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Abstract: The high-speed train interior noise induced by the exterior flow field is one of the critical
issues for product developers to consider during design. The reliable numerical prediction of noise in
a passenger cabin due to exterior flow requires the decomposition of surface pressure fluctuations
into the hydrodynamic (incompressible) and the acoustic (compressible) components, as well as
the accurate computation of the near aeroacoustic field, since the transmission characteristics of
incompressible and compressible pressure waves through the wall panel of the cabin are quite
different from each other. In this paper, a systematic numerical methodology is presented to obtain
separate incompressible and compressible surface pressure fields in the wavenumber–frequency
and space–time domains. First, large eddy simulation techniques were employed to predict the
exterior flow field, including a highly-resolved acoustic near-field, around a high-speed train running
at the speed of 300 km/h in an open field. Pressure fluctuations on the train surface were then
decomposed into incompressible and compressible fluctuations using the wavenumber–frequency
analysis. Finally, the separated incompressible and compressible surface pressure fields were obtained
from the inverse Fourier transform of the wavenumber–frequency spectrum. The current method
was illustratively applied to the high-speed train HEMU-430X running at a speed of 300 km/h in an
open field. The results showed that the separate incompressible and compressible surface pressure
fields in the time–space domain could be obtained together with the associated aerodynamic source
mechanism. The power levels due to each pressure field were also estimated, and these can be directly
used for interior noise prediction.

Keywords: high-speed train; aerodynamic noise; wavenumber–frequency analysis; hydrodynamic
pressure; acoustic pressure

1. Introduction

High-speed trains have been competitively developed around the world since the first line was
launched in Japan in 1964. The competition accelerated after the running speed of the French high-speed
train TGV V150 exceeded 574.8 km/h. Many relevant studies have been carried out by worldwide
manufacturers seeking to develop the fastest train, because it manifests technological superiority over
others. However, as the running speed of high-speed trains increased, noise emissions also inevitably
increased. Modern high-speed trains have two main distinctive noise sources: rolling noise caused by
the interaction between wheels and rail, and aerodynamic noise caused by flow around the train [1].
According to related studies, the sound power due to rolling noise is known to increase in proportion
with the third power of train speed V. On the other hand, the sound power of aerodynamic noise
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increases with V6 and V8 for dipole and quadrupole sources, respectively [1]. Therefore, the relative
contribution of aerodynamic noise becomes more important as the travel speed of the train increases.
It has been reported that aerodynamic noise sources begin to contribute more to the overall noise levels
as the travel speed of the train exceeds 300 km/h [2].

Recently, several studies [2–6] were carried out on the aerodynamic noise of high-speed trains.
Various methods such as full-scale measurements, scaled-model tests in a wind tunnel, and numerical
approaches were used, and the common results were that the first bogie, the first pantograph, and the
first intercoach spacing were the aerodynamic sources contributing most to the radiated noise field.
However, these studies used a simplified external body model or only a single part of a train, and
focused only on externally radiated noise.

The ultimate goal of this paper was to develop reliable, systematic numerical methods for
the prediction of interior cabin noise of a high-speed train, which is one of the critical issues for
the product developers. However, the fact that the interior cabin noise is directly caused only by
the vibration of the cabin body structures made it more challenging to understand and model the
relevant physical mechanism. The vibration of cabin body structure can be induced by external
flow, including the acoustic field, as well as by the interaction between wheels and rail. The former
and the latter can be called flow-borne and structure-borne vibrations, respectively. However, the
external flow fluctuations consist of incompressible and compressible waves. The former is sometimes
called hydrodynamic fluctuation or pseudo-sound, and the latter is called an acoustic wave. Again,
compressible waves can be generated by the structural vibration and/or aerodynamic noise sources.
This fact implies that the accurate flow field predictions including the aerodynamic noise sources and
their corresponding acoustic waves are essential for the accurate prediction of interior cabin noise of a
high-speed train, under the assumption that the aerodynamic noise is more dominant in the overall
noise of a high-speed train.

