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Featured Application: The proposed method can provide accurate wind turbine power curves
even in the presence of outliers.

Abstract: A power curve of a wind turbine describes the nonlinear relationship between wind speed
and the corresponding power output. It shows the generation performance of a wind turbine. It plays
vital roles in wind power forecasting, wind energy potential estimation, wind turbine selection,
and wind turbine condition monitoring. In this paper, a hybrid power curve modeling technique
is proposed. First, fuzzy c-means clustering is employed to detect and remove outliers from the
original wind data. Then, different extreme learning machines are trained with the processed data.
The corresponding wind power forecasts can also be obtained with the trained models. Finally, support
vector regression is used to take advantage of different forecasts from different models. The results
show that (1) five-parameter logistic function is superior to the others among the parametric models;
(2) generally, nonparametric power curve models perform better than parametric models; (3) the
proposed hybrid model can generate more accurate power output estimations than the other compared
models, thus resulting in better wind turbine power curves. Overall, the proposed hybrid strategy
can also be applied in power curve modeling, and is an effective tool to get better wind turbine power
curves, even when the collected wind data is corrupted by outliers.

Keywords: extreme learning machine; support vector regression; wind turbine power curve modeling;
fuzzy c-means clustering; outliers

1. Introduction

The sense of crisis brought about by the depletion of fossil energy has prompted the global energy
revolution [1,2]. Vigorously developing renewable energy is an important measure to protect the
environment and meet the energy demand of social development [1,2]. Recently, due to the advances
in technology, and the stimulation of energy policies and environmental pressures, the proportion of
renewable energy in the power system of many countries and regions has been rising [1,2]. Wind power,
as one of the clean and renewable energy sources, has received great attention from all countries in the
world [1–3].

Currently, many researchers focus on studying the performance of different wind turbines due to
the large-scale development and utilization of wind energy [1,4]. Usually, a wind turbine power curve
(WTPC) shown in Figure 1 can be used to describe the performance of wind turbines, namely the power
output of a wind turbine at a specific wind speed [4]. When wind speed V is less than the cut-in wind
speed Vcut−in, the wind turbine does not work and no wind power is generated. When V is located
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in the interval [Vcut−in, Vrated], the output power increases as the wind speed increases. The output
power reaches a constant, the rated wind power Prated, when the wind speed is larger than the rated
wind speed Vrated but less than the cut-out wind speed Vcut−out. The wind turbine will be shut down to
avoid defects and damage when the wind speed is larger than Vcut−out [1,5].
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accurately [7]. So, it is essential to estimate the actual WTPC from the real operational data of a wind 
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monitoring, wind energy potential estimation, and wind turbine selection, and so forth. [1,8,9]. 
Currently, there are two types of power curve estimation methods, parametric models and 
nonparametric models [10]. 

As for parametric models, they often consider the shape of power curves. Therefore, many S-
shaped functions are employed to model WTPCs. They are the double exponential-based functions 
and logistic functions [1]. A simple double exponential function and an adjusted double exponential 
function were employed to model real WTPCs in [11,12], respectively. Many types of logistic 
functions were employed to model WTPCs. In [13], a three-parameter logistic function (3-PLF) was 
used by the authors to evaluate the performance of the Gamsesa G90–2.0 MV wind turbine. Many 
researchers suggested using a four-parameter logistic function (4-PLF) to model WTPC [14,15]. When 
the variable asymmetry factor is added into the above 4-PLF, a five-parametrer logistic function (5-
PLF) can be derived. And a 5-PLF can degenerate into a 4-PLF by letting the asymmetry factor equal 
1 [1]. In [15,16], a 5-PLF was used, while authors in [17] employed a logistic function with six 
parameters (6-PLF) to simulate WTPCs. Even in [10], Taslimi-Renani et al. used a modified hyperbolic 
tangent (MHTan) with nine parameters to approximate the nonlinear relationship between wind 
speed and power output of a wind turbine. 

Unlike parametric models, nonparametric models do not consider the shape of WTPC. They 
only consider the complex nonlinear relationship between wind speed and wind power. Currently, 
many artificial intelligence-based models have been employed to learn the above complex nonlinear 
relationship. In [18], three different types of neural networks, self-supervised neural network, 
multilayer perceptron, and general regression neural network, were used, and their performances 
were also compared in power curve modeling. In [19], the authors showed that artificial neural 
network (ANN) generated a better power curve than some parametric models. In [20,21], support 
vector regression (SVR) and Gaussian process (GP) were employed to estimate the real WTPCs. 
Moreover, GP was also used to obtain probabilistic WTPC in [21,22]. In [23], Wang et al. proposed 
two Bayesian-based models, heteroscedastic and robust spline regression models, to fit deterministic 
and probabilistic power curves in different seasons, respectively. They also proposed two asymmetric 
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Often, the turbine manufacturer provides a theoretical WTPC, which is measured under ideal
meteorological and topographical conditions [6]. However, due to the climate variability in the observed
wind farm, the theoretical WTPC cannot describe the performance of a wind turbine accurately [7].
So, it is essential to estimate the actual WTPC from the real operational data of a wind turbine.
Accurate WTPCs play important roles in wind power forecasting, wind turbine condition monitoring,
wind energy potential estimation, and wind turbine selection, and so forth. [1,8,9]. Currently, there are
two types of power curve estimation methods, parametric models and nonparametric models [10].

