot occupied by one electron), |2⟩ (the right dot occupied by one electron). The energy 
level difference of the two dots is ℏℇ when the electron jumps from the left dot to the right induced 
by an external ac microwave field of frequency 𝜔  between the QDs. Adjusting the level difference ℏℇ by the bias voltage to satisfy the condition 𝜔 = 𝜀 − 𝜔  (𝜔  is the frequency of microwave 
cavity field), the DQDs would absorb a photon of energy ℏ(𝜀 − 𝜔 ) when an electron is excited from 
state |1⟩ to state |2⟩. 

 

(a) 

 

(b) 

Figure 1. (a) The diagram shows the double quantum dots (DQDs) connected to symmetric leads: the 
left electrode is the electron source, and the right is the drain; between the two dots, a bias voltage is 
added. The left quantum dot is coupled with a microwave cavity by capacitive coupling. The level 
difference of the two dots is ℏℇ, and the electron jumping from the left dot to the right is driven by 
an external alternating current (AC) microwave field of frequency 𝜔   between the two dots. (b) An 
electron tunnels from the source to the left quantum dot and is driven to the right dot by the 
microwave field, finally tunneling to the drain (𝜇 > 𝜇 ). 

As shown in Figure 1b, the left chemical potential of lead is higher than that of the lead on the 
right. The total Hamiltonian of the whole system can be written as (ℏ = 1) [39] 

    l m D T IH H H H H H . (1) 

The first term, 𝐻 , describes the left and the right leads with a bias potential, 

Left 
lead 

R 
Right 
lead L 

Cavity Reservoir 
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†l k k k
k

H E c c  


, (2) 

where the operator 𝑐 (𝑐 ) creates (destroys) an electrode electron with momentum k in lead α = 𝑙 
or r (l = left, r = right), and 𝐸  describes the dispersion energy. 

The second term, 𝐻 , describes the energy of the microwave cavity field, which can be written 
as 

†m mH a a , (3) 

where 𝑎 (𝑎) is the microwave photon creation (annihilation) operator with frequency 𝜔 . 
The third term, 𝐻 , describes the DQDs driven by the microwave photon field; i.e.,  

 0 cos
2

  D z x d xH t
    , (4) 

where the operator 𝜎 = 𝑑 𝑑 − 𝑑 𝑑  and 𝜎 = 𝑑 𝑑 + 𝑑 𝑑  mean the Pauli matrices of the left or 
the right dot. The operator 𝑑 (𝑑 ) stands for destroying an electron in the left (right) dot, 𝜀 is the 
energy-level difference of DQDs, Ω is the tunneling strength between the two QDs [40], and Ω  is 
the Rabi frequency of the driving microwave field with driving frequency 𝜔  [40]. 

The fourth term, 𝐻 , describes the tunneling coupling between the DQDs and electrode leads, 
so 

 † †
1 2 .   T lk lk rk rk

k
H d c d c H C , (5) 

where Ω  (Ω ) denotes the coupling strength between the left (right) lead and the left (right) QD. 
The interaction Hamiltonian 𝐻  between the left QD and the microwave cavity field is 

 † †
1 1  IH d d a a , (6) 

where λ is the coupling between the cavity field and the electron in the left dot. λ = η𝜔 , η is the 
scale of QD-cavity coupling strength. By performing a standard canonical transformation, 𝐻 =𝑒 𝐻𝑒  with S = −𝜂(𝑎 − 𝑎)𝑑 𝑑 , we obtain the transformed total Hamiltonian as 
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, (7) 

where X = exp[−𝜂(𝑎 − 𝑎)] , 𝜎 = 𝑑 𝑑 , 𝜎 = 𝑑 𝑑 . Here, we introduce a unitary transform U =exp −𝑖 𝜎 𝑡  to eliminate the driving term, and, under the rotating-wave approximation (𝜔 ≫ Ω), 
the final total Hamiltonian becomes 

† † †2 2
1 2e e .

 
      

 
  

d d

k k k
k

i t i t

f sys lk lk rk rk
k

E c cH H d c X d c H C  


 

 (8) 

with 

 † †0
m + .