In the present study, as a first step for achieving the ultimate goal, the systematic numerical
methodology presented was used to obtain separate incompressible and compressible surface pressure
fields in the frequency–wavenumber and time–space domains. First, LES (large eddy simulation)
techniques were employed to predict the flow field, including the acoustic field, around a high-speed
train running in an open field. Second, pressure fluctuations on the train surface were decomposed
into incompressible and compressible ones using wavenumber–frequency analysis. The separation
is based on the physical fact that the wave speeds of incompressible and compressible pressure
waves are different from each other. Finally, the separated incompressible and compressible surface
pressure fields in the space–time domain were obtained from the inverse Fourier transform of the
wavenumber–frequency spectrum. The current method was illustratively applied to the high-speed
train HEMU-430X running at a speed of 300 km/h in an open field.

2. Numerical Methods and Target Model

2.1. Large Eddy Simulation

In this section, LES is briefly introduced. LES with the Smagorinsky–Lilly model was used to
solve the governing equation predicting the external flow and acoustic field around a train body. LES
directly computes only large eddies, and hence a low-pass spatial filter was applied to the conservation
equations to formulate the unsteady governing equations for large scale motion. The three-dimensional,
compressible, unsteady LES governing equations with the turbulent viscosity of the Smagorinsky–Lilly
model can be written in the forms below:
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where Si j is the rate of the strain tensor and Ls is the mixing length, which represents the length scale
of turbulence components smaller than the grid size. These terms can be written in the following form.
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Ls = min(κd, Cs∆), ∆ = V1/3 (4)

where κ is the von Karman constant, d is the distance to the nearest wall, Cs is the Smagorinsky
constant, and ∆ is the local grid size. The discretization methods are listed in Table 1. The LES was
numerically realized using the commercial software ANSYS Fluent (version: 18.0).

Table 1. Discretization schemes of governing equations.

Equations Discretization Method

Pressure Second order
Momentum Bounded central differencing
Energy Second order upwind
Transient formulation Second order implicit

2.2. Wavenumber–Frequency Analysis

The wavenumber–frequency diagram of surface pressure fluctuation can be obtained from the
three-dimensional Fourier transform of the surface pressure in the space–time domain. It shows the
distribution of the magnitude of the specific wave component in terms of wavenumber k and frequency
ω in the wavenumber–frequency domain. One of the advantages of using the wavenumber–frequency
spectrum instead of the space–time diagram is that the phase speed of the specific wave component
constituting surface pressure fluctuations in the space–time domain can be determined. The phase
speed vp = ω/k can be used as a criterion to decompose the surface pressure fluctuation into its
incompressible and compressible components. The former is convected at the velocity proportional
to mean flow velocity U0, and the latter does so at the vector sum of mean flow velocity and the
sound speed c0. The spatial–temporal pressure field on a train wall can be characterized using the
correlation function.

R(x; ξ, τ) =
〈
p′(x, t)·p′(x + ξ, t + τ)

〉
(5)

where ξ is the distance vector, τ is the time delay, and p′ is the perturbed pressure. The correlation
function of the spatial–temporal pressure field can be converted to the wavenumber–frequency
domain using a Fourier transform. The Fourier transform from the space–time domain to the
wavenumber–frequency domain is written as

S(k,ω) =
∫
∞
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The power spectral density (PSD) of the wall pressure fluctuations can be estimated using the
periodogram method in the following form:
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where

p̂L,T(k,ω) =
∫ T/2

−T/2

∫ L1/2

−L1/2

∫ L2/2

−L2/2
p′(x, t)e−i(kx+ωt)dx1dx2dt (8)

and p̂∗L,T is a complex conjugate of p̂L,T. In Equation (8), L1, and L2 are the length of space domain in
each direction, respectively, and T is the time period. Finally, the three-dimensional discrete Fourier
transform equation used to obtain the three-dimensional averaged modified periodogram can be
written in the following form [7,8].
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where wkl j is a discretized Hanning window.
In the three-dimensional periodogram, the incompressible and compressible parts can be separated

by using the slanted Dirac cone defined as

ω = c0

√
k2

x1
+ k2

x2
+ kx1U0 (10)

where U0 is free stream velocity. The acoustic wavenumber ka which is used as the criteria to distinguish
between the acoustic and convection components can be obtained by dividing both sides of Equation
(10) with the speed of sound, giving

ka = ω/c0 =
√

k2
x1
+ k2

x2
+ kx1M (11)

where M is the Mach number. Components that satisfy the unequal equation of |k| ≤ ka are then
classified as either compressible waves or as incompressible ones.