As for parametric models, they often consider the shape of power curves. Therefore, many S-shaped
functions are employed to model WTPCs. They are the double exponential-based functions and logistic
functions [1]. A simple double exponential function and an adjusted double exponential function were
employed to model real WTPCs in [11,12], respectively. Many types of logistic functions were employed to
model WTPCs. In [13], a three-parameter logistic function (3-PLF) was used by the authors to evaluate the
performance of the Gamsesa G90–2.0 MV wind turbine. Many researchers suggested using a four-parameter
logistic function (4-PLF) to model WTPC [14,15]. When the variable asymmetry factor is added into the
above 4-PLF, a five-parametrer logistic function (5-PLF) can be derived. And a 5-PLF can degenerate into
a 4-PLF by letting the asymmetry factor equal 1 [1]. In [15,16], a 5-PLF was used, while authors in [17]
employed a logistic function with six parameters (6-PLF) to simulate WTPCs. Even in [10], Taslimi-Renani
et al. used a modified hyperbolic tangent (MHTan) with nine parameters to approximate the nonlinear
relationship between wind speed and power output of a wind turbine.

Unlike parametric models, nonparametric models do not consider the shape of WTPC. They only
consider the complex nonlinear relationship between wind speed and wind power. Currently, many
artificial intelligence-based models have been employed to learn the above complex nonlinear
relationship. In [18], three different types of neural networks, self-supervised neural network,
multilayer perceptron, and general regression neural network, were used, and their performances
were also compared in power curve modeling. In [19], the authors showed that artificial neural
network (ANN) generated a better power curve than some parametric models. In [20,21], support
vector regression (SVR) and Gaussian process (GP) were employed to estimate the real WTPCs.
Moreover, GP was also used to obtain probabilistic WTPC in [21,22]. In [23], Wang et al. proposed
two Bayesian-based models, heteroscedastic and robust spline regression models, to fit deterministic
and probabilistic power curves in different seasons, respectively. They also proposed two asymmetric
spline regression models to obtain accurate power curves in different wind farms and different seasons
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in [9]. Besides, monotonic regression [24], K-nearest neighbor model (KNN) [25], adaptive neuro-fuzzy
interference system (ANFIS) [26], fuzzy based models [27], and copula model [28] were also taken to
solve the problem of power curve modeling.

From the above literature review, it can be found that only one power curve model is selected and
used to fit the real WTPC with the measured wind data. However, due to the complex expression of
WTPC or complex nonlinear relationship between wind speed and power output, one model cannot
describe them comprehensively. In many applications, such as wind speed forecasting [29] and load
forecasting [30,31], it has been proven that a combination of several models will perform better than
single models. In power curve modeling, there is no paper that takes advantage of different power
forecasts generated by several power curve models. Besides, it is reported that there are many outliers
in the collected wind data [32–34]. They have adverse effects on the learning process of power curve
models and prevent us from obtaining accurate WTPCs [34]. So, it is essential to process these outliers
in the original wind data first.

In this paper, a hybrid wind turbine power curve modeling technique is proposed. Firstly, fuzzy
c-means clustering (FCM) is employed to detect outliers. In each cluster, if the distance between
the sample and cluster center is larger than a threshold, the sample will be signed as an outlier.
The outliers will be removed from the original wind data. Secondly, with the above processed wind
data, three types of extreme learning machines, original extreme learning machine (ELM) [35], weighted
regularized extreme learning machine (WELM) [36], and outlier-robust extreme learning machine
(ORELM) [37], are employed to get the power forecasts. Finally, SVR [38] is used to generate the final
forecasts, which are the combination of the forecasts obtained from the above three ELM-based models.
The performance of the proposed hybrid model is compared with some popular parametric and
nonparametric models on different wind turbines. The results show that the proposed hybrid model
can produce a more accurate power forecast at a given wind speed, resulting in a better power curve.

The organization of the paper is described as follows. Section 1 is the introduction part.
Some popular power curve models are introduced briefly in Section 2. Section 3 presents the
methodologies related to the proposed hybrid model and the proposed strategy for power curve
modeling. The power curve modeling results of different wind turbines are shown in Section 4.
Section 5 concludes the whole paper.

2. Popular Power Curve Models

In this section, some popular power curve models are introduced briefly. Usually, they can be
divided into two categories: parametric models and nonparametric models.

2.1. Parametric Models

Parametric models, which are constructed by several mathematic expressions with several
parameters, are often used to describe the WTPC [23]. Some representative parametric models such as
3-PLF, 4-PLF, 5-PLF, 6-PLF, and MHTan are introduced here. Supposing V, P represent wind speed and
wind power, respectively, the calculations of different parametric models are presented in Table 1.

As for 5-PLF, it can degenerate in 4-PLF when the asymmetric factor ε is equal to 1. MHTan can
degenerate into a hyperbolic tangent by assuming α1 = · · · = α8 = 1 and α9 = 0, while it becomes a
hyperbolic sine when α1 = · · · = α5 = α7 = 1 and α6 = α8 = α9 [10].
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Table 1. Parametric wind turbine power curve models.

Model Expression Parameters

3-PLF P =
ky0erV

k+y0(erV−1)
k: the capacity of the system; r: the rate of increase; y0: no special mean.

4-PLF P = α+
β−α

1+
(

V
γ

)δ α: the maximum asymptote; β: the minimum asymptote; γ: the
inflection point, δ: means the hill slope.

5-PLF P = α+
(β−α)(

1+
(

V
γ

)δ)ε ε: the asymmetric factor; α, β,γ, δ are the same with the parameters in
4-PLF.

6-PLF P = δ+ α−δ
(ε+exp(−β(V−V0)))

1/γ

δ: the lower asymptote; α: the upper asymptote; β: the growth rate; γ:
the closet asymptote to the maximum growth part of the curve; V0:

the value P(0); ε: the value around 1.
MHTan P = α1eα2V

−α3e−α4V

α5eα6V
−α7e−α8V + α9 α1,α2, · · · ,α9: nine model parameters.