2 2


    sys zH a a X H C   , (9) 

where Δ = 𝜔 − 𝜀  is the detuning between the microwave driving frequency and the energy-
splitting of the DQDs. 
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2.2. Master Equation 

Considering the Born–Markov approximation and tracing out the electrode lead reservoirs, one 
can obtain the system equation of the DQDs and the microwave cavity as follows [39]: 

,S sys S T D
d i H
dt

          
, 

(10) 

where the middle-term ℒ 𝜌 stands for the tunneling effect between DQDs and leads, and the last 
term ℒ 𝜌 expresses the dissipation term of the microwave cavity induced by the thermal reservoir; 
i.e., ℒ 𝜌 = Γ  [𝑑 ]𝜌 + 𝛤(1 − 𝜂 ) 𝑑 𝜌 + 𝛤𝜂 𝑎 𝑎 𝑑 , 𝑑 𝜌 + 𝜌 𝑑 , 𝑑 𝑎 𝑎   +𝛤𝜂  𝑎 𝑑 𝜌 +  𝑎𝑑 𝜌 , 

(11) 

  † † †

† † †

1 2
2

2
2

    

    

D S S S

S S S

n a a a a a a

n a a aa aa


  


  


. (12) 

Here, we take operator X referred to above to expand up to the second order in η and assume 
that the energy levels with one microwave cavity photon mediating tunneling every time are in the 
bias window. Additionally, 𝛤 = ∑ 2𝜋𝜌 𝛺 , 𝛤  describes the tunneling rate of the electron from 
the lead α, while 𝜌  describes the density of the electron state with momentum k at lead α. The 
latter γ is the dissipation of the microwave cavity field, where 𝑛 is the boson number in the thermal 
reservoir. Super-operator D has the following form: 𝐷[𝐴]𝜌 = 𝐴𝜌𝐴 − [𝐴 𝐴𝜌 + 𝜌𝐴 𝐴] , A is the 
arbitrary operator. 

Assuming the dissipation of the cavity field is smaller than the decay of the DQDs, the freedom 
of the DQDs could be eliminated as it is considered as an environment. Since we are interested in the 
behavior of the system in the limit t → ∞, applying the projecting operator method to calculate the 
density of the cavity, we can obtain the final master equation of the cavity field after taking the same 
approximation as used in [39]: 

 

 

† † † †

† † †

1, 1 2
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1 2
2
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(13) 

where 

   

   
   

2 0

2 0

Im
2

2 R e 2

1
2

m x m m

m m

m m

d l

A D

A A

D 


    

 

 

 



 

        

   
 

 

S S

S

. 

(14) 

The operator 〈𝜌 〉 describes the stationary probability of the DQDs in the empty state, μ stands 
for density matrix of microwave cavity field, 𝛿  is the driving-induced frequency shift, and 𝐴± 
shows the rates induced by the interaction between DQDs and cavity; moreover, 
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2 2

0
0

0
4


 S mi t

m y ydte t
   , (15) 

where 〈𝜎 (𝑡)𝜎 (0)〉  can be obtained via the quantum regression theorem. 〈⋯ 〉  represents the 
quantum average of the DQDs degrees. 

Under the condition of the steady state, the density motion equation of the DQDs can be written 
as 

 †0
z 1 2,

2 2
           

d
x d l d r d

d i d d
dt


      . (16) 

2.3. Photon Emission Counting Statistics 

To keep track of the number m of photons emitted into the thermal reservoir from the microwave 
cavity, the m-resolved state density matrices 𝜇(𝑚, 𝑡) can be written as [30] 

     

   

† †

† †

† †

† † †

1 , ( , ) , ( , )

, ( , ) , ( , )

1 1( , ) 2 ( 1, ) 2 ( , )
2 2

1 1a , ( , ) 2 ( , ) 2 ( , )
2 2 

        

          

   

  m

n a a m t n a a m t

a A a a m t A a a m t

d m t a m t a a m t a
dt

i m t a m t a a m t a

   

 

  

   

 

.(17) 