2.2. Nonparametric Models

For a wind turbine, there is a nonlinear relationship between power output and the other variables,
such as wind speed and wind direction. It is usually described by a wind turbine power curve and
expressed by the following function, namely.

P = f (V,θ) + ζ (1)

where θ denotes the set of variables that affect the power output of a wind turbine, such as wind
direction and pressure, ζ is the error term, f (·) is the nonlinear function.

Due to the superior nonlinear fitting ability of many artificial intelligence methods, they have been
widely utilized in wind turbine power curve modeling, namely estimating the unknown nonlinear
function f (·). Some popular ones are SVR [20], GP [21,22], and ANNs [19,26].

3. Proposed Wind Power Curve Model

In this section, related methods for the proposed model are introduced at first. Then, the proposed
strategies for deterministic and probabilistic power curve modeling are presented in detail.

3.1. Fuzzy C-Means Clustering

FCM was first proposed by Bezdek in 1981 [39]. In FCM, each sample is not strictly divided into a
certain class. It has a degree of membership for each class. Generally, the objective function for FCM
can be expressed as [40]

Jm(U, v1, · · · , vk) =
k∑

i=1

Ji =
n∑

j=1

k∑
i=1

um
ij d

2
i j (2)

where the membership matrix U =
{
ui j

}
k×n

, 1 ≤ i ≤ k, 1 ≤ j ≤ n, {v1, . . . , vk} are k cluster centers, n is the
number of samples, m is the weighting exponent, and its value is usually selected as 2, ui j denotes
the degree that the jth sample belongs to the ith cluster, 0 < ui j < 1,

∑k
i=1 ui j = 1, di j =

∣∣∣∣∣∣x j − vi
∣∣∣∣∣∣ is the

Euclidean distance between the sample x j and the cluster center vi.
Considering the constraint on ui j, the objective function can be rewritten as the following function

by introducing a Lagrange multiplier λ,

F =
n∑

j=1

k∑
i=1

um
ij d

2
i j + λ

1−
k∑

i=1

ui j

 (3)
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Let the partial derivatives of function F with respect to ui j and vi, respectively, equal to 0,
the updated formulas for ui j and vi can be expressed as [40]

ui j =

 k∑
g=1

( di j

dgj

) 2
m−1


−1

(4)

vi =

∑n
j=1 um

ij x j∑n
j=1 um

ij
(5)

FCM employs the above two functions to update the membership matrix U and all cluster centers
so as to make the objective function reach its minimum.

3.2. Extreme Learning Machine and Its Variants

In this subsection, the original ELM and its variants are introduced briefly.

3.2.1. Extreme Learning Machine

ELM is a new single hidden layer feed-forward neural network that was first proposed by Huang
et al. [35] in 2004. Given the ith sample pair {Xi, Ti}(i = 1, · · · , N), where Xi = [xi1, xi2, · · · , xiD]

T
∈ RD

is the output of ELM with M hidden nodes is given by

f (Xi) =
M∑

m=1

βm H($m, Xi,αm) (6)

where H(·) is the activation function, βm is the mth output weight, $m ∈ RD is the input weight vector,
and αm is the corresponding bias. Equation (6) can be re-written as a matrix form,

T̂ = Hβ (7)

where β = [β1, β2, · · · , βM]T ∈ RM is the output weight vector, the output vector T̂ =

[ f (Xi), · · · , f (XN)]
T
∈ RN, H ∈ RN×M is the hidden layer output matrix, which is represented as

=


H($, X1,α1) · · · H($, X1,αM)

...
. . .

...
H($, XN,α1) · · · H($, XN,αM)

 (8)

The optimization of ELM is to solve the following minimization problem,

min
β
‖Hβ− T‖22 = min

β
‖Hβ− T‖22 (9)

where T = [T1, · · · , TN]
T
∈ RN is the observed target matrix, ‖ · ‖22 denotes the squared l2-norm of a

vector. Then, the output weight vector β can be estimated by

β = H†T (10)

where H† denotes the Moore–Penrose generalized inverse of H.
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3.2.2. Weighted Regularized Extreme Learning Machine (WELM)

The objective function for a regularized ELM can be expressed as [41]

argmin
β

C||ε||22 +
∣∣∣∣∣∣β∣∣∣∣∣∣22

s.t. T = Hβ+ ε
(11)

where C is the regularization term. By introducing a vector of Lagrangian multiplier α ∈ RN,
the corresponding Lagrangian function is defined as

L(β, ε,α) = ‖ε‖22 + C‖β‖22 + αT(T −Hβ− ε) (12)

The corresponding solution for the above problem is [37,41]

β =
(
HTH +

I
C

)−1
HTT (13)

where I is an identity matrix.
Deng et al. [36] developed a WELM to reduce the adverse effects of outliers. They weighted the

ith error term εi by the weighting factor ηi. Thus, the error term ‖ε‖22 in Equation (11) becomes ‖ηε‖22.
The objective function for WELM is expressed as [36,37]

argmin
β

C‖ηε‖22 + ‖β‖
2
2

s.t. T = Hβ+ ε
(14)

where η = diag
{
η1, · · · , ηN

}
is a diagonal matrix. Similar to the optimization of the regularized ELM,

Lagrangian multiplier is also introduced. The solution for WELM is given by [36,37]

β =
(
HTη2H +

I
C

)−1
HTη2T (15)

There are several weighting functions that can be used to construct weighting matrix η, as suggested
in [36,37,41], the expression of Hampel weighting function is given by

ηi =


1 |εi/ŝ| ≤ c1

c2−|εi/ŝ|
c2−c1

c1 < |εi/ŝ| < c2

10−4 otherwise
(16)

where ŝ is the robust estimate of the standard deviation of the error variables generated by the
regularized ELM,

ŝ =
IQR

2× 0.6745
(17)

The term IQR denotes the inter-quartile range, which is the difference between the 75th percentile
and the 25th percentile. And, the constants c1, c2 are typically set as c1 = 2.5 and c2 = 3 [37].