The probability of m photons being emitted from the cavity to the thermal reservoir can be 
obtained through 𝑃(𝑚, 𝑡) = Tr𝜇(𝑚, 𝑡). If we perform the following Laplace transformation μ(s, t) ≡∑ 𝜇(𝑚, 𝑡)𝑒 , Equation (17) can be transformed into 

     

   

† †

† †

† †

† † †

1 , ( , ) , ( , )

, ( , ) , ( , )

1 1( , ) 2 ( , ) 2 ( , )
2 2

1 1a , ( , ) 2 ( , ) 2 ( , )
2 2 

        

          

  

  

s

m

n a a s t n a a s t

a A a a s t A a a s t

d s t e a s t a a s t a
dt

i s t a s t a a s t a

   

 

  

   

, 
(18) 

where s is called a counting field. In order to obtain the matrix elements ⟨𝑛|𝜇(𝑠, 𝑡)|𝑛⟩, we introduce 
another Laplace transformation as follows: 𝒢(s, q, t) ≡ ∑ ⟨𝑛|𝜇(𝑠, 𝑡)|𝑛⟩𝑒 . (19) 

2.3.1. Waiting Time Distributions and Large-Deviation Statistics for Photon Emission 

Using the method of characteristics [41], one can find the moment generating function (MGF) ℳ(s, t) = Tr μ(s, t) as follows: ℳ(s, t) = ( ) /( ) ( ) ( ) , (20) 

where 𝜉 = 1 − 4𝑛 (1 + 𝑛)(𝑒 − 1)/(1 + 𝑊/𝛾) , 𝑊 = 𝐴 − 𝐴 . 𝑛 = (𝛾𝑛 + 𝐴 )/(𝛾 + 𝑊)  is the 
average photon number of the cavity in a steady state. The waiting time distributions for waiting 
time  between each two photon emissions can be calculated with [42]: 𝒲(τ) = 𝜕 Π(𝜏)/𝑝, (21) 

where Π(τ) = ℳ(−∞, τ), 𝑝 = −𝜕 Π(𝜏)| . 
Thus, we can obtain 𝒲(τ) = Γ(𝛾 + 𝑊)�̅� ( ) [ ] [ ]( ) 𝑒( ) / , (22) 

where γ = (γ + W) 1 + 4𝑛 (1 + 𝑛)/(1 + 𝑊/𝛾), Γ = γ(1 + n)𝑛 .  
For the long time limit, the cumulant generating function Θ(s) for the photon emission current 

is 



Appl. Sci. 2019, 9, 4934 7 of 13 

Θ(s) = lim→ ℳ( , ) = 1 − 1 − 4 ( ) 𝑘(𝑠) , (23) 

where 𝑘(s) = (𝐴 + 𝛾𝑛)(1 + 𝑛)(𝑒 − 1). 
The probability 𝑃(𝐽, 𝑡) can be extracted as a Fourier coefficient of the MGF [30]: 𝑃(J, t) = ℳ(𝑠, 𝜏)𝑒 𝑑𝑠 = 𝑒 [ ( ) ]𝑑𝑠, (24) 

where J = m/t. For the long time limit, this integral can be solved using the saddle-point 
approximation. Let 𝑠  be the solution to the saddle-point equation Θ (𝑠 ) = 𝐽 . The integral in 
Equation (24) can be performed explicitly, meaning that we can get  [ ( , )] ≈ Θ(𝑠 ) − 𝐽𝑠 , (25) ln[𝑃(𝐽, 𝑡)]𝑡 ≈ 𝛾 + 𝑊2 + 𝐽 − 4𝐽 + (𝛾 + 𝑊) + 4𝛾(𝛾 + 𝑊)𝑛 (1 + 𝑛)2  

+ J ln ( ) ( )[ ( ) ( ) ( ) ]. 
(26) 

2.3.2. Large-Deviation Statistics for Net Photon Current 

If we investigate the net photon current statistics between the cavity and the thermal reservoir, 
Equation (18) can be rewritten as 

     

   

† †

† †

† †

† † †

1 , ( , ) , ( , )

, ( , ) , ( , )