On the whole, there are three steps to construct a WELM model. Firstly, the regularized ELM
model is used to generate the error series {ε1, · · · ,εN}. Secondly, according to the computed error series,
the weighting matrix will be calculated by Equation (16). Finally, the output weight vector β is obtained via
Equation (15).

3.2.3. Outlier-Robust Extreme Learning Machine (ORELM)

Owing to the presence of outliers, the training error will show the sparse characteristic [37].
The sparsity can be realized by l0-norm rather than l2-norm. So, to deal with outliers, the objective
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function can be modified by replacing ‖E‖22 with ‖E‖0. However, the modified objective function
becomes a non-convex problem, which is difficult to be optimized. With this in mind, Zhang and
Luo [37] replaced ‖ε‖0 by the l1-norm-based loss function, ‖E‖1. Thus, the objective function is given by

argmin
β

‖ε‖1 +
1
C‖β‖

2
2

s.t. T = Hβ+ ε
(18)

For Equation (18), it not only guarantees the sparsity, but also leads to the overall minimization
convex [37]. Then, the Augmented Lagrange Multiplie (ALM) method is used to optimize Equation (18),
and the corresponding Lagrangian function is expressed as

L(ε, β,α) = ‖ε‖1 +
1
C
‖β‖22 + αT(T −Hβ− ε) +

µ

2
‖T −Hβ− ε‖22 (19)

where µ is a penalty parameter and set as µ = 2N/‖T‖1 in [37]. The optimal solutions for ε, β, α can be
obtained by iteratively minimizing Equation (19). The corresponding iterative functions are

βk+1 =
(
HTH + 2

CµI

)−1
HT

(
T − εk +

αk
µ

)
εk+1 = max

{∣∣∣∣T −Hβk+1 +
αk
µ

∣∣∣∣− 1
µ , 0

}
◦ sign

(
T −Hβk+1 +

αk
µ

)
αk+1 = αk + µ(T −Hβk+1 − εk+1)

(20)

where ◦means the element-wise multiplication, and sign (·) is a sign function. The optimal output
weights β can be obtained when the number of iterations reaches a predefined maximum iteration [37].

3.3. Support Vector Regression

SVR was first proposed by Vapnik based on the structural risk minimization [38]. The main idea
is to find a nonlinear mapping function φ, which can map low-dimensional data into high-dimensional
feature space.

Given the training data
{
(x1, y1), (x2, y2), · · · , (xn, yn)

}
, the aim is to get an estimated f (x) for the

real output y, the expression of f (x) is f (x) = wTφ(x) + b, in which w, b are two model parameters.
The objective function for SVR is

min
w,b

1
2
‖w‖2 + C

n∑
i=1

l( f (xi) − yi) (21)

where l(·) is the loss function, C is the trade-off parameter. For the original SVR, the ε-insensitive loss
function is employed. When introducing the slack variables ξi, ξ∗i , the primal problem for SVR is

min
w,b,ξi,ξ∗i

1
2‖w‖

2 + C
n∑

i=1

(
ξi + ξ∗i

)
s.t.


yi −

(
wTφ(xi) + b

)
< ε+ ξi(

wTφ(xi) + b
)
− yi < ε+ ξ∗i

ξi, ξ∗i ≥ 0

(22)

The dual problem for SVR can be obtained by applying the Karush-Kuhn-Tucker (KKT) conditions.
Then, the decision function f (x) for a new sample x is

f (x) =
n∑
i

(
αi − α

∗

i

)
K(x, xi) + b (23)
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where K(x, xi) =
〈
φ(x),φ(xi)

〉
is the kernel function, αi,α∗i (i = 1, · · · , n) denote the Lagrangian

multipliers. Usually, Gaussian kernel is used in many applications due to its superior performance.

3.4. Proposed Strategy for Wind Power Curve Modeling

In our collected wind data, there are many outliers, which may be caused by over dating, pitch
malfunction, pitch controller malfunction, wind speed under reading, dirt, bugs or icing on blades,
and down rating, and so on. [42]. So, it is essential to detect and remove those outliers in our collected
wind data. In this paper, several steps, which are described in Figure 2, are taken to generate accurate wind
power curves.Appl. Sci. 2019, 9, x 8 of 17 
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Step 1: Clustering the collected wind data. Different environmental conditions or different
working conditions lead to different patterns and characteristics of the collected wind data. Here, FCM
is employed to divide the data into different clusters. The samples in the same cluster may have some
common characteristics.

Step 2: Detecting and removing outliers. In a certain cluster, Mahalanobis distance is employed to
measure the distance between the sample and cluster center. Generally, outliers will be far from normal
samples, and also farther from the cluster center than normal samples. So, the sample will be considered
as an outlier when the distance between the sample and cluster center is larger than a given threshold.
Then, the detected outliers will be removed from the data. The Mahalanobis distance can be computed by

Mdist = (x− µ)Σ−1(x− µ)> (24)

where x is the sample in the observed cluster, µ, Σ are the corresponding cluster center and covariance
of all samples in the same cluster.

Step 3: Training ELM-based power curve models. After removing the outliers from the collected
data, the processed data is employed to train different wind power curve models. However, one cannot
ensure that all outliers are detected and removed from the collected wind data. So, some unobvious
outliers may hide in the processed data. It is wise to use robust wind power curve models to eliminate
the adverse effect of hidden outliers on the power curve modeling. Moreover, considering the efficiency
of ELM, the original ELM and its two robust variants are selected as basic power curve models to
describe the nonlinear relationship between wind speed and power output. The number of hidden
nodes in ELM-based models greatly affects their performance. So, in their training phases, validation
sets are employed to help select the optimal model parameters, which can be obtained when the
forecasting error on a validation set reaches its minimum.
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Step 4: Producing deterministic wind power curve. Occasionally, a single model is unable to
describe the complex relationship comprehensively. So, in this paper, alongside the wind speed, the wind
power forecasts on the validation set obtained in Step 3 are also used as inputs to train a regression
model, SVR. Namely, SVR is utilized to approximate the function f (·) in the following equation,

Preal = f
(
S, P′elm, P′welm, P′orelm

)
+ ε (25)

where Preal is the real wind power, P′elm, P′welm, P′orelm denote the forecasted wind power obtained
by ELM, WELM, and ORELM, respectively, at wind speed V, ε is the error term. Then, at any
unknown wind speed, the corresponding wind power forecasts can be obtained using the trained SVR.
Thus, a deterministic wind power curve can be derived.

4. Wind Turbine Power Curve Modeling in Different Wind Farms

In this section, to evaluate the performances of different power curve models under various
geographical environments, a comparative study is conducted in different wind farms.

4.1. Data Description

Four wind datasets were taken to assess the performance of different power curve models.
Dataset A and Dataset B were collected from China Xichang and Hunan wind farms, respectively.
For Dataset C and Dataset D, they were collected from different wind turbines of the same wind farm.
The whole dataset for each wind farm was divided into three separate parts: training set, validation
set, and test set. The training set was used to train different power curve models, the validation set
was employed to select the optimal model parameters, and the performances of different models were
evaluated on the test set. The information of four datasets is presented in Table 2. In all datasets, only
two variables, wind speed and wind power, were measured and reserved. So, the only input for all
power curve models is wind speed.

Table 2. The numbers of different types of samples in four datasets.

Dataset All Samples (#) Training Samples (#) Validation Samples (#) Test Samples (#)

A 5500 4500 400 600
B 6500 5500 400 600
C 7500 6000 500 1000
D 6000 5000 400 600

4.2. Experiment Setting

In order to make a comparative study comprehensively, five parametric models (e.g., 3-PLF, 4-PLF,
5-PLF, 6-PLF and MHTan) and five nonparametric models, back-propagation neural network (BPNN),
ANFIS, ELM, WELM, ORELM, were utilized. For all models, the only input was wind speed, and the
output was wind power. Moreover, all models were trained with the same processed data generated
by the FCM-based model for a fair comparison.

In the paper, similar to [10], the backtracking search algorithm (BSA) was employed to optimize
the model parameters in all parametric models with the least squares loss function. Grid search
was employed to tune the parameters in SVR. For BPNN, the number of neurons in hidden layers
are determined by the Hecht-Nelson method [9]. For ELM-based regression models, the optimal
number of hidden layers can be obtained when the modeling error of the observed model on the
validation set reaches the minimum. The candidate number of hidden layers can be selected from the
set {20, 40, 60, · · · , 200}.

In order to test the performances of different models, four error indicators, mean absolute error
(MAE), root mean square error (RMSE), normalized mean absolute percentage error (NMAPE) and
the coefficient of determination (R2), were employed. For all models, the values of different error
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indicators were computed based on the same test set. Assuming that yl denotes the lth measured value
in the test set, and ŷl is the corresponding forecast (l = 1, · · · , L), yl is the mean of all measured values,
L is the number of samples in the test set, the calculations for the four error indicators are presented in
Table 3. For MAE, NMAPE and RMSE, a smaller value indicates a better estimator. However, the closer
the value of R2 is to 1, the better the model.

Table 3. Performance evaluation metrics and the corresponding definitions.

Indicator Calculation Description

MAE MAE =
L∑

l=1

|yl−ŷl|
L The smaller the better

RMSE RMSE =

√
L∑

l=1

(yl−ŷl)
2

L The smaller the better

NMAPE NMAPE = 1
L

L∑
l=1

|yl−ŷl|

max{y1,··· ,yL}
× 100% The smaller the better

R2 R2 = 1−
∑L

l=1(yl−
ˆ(yl))

2∑L
l=1

(
yl−(yl)

)2 The bigger the better

4.3. Results of Wind Turbine Power Curve Modeling

According to the steps described in Section 3.3, the original wind data are clustered by FCM at
first. Then, in each cluster, if the Mahalanobis distance (Equation (24)) is larger than 10, the sample will
be considered as outliers. The refined data and outliers are presented in Figure 3. From Figure 3, most
outliers can be detected from the original wind data by FCM-based outlier detection model.
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After some outliers are detected and removed from four datasets, the processed wind data will
be used to train different power curve models. For ELM-based power curve models, the number of
neurons in hidden layers has a great effect on their performance. So, the validation set in each dataset
helps to select the optimal number of neurons in the given candidates. In four datasets, as the number
of neurons in hidden layers changed, the performances of ELM-based power curve models on the
validation set were calculated, and these are presented in Tables 4–7.

Table 4. Power curve modeling results of ELM-based models on validation set of Dataset A.

Number of Neurons
ELM WELM ORELM

MAE NMAPE MAE NMAPE MAE NMAPE

20 31.1966 1.5165 30.6275 1.4889 30.2793 1.4720
40 31.3355 1.5233 30.6819 1.4915 30.1564 1.4660
60 31.2018 1.5168 30.6325 1.4891 30.0923 1.4629
80 31.2489 1.5191 30.5587 1.4855 30.0131 1.4590

100 31.1304 1.5133 30.5600 1.4856 30.1424 1.4653
120 31.1159 1.5126 30.5568 1.4854 30.0607 1.4613
140 31.1660 1.5151 30.5901 1.4871 30.1577 1.4660
160 31.2230 1.5178 30.6028 1.4877 30.2313 1.4696
180 31.2163 1.5175 30.7079 1.4928 30.2346 1.4698
200 31.2042 1.5169 30.6600 1.4905 30.2831 1.4721

Table 5. Power curve modeling results of ELM-based models on validation set of Dataset B.