1 1( , ) 2 ( , ) 2 ( , )
2 2

1 1a , ( , ) 2 ( , ) 2 ( , )
2 2



 

        

          

  

  

s s

m

n a a s t n a a s t

a A a a s t A a a s t

d s t e a s t a e a s t a
dt

i s t a s t a a s t a

   

 

  

   

. 
(27) 

Then, the moment generating function can be obtained as ℳ(s, t) = ( ) /( ) ( ) ( ) , (28) 

where 𝜉 = 1 − 4[𝐴 (1 + 𝑛)(𝑒 − 1) + 𝐴 𝑛(𝑒 − 1)]/(1 + 𝑊/𝛾)   𝜒 = 1 − 4[(1 + 𝑛)𝑛 (𝑒 − 1) + (1 + 𝑛 )𝑛(𝑒 − 1)]/(1 + 𝑊/𝛾). 
(29) 

For the long time limit, the cumulant generating function Θ(s) for the net photon current is Θ (s) = lim→ ℳ( , ) = 1 − 1 − 4 ( ) 𝑘(𝑠) , (30) 

where 𝑘(s) = 𝐴 (1 + 𝑛)(𝑒 − 1) + 𝐴 𝑛(𝑒 − 1). The probability 𝑃(𝐽, 𝑡) can be obtained as  [ ( , )] ≈ Θ (𝑠 ) − 𝐽𝑠 , (31) 

where Θ (𝑠 ) = 𝐽. 

3. Discussion 

From Equation (17), one can find that the parameters 𝐴  and 𝐴  represent the influence of 
DQDs on the density matrix of the microwave cavity. 𝐴  is the rate of the photon emitted from 
DQDs to the cavity and 𝐴  is the rate of the photon absorbed by DQDs from the cavity. It can be 
found that, if γ + W < 0, the average phonon occupancy of the cavity can be increased to infinity and 
has no stationary solution. In contrast, for γ + W > 0, one can reach a steady state. The average 
photon number of the cavity in a steady state is 𝑛 = (𝛾𝑛 + 𝐴 )/(𝛾 + 𝑊).  

Firstly, we investigate the variation range of the parameters 𝐴  and 𝐴 , and the influence on 
the average photon number 𝑛 . The parameters in this paper are assumed with reference to the 
typical experimental parameters [43,44]. In Figure 2, the parameters 𝑊 = 𝐴 − 𝐴  , 𝐴  and 𝑛  are 
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plotted as a function of the driving detuning Δ = 𝜔 − 𝜀 for different driving Rabi frequencies of the 
external microwave field. This shows that the sign of the W exhibits a dependence on the detuning. 
W is at maximum when Δ < 0 and at minimum when Δ > 0, while 𝐴  is at a maximum when Δ >0. One can also find that the average photon number of the microwave cavity in a steady state is at 
minimum when W is at maximum and it increases to infinity when 𝑊 < 0. Additionally, 𝑛  could 
be less than the photon number 𝑛 of the thermal reservoir when 𝑊 > 0, while it could be more than 𝑛 when 𝑊 < 0. Figure 2 also shows that the parameters 𝑊 , 𝐴  and 𝑛  are dependent on the 
driving Rabi frequency. 

 
Figure 2. (a) the rate W/γ as a function of the driving detuning Δ = 𝜔 − 𝜀 for different driving Rabi 
frequencies Ω = 5𝛤  (red line) and Ω = 7𝛤  (blue line); (b) 𝐴 /𝛾  as a function of the driving 
detuning Δ for different driving Rabi frequencies Ω = 5𝛤 (red line) and Ω = 7𝛤 (blue line); (c) 
the average photon number of the cavity as a function of the driving detuning Δ for Ω = 7𝛤; (d) the 
average photon number of the cavity as a function of the driving detuning Δ for different driving 
Rabi frequencies, Ω = 5𝛤 (red line). γ = 0.02, 𝑛 = 1, Γ = 𝛤 = Γ = 1, 𝜔 = 10Γ, η = 0.05. 

Figure 3 demonstrates the WTDs for different parameters. The black line exhibits the WTD of 
the cavity without the DQD system. It can be found that all the WTDs start off at a finite value, 𝑊(τ) ≈ 2Γ𝑒 [ ( ) ]( ) /  (Γτ ≪ 1), and then decay exponentially to zero over long times, 𝑊(τ) ≈ ( )( ) 𝑒 ( ( )/( ) ) ( ) /  (Γτ ≫ 1). Comparing the green line to the black 

line, one can find that, when detuning Δ = −4Γ, the WTD of the cavity coupled with DQDs is very 
close to that of a cavity without DQDs because the average photon number of the cavity 𝑛 = 0.85 
is very close to that of the thermal reservoir. The cyan line and red line show that the decay rate of Δ = 5.5Γ is very different from that of the DQDs replaced by a thermal bath, with 𝑛 = 10 for the 
long time limit, although these two decay rates are very close to each other for a short time range. 
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Figure 3. (a) waiting time distribuitions (WTDs) as a function of waiting time τ  for different 
parameters. Δ = −7Γ (blue line); Δ = −4Γ (green line); Δ = 5.5Γ (red line); cavity without DQDs 
(black line); DQDs replaced by thermal bath 𝛾 = 0.02, 𝑛 = 10 (cyan), thermal bath 𝛾 = 0.02, 𝑛 =0 (magenta); γ = 0.02, 𝑛 = 1, Γ = 1, 𝜔 = 10Γ, η = 0.05, Ω = 7𝛤; (b) the same curves as (a) on a 
logarithmic scale. 

Figure 4 shows the first-order, second-order, and third-order cumulants of waiting time as a 
function of detuning with different driving Rabi frequencies and microwave cavity frequencies. From 
Figures 2 and 4, it can be found that the cumulants of waiting time vary abruptly in the vicinity of 
the maximum of W, and the cumulants vary much more steeply if W has a larger maximum as 
detuning varies. Overall, the waiting time statistical properties can be tuned by the parameters of the 
DQD system. 

 
Figure 4. The first-order (a), second-order (b) and third-order (c) cumulants of waiting time as 
function of detuning. Ω = 7𝛤 ,  𝜔 = 10Γ  (red line); Ω = 5𝛤 ,  𝜔 = 10Γ  (blue line); Ω = 5𝛤 ,  𝜔 = 15Γ (green line); γ = 0.02, 𝑛 = 1, Γ = 1, η = 0.05. 

Figure 5 demonstrates the large-deviation statistics of the photon emission current from the 
cavity to the thermal reservoir as a function of the photon emission current J. From Figure 5, we can 
find that the distributions become strongly non-Poissonian and large emission currents are more 
likely as the average photon number of the cavity 𝑛  increases when adjusting the parameters of the 
DQD system. If 𝑛  > 𝑛, a large emission current is more likely than that of a cavity without DQDs; 
otherwise, it is less likely. Comparing the cyan line and red line, we find that the probability of small 
and large emission currents of Δ = 5Γ  are higher than those of DQDs replaced with a thermal 
reservoir with 𝑛 = 10 , although 𝑛 = 3  for Δ = 5Γ  while 𝑛 = 5.5  for DQDs replaced with a 
thermal reservoir. This reflects the fact that large-deviation statistics are not only dependent on the 
parameter 𝐴 , but also dependent on the parameters 𝐴  and W. 
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Figure 5. Large-deviation statistics of the photon emission current. Analytic results for the 
distribution of the photon emission current J from a cavity to reservoir with Δ = −5Γ (blue line); Δ =5Γ (red line), cavity without DQDs (black line); DQDs replaced by thermal reservoir 𝛾 = 0.02, 𝑛 =1 (green line), thermal bath 𝛾 = 0.02, 𝑛 = 10 (cyan) ; γ = 0.02, 𝑛 = 1, Γ = 1, 𝜔 = 10Γ, η = 0.05, Ω = 7𝛤. 