Number of Neurons
ELM WELM ORELM

MAE NMAPE MAE NMAPE MAE NMAPE

20 19.5752 1.2916 19.6813 1.2986 19.3721 1.2782
40 19.4678 1.2845 19.3994 1.2800 19.1576 1.2640
60 19.5612 1.2906 19.6308 1.2952 19.4058 1.2804
80 19.5769 1.2917 19.6576 1.2970 19.3674 1.2778

100 19.5334 1.2888 19.5756 1.2916 19.4176 1.2812
120 19.5381 1.2891 19.6577 1.2970 19.9057 1.3134
140 19.5528 1.2901 19.6811 1.2985 19.9866 1.3187
160 19.5555 1.2903 19.7093 1.3004 20.1874 1.3319
180 19.5723 1.2914 19.6612 1.2972 19.7598 1.3037
200 19.5538 1.2901 19.6977 1.2996 20.1378 1.3287

Table 6. Power curve modeling results of ELM-based models on validation set of Dataset C.

Number of Neurons
ELM WELM ORELM

MAE NMAPE MAE NMAPE MAE NMAPE

20 15.3341 2.0665 15.3846 2.0733 16.0515 2.1631
40 15.4442 2.0813 15.6734 2.1122 16.0831 2.1674
60 15.4285 2.0792 15.4668 2.0843 16.1864 2.1813
80 15.4258 2.0788 15.4991 2.0887 16.3482 2.2031

100 15.4324 2.0797 15.4687 2.0846 16.2203 2.1859
120 15.2910 2.0606 15.3831 2.0731 15.7288 2.1196
140 15.4222 2.0783 15.7103 2.1172 16.3020 2.1969
160 15.4347 2.0800 15.4756 2.0855 16.2555 2.1906
180 15.4334 2.0798 15.4823 2.0864 16.2622 2.1915
200 15.2928 2.0609 15.5146 2.0908 15.7213 2.1186
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Table 7. Power curve modeling results of ELM-based models on validation set of Dataset D.

Number of Neurons
ELM WELM ORELM

MAE NMAPE MAE NMAPE MAE NMAPE

20 9.7527 1.3681 9.7187 1.3634 9.6653 1.3559
40 9.7582 1.3689 9.7191 1.3634 9.6651 1.3559
60 9.7528 1.3682 9.7150 1.3629 9.6692 1.3564
80 9.7583 1.3689 9.7179 1.3633 9.6574 1.3548

100 9.7594 1.3691 9.7182 1.3633 9.6615 1.3554
120 9.7593 1.3691 9.7186 1.3634 9.6631 1.3556
140 9.7529 1.3682 9.7156 1.3629 9.6688 1.3564
160 9.7603 1.3692 9.7197 1.3635 9.6594 1.3551
180 9.7592 1.3691 9.7186 1.3634 9.6584 1.3549
200 9.7587 1.3690 9.7188 1.3634 9.6601 1.3552

From Table 4, in Dataset A, the optimal numbers of hidden nodes for ELM, WELM, and ORELM
are 120, 120 and 80, respectively. According to the results in Table 5, 40, 40, and 40 were selected
as the optimal numbers of hidden nodes in ELM, WELM, and ORELM, respectively, for Dataset B.
From Table 6, the optimal ones are 120, 120, and 200 for Dataset C, while from Table 7, they are 20, 60,
and 80 for Dataset D. After the optimal numbers of hidden nodes in ELM-based models were decided,
the trained models were used to forecast the power output of a wind turbine at an unknown wind
speed. The results of ELM, WELM, and ORELM in different datasets are presented in Tables 8 and 9.

According to the Step 4 of the proposed hybrid model described in Section 3.3, the wind power
forecasts of the optimal ELM, WELM, and ORELM on the validation set are used as inputs, together with
the corresponding wind speed, to train SVR. Then, the forecasted power output can be obtained by the
trained SVR. The results are presented in Tables 8 and 9. Moreover, the results of the other ten compared
models (five parametric models and five nonparametric models) are also shown in Tables 8 and 9.

Table 8. Results of all power curve models on test sets of Dataset A and Dataset B.

Dataset Model
Error Indicator

MAE RMSE NMAPE R2

A

3-PLF 48.4476 63.2152 2.3528 0.9949
4-PLF 48.7739 63.4799 2.3686 0.9948
5-PLF 36.5998 53.3506 1.7774 0.9963
6-PLF 45.2280 60.8805 2.1964 0.9952

MHTan 42.7914 58.3378 2.0781 0.9956
BPNN 32.1661 51.2157 1.5621 0.9966
ANFIS 37.3980 53.3276 1.8162 0.9963
ELM 32.0219 51.4542 1.5551 0.9966

WELM 31.6347 52.3488 1.5363 0.9965
ORELM 31.6811 53.6236 1.5385 0.9963
Hybrid 30.5422 49.7355 1.4832 0.9968

B

3-PLF 21.7192 34.9560 1.4212 0.9891
4-PLF 21.7790 34.9837 1.4251 0.9891
5-PLF 19.9222 33.2145 1.3036 0.9902
6-PLF 20.6772 34.6191 1.3530 0.9894

MHTan 20.5743 34.2099 1.3463 0.9896
BPNN 19.3444 32.8101 1.2658 0.9904
ANFIS 19.3400 33.7645 1.2655 0.9899
ELM 19.2145 32.9260 1.2573 0.9904

WELM 19.2872 33.2975 1.2620 0.9902
ORELM 19.7225 34.2069 1.2905 0.9896
Hybrid 18.8438 32.0968 1.2330 0.9909
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Table 9. Results of all power curve models on test sets of Dataset C and Dataset D.

Dataset Model
Error Indicator

MAE RMSE NMAPE R2

C

3-PLF 21.7192 34.9560 1.4212 0.9891
4-PLF 21.7790 34.9837 1.4251 0.9891
5-PLF 19.9222 33.2145 1.3036 0.9902
6-PLF 20.6772 34.6191 1.3530 0.9894

MHTan 20.5743 34.2099 1.3463 0.9896
BPNN 19.3444 32.8101 1.2658 0.9904
ANFIS 19.3400 33.7645 1.2655 0.9899
ELM 16.0682 26.9427 2.1093 0.9425

WELM 15.8361 26.6344 2.0788 0.9438
ORELM 15.9102 25.9158 2.0885 0.9468
Hybrid 9.0638 16.4979 1.1898 0.9784

D

3-PLF 15.0039 19.0627 1.8723 0.9811
4-PLF 15.0733 19.1098 1.8810 0.9810
5-PLF 10.1637 16.9569 1.2683 0.9850
6-PLF 10.1192 16.5730 1.2628 0.9857

MHTan 11.1313 17.3347 1.3891 0.9844
BPNN 10.0238 16.3810 1.2509 0.9860
ANFIS 11.4776 20.5935 1.4323 0.9779
ELM 9.8328 16.6137 1.2270 0.9856

WELM 9.8043 16.4880 1.2235 0.9858
ORELM 9.7503 16.5073 1.2167 0.9858
Hybrid 9.4122 16.1494 1.1745 0.9864

According to Table 8, the proposed hybrid model provides better power forecasts than the
other compared models in Dataset A. Moreover, the majority of nonparametric models outperform
parametric models. However, 5-PLF performs better than ANFIS. In five parametric models, 5-PLF is
the best one. With the exception of the hybrid model, among the five nonparametric models, no model
outperforms the others in terms of four error indicators. Specifically, WELM performs the best in terms
of MAE and NMAPE, while the best one is BPNN in terms of RMSE and R2.

From the results on Dataset B and Dataset D presented in Tables 8 and 9, respectively, the best
model is also the proposed hybrid model in terms of all error indicators. Similar to the results in
Dataset A, most nonparametric models perform better than parametric models. Among all parametric
models, 5-PLF usually generates better power forecasts.

According to the results in Dataset C presented in Table 9, the proposed hybrid model is superior
to the other models in terms of MAE, RMSE, and NMAPE, while BPNN is the best model in terms of
R2. Moreover, in terms of MAE and RMSE, ELM, WELM, and ORELM perform better than the other
compared models. However, in terms of NMAPE and R2, ELM, WELM, and ORELM perform worse
than the other compared models.

According to the results in Tables 8 and 9, the average ranks of all wind turbine power output
estimation models were computed, and these are presented in Figure 4. From Figure 4, according to
different error indicators, the average ranks of wind turbine power output models are also different.
In terms of the MAE, RMSE, and NMAPE, the proposed hybrid model ranks the highest among
all models. However, in terms of R2, BPNN ranks first and the proposed hybrid model ranks
second. Moreover, in terms of MAE and NMAPE, all nonparametric models rank higher than all
parametric models. In terms of RMSE, except the ANFIS, all nonparametric models perform better
than parametric models.
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The average ranks of all models based on four error indicators as well as the results in Tables 8
and 9 are shown in Figure 5. According to Figure 5, the proposed hybrid model performs the best
among all models selected in this paper. Generally, the performance of nonparametric models is better
than that of parametric models. However, sometimes 5-PLF is superior to ANFIS in wind turbine
power output estimation.
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For different wind turbines, the estimated wind turbine power curves generated by the proposed
hybrid model are presented in Figure 6. It can be seen from Figure 6 that the estimated power curves
can fit the data of different wind turbines well.

Based on the above analysis, it can be concluded that the proposed hybrid model is an effective
technique for wind turbine power curve modeling, and can also be chosen and perform well when
there are some outliers in the collected wind data.
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5. Conclusions

Wind power curves play important roles in many aspects, such as wind power forecasting, wind
turbine condition monitoring, wind energy potential estimation, and wind turbine selection. In this
paper, a hybrid model is proposed in order to obtain a more accurate power curve. Firstly, an FCM-based
outlier detection method is employed to process the collected wind data and eliminate the adverse
effects of outliers on wind power curve modeling. Secondly, different types of ELM-based regression
models are trained and used to estimate the power output of wind turbines. Finally, the power forecasts
generated by the above regression models on a validation set are used to train SVR, and the trained
SVR is employed to forecast the power output of a wind turbine at different wind speeds. It can be
concluded from the power curve modeling results that: (1) most nonparametric models perform better
than parametric models; (2) in all parametric models selected in this paper, 5-PLF is superior to the
other parametric models with large probability; (3) the proposed hybrid model can generate more
accurate power curves than single parametric and nonparametric models for different wind turbines.
In practice, even if there are numerous outliers in the collected wind data, the proposed hybrid model
is also a good choice for power curve modeling.
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Abbreviations