Figure 6 exhibits large-deviation statistics of the net photon emission current as a function of the 
net photon emission current J from the cavity to reservoir. From the black line, we see that the 
probability of the photon emission energy current moving from the cavity to the thermal reservoir is 
the same as that of the photon emission current from the thermal reservoir to the cavity because the 
system is in steady state. The blue line and green line show that, if average photon number of the 
cavity satisfies the condition 𝑛  > 𝑛, the photon emission energy current will flow from the thermal 
reservoir to the system of the DQDs; otherwise, the photon emission energy current will flow in the 
opposite direction. As for the red line ( Δ = 5Γ, W < 0) and the magenta line (Δ = 0, 𝑊 = 0), the photon 
emission current from the thermal reservoir to the cavity are suppressed, which is quite different 
from that of the other cases. In particular, the most probable photon emission current is shifted from 
zero to a positive photon emission current J for the red line ( Δ = 5Γ, W < 0). 

 

Figure 6. Large-deviation statistics of the net photon emission current. Numeric results for the 
distribution of the net photon emission current J from a cavity to reservoir with Δ = −5Γ (blue line); Δ = 5Γ  (red line); Δ = 0  (magenta line); DQDs replaced by thermal reservoir 𝛾 = 0.02, 𝑛 = 1 
(black line), thermal bath 𝛾 = 0.02, 𝑛 = 10 (green); γ = 0.02, 𝑛 = 1, Γ = 1, 𝜔 = 10Γ, η = 0.05, Ω = 7𝛤. 

From all of the above discussion, we find that the statistical properties of the photon emission 
counting of a cavity coupled with DQDs are similar to those of a cavity coupled with another thermal 
reservoir instead of DQDs when W > 0; otherwise, these statistical properties are quite different. This 
is because the effect of the DQDs on the photon emission counting statistical properties is the same 
as that of a thermal reservoir with 𝛾 = 𝑊, 𝑛 = 𝐴 /𝑊 when W > 0. If the parameters satisfy the 
condition W ≤ 0, the effect of the DQDs cannot be replaced by that of a thermal reservoir. This is the 
essential characteristic of the system presented in this paper. 

4. Conclusions and Remarks 

In summary, we firstly employed Born–Markov approximation and the projecting operator 
method to obtain the reduced master equation of a cavity coupled with a system of DQDs which was 
driven by an external microwave field. Then, we investigated the influences of the parameters of 
DQDs on the photon emission counting statistical properties, especially the WTDs and large 
deviation statistics, of the cavity. The results show that the interaction between the DQDs and cavity 
has an obvious effect on the statistical properties of photon emission counting. 
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Firstly, the decay rates of WTDs of the cavity for short and long time limits—the cumulants of 
waiting time—can be effectively tuned by the driving external field Rabi frequency, the frequency of 
the cavity photon, the detuning between the microwave driving frequency, and the energy-splitting 
of the DQDs. Conversely, the state and properties of the DQDs can be extracted from WTDs and the 
cumulants of waiting time. 

Secondly, the first-order, second-order and third-order cumulants of waiting time vary much 
more steeply if the rate W, which is the rate difference between a photon absorbed and emitted by 
DQDs, has larger maximum as the detuning varies. 

Thirdly, the photon emission energy current will flow from the thermal reservoir to the system 
of the DQDs when the average photon number of the cavity in a steady state is larger than that of the 
thermal reservoir; otherwise, the photon emission energy current will flow in the opposite direction. 

Finally, the effect of the DQDs and the effect of a thermal reservoir with 𝛾 = 𝑊, 𝑛 = 𝐴 /𝑊 on 
the photon emission counting statistical properties is the same when the rate difference of a photon 
absorbed and emitted by DQDs is larger than zero. If the rate difference between a photon absorbed 
and emitted by DQDs is less than or equal to zero, the effect of the DQDs cannot be replaced by that 
of a thermal reservoir. 

On the whole, WTDs and the large-deviation statistics properties of a cavity can be strictly 
regulated and controlled by the parameters of the DQD system online. The effects of the DQDs on 
the statistical properties of photon emission counting are irreplaceable in certain parameter regions. 
Thus, these results deepen our understanding of the statistical properties of photon emission 
counting, enrich the control techniques for the photon emission of a cavity, and open a new door for 
the construction of nanostructured devices of photon emission on demand and optoelectronic devices. 
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