WTPC wind turbine power curve
4-PLF 4-parameter logistic function
5-PLF 5-parametrer logistic function
6-PLF 6-parametrer logistic function
MHTan modified hyperbolic tangent
ANN artificial neural network
SVR support vector regression
GP Gaussian process
KNN K-nearest neighbor model
ANFIS adaptive neuro-fuzzy interference system
FCM fuzzy c-means clustering
ELM extreme learning machine
WELM weighted regularized extreme learning machine
ORELM outlier-robust extreme learning machine
BPNN back-propagation neural network
BSA backtracking search algorithm
ALM Augmented Lagrange Multiplie
KKT Karush-Kuhn-Tucker
MAE mean absolute error
RMSE root mean square error
NMAPE normalized mean absolute percentage error
R2 coefficient of determination
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27. Üstüntaş, T.; Şahin, A.D. Wind turbine power curve estimation based on cluster center fuzzy logic modelling.
J. Wind Eng. Ind. Aerodyn. 2008, 96, 611–620. [CrossRef]

28. Stephen, B.; Galloway, S.J.; McMillan, D.; Hill, D.C.; Infield, D.G. A copula model of wind turbine performance.
IEEE Trans. Power Syst. 2011, 26, 965–966. [CrossRef]

29. Wang, J.; Zhang, N.; Lu, H. A novel system based on neural networks with linear combination framework
for wind speed forecasting. Energy Convers. Manag. 2019, 181, 425–442. [CrossRef]

30. Che, J.; Wang, J. Short-term load forecasting using a kernel-based support vector regression combination
model. Appl. Energy 2014, 132, 602–609. [CrossRef]

31. Li, W.; Chang, L. A combination model with variable weight optimization for short-term electrical load
forecasting. Energy 2018, 164, 575–593. [CrossRef]

32. Zheng, L.; Hu, W.; Min, Y. Raw wind data preprocessing: A data-mining approach. IEEE Trans. Sustain. Energy
2015, 6, 11–19. [CrossRef]

33. Shen, X.; Fu, X.; Zhou, C. A combined algorithm for cleaning abnormal data of wind turbine power curve
based on change point grouping algorithm and quartile algorithm. IEEE Trans. Sustain. Energy 2018, 10,
46–54. [CrossRef]

34. Zhao, Y.; Ye, L.; Wang, W.; Sun, H.; Ju, Y.; Tang, Y. Data-driven correction approach to refine power curve of
wind farm under wind curtailment. IEEE Trans. Sustain. Energy 2018, 9, 95–105. [CrossRef]

35. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural
networks. IEEE Int. Jt. Conf. Neural Netw. 2004, 2, 985–990.

36. Deng, W.; Zheng, Q.; Chen, L. Regularized extreme learning machine. In Proceedings of the IEEE Symposium
on Computational Intelligence and Data Mining, Nashville, TN, USA, 30 March–2 April 2009; pp. 389–395.

37. Zhang, K.; Luo, M. Outlier-robust extreme learning machine for regression problems. Neurocomputing 2015,
151, 1519–1527. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2010.07.019
http://dx.doi.org/10.3906/elk-1412-207
http://dx.doi.org/10.1155/2016/8519785
http://dx.doi.org/10.1109/TSTE.2013.2247641
http://dx.doi.org/10.1016/j.epsr.2017.10.028
http://dx.doi.org/10.1016/j.apenergy.2012.04.037
http://dx.doi.org/10.1016/j.renene.2016.10.032
http://dx.doi.org/10.3390/en11071631
http://dx.doi.org/10.1016/j.renene.2019.09.145
http://dx.doi.org/10.1109/TSTE.2018.2820198
http://dx.doi.org/10.1016/j.renene.2019.08.060
http://dx.doi.org/10.1016/j.renene.2008.10.022
http://dx.doi.org/10.1109/TSTE.2013.2241797
http://dx.doi.org/10.1016/j.jweia.2008.02.001
http://dx.doi.org/10.1109/TPWRS.2010.2073550
http://dx.doi.org/10.1016/j.enconman.2018.12.020
http://dx.doi.org/10.1016/j.apenergy.2014.07.064
http://dx.doi.org/10.1016/j.energy.2018.09.027
http://dx.doi.org/10.1109/TSTE.2014.2355837
http://dx.doi.org/10.1109/TSTE.2018.2822682
http://dx.doi.org/10.1109/TSTE.2017.2717021
http://dx.doi.org/10.1016/j.neucom.2014.09.022


Appl. Sci. 2019, 9, 4930 18 of 18

38. Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin, Germany, 2013.
39. Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Springer Science & Business Media:

Berlin, Germany, 2013.
40. Egrioglu, E.; Aladag, C.H.; Yolcu, U. Fuzzy time series forecasting with a novel hybrid approach combining

fuzzy c-means and neural networks. Expert Syst. Appl. 2013, 40, 854–857. [CrossRef]
41. Suykens, J.A.; De Brabanter, J.; Lukas, L.; Vandewalle, J. Weighted least squares support vector machines:

Robustness and sparse approximation. Neurocomputing 2002, 48, 85–105. [CrossRef]
42. Park, J.Y.; Lee, J.K.; Oh, K.Y.; Lee, J.S. Development of a novel power curve monitoring method for wind

turbines and its field tests. IEEE Trans. Energy Convers. 2014, 29, 119–128. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.eswa.2012.05.040
http://dx.doi.org/10.1016/S0925-2312(01)00644-0
http://dx.doi.org/10.1109/TEC.2013.2294893
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Popular Power Curve Models 
	Parametric Models 
	Nonparametric Models 

	Proposed Wind Power Curve Model 
	Fuzzy C-Means Clustering 
	Extreme Learning Machine and Its Variants 
	Extreme Learning Machine 
	Weighted Regularized Extreme Learning Machine (WELM) 
	Outlier-Robust Extreme Learning Machine (ORELM) 

	Support Vector Regression 
	Proposed Strategy for Wind Power Curve Modeling 

	Wind Turbine Power Curve Modeling in Different Wind Farms 
	Data Description 
	Experiment Setting 
	Results of Wind Turbine Power Curve Modeling 

	Conclusions 
	References