Figure 1 illustrates the slanted Dirac cone for the case where U0 = 300 km/h and c0 = 343 m/s.
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Figure 1. Illustrative slanted Dirac cone separating incompressible and compressible parts in the
three-dimensional periodogram: U0 = 300 km/h and c0 = 343 m/s.

2.3. Target Model and Details on Simulation

Figure 2 shows the entire computational domain with the related dimensions and the applied
boundary conditions. The speed of the train was set as a velocity inlet boundary condition.
The atmospheric pressure was used as a pressure outlet boundary condition. The non-reflective
boundary condition was also applied for the inlet and outlet regions to capture the aerodynamic
noise without non-physical reflection off the boundaries. Pressure far-field boundary conditions were
applied on the upper and two side boundary surfaces. The non-slip wall boundary conditions were
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applied on the surface of HEMU. Moving wall boundary conditions were applied on the ground and
the rails. The detailed boundary conditions with their specified values are listed in Table 2.Appl. Sci. 2019, 9, 4924 5 of 14 
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recorded as 430 km/h. It consists of eight coaches including double-deck carriages, as shown in Figure 
2. However, for simplicity but without losing the main aerodynamic source mechanisms, only four 
coaches which are a trailer coach (TC), first motor coach (M1), fourth motor coach (M4), and the last 
motor coach (MC) were considered in the current study. The detailed, full-scale geometry including 
eight bogies, two pantographs, one wiper, and three intercoach spaces was modeled to capture the 
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Figure 3. Target train model (HEMU-430X) and its main parts. 

Figure 2. Computational domain for open field case (1H: height of train).

Table 2. Details on boundary setting for the open field case.

Boundary Setting Remarks

Inlet boundary Velocity inlet 83.33 m/s (300 km/h), non-reflecting
Outlet boundary Pressure outlet 101,325 Pa, non-reflecting
Side and upper boundary Pressure far field 101,325 Pa, Ma = 0.24
Ground boundary Moving wall 83.33 m/s
HEMU wall No-slip wall
Rail wall Moving wall

Figure 3 shows the CAD model of the targeted train and its main parts. The targeted train was
HEMU-430X (High-speed Electric Multiple Unit 430 km/h experimental), which is under development
as a next-generation Korean high-speed train, for which the maximum speed has been recorded as 430
km/h. It consists of eight coaches including double-deck carriages, as shown in Figure 2. However,
for simplicity but without losing the main aerodynamic source mechanisms, only four coaches which
are a trailer coach (TC), first motor coach (M1), fourth motor coach (M4), and the last motor coach
(MC) were considered in the current study. The detailed, full-scale geometry including eight bogies,
two pantographs, one wiper, and three intercoach spaces was modeled to capture the essential
aerodynamic noise source mechanisms. Figure 4 shows the grid description for the computational
domain. The computational mesh was composed of about 310 million cells using fluent meshing.
Tetrahedral and hexacore cells were used together with five layers of prismatic elements near the
wall surface.
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3. Validation of Numerical Methods

To ensure the validity of current numerical methods, the aerodynamic drag of the high-speed
train was computed and compared with the results reported in previous studies. Aerodynamic drag
was compared in terms of a non-dimensional drag coefficient, Cd, defined in the following form.

Cd =
D

1
2ρu2S

(12)

where D is the drag force, ρ is the air density, u is the freestream velocity, and S is the reference
cross-sectional area. The air density and the reference area were 1.225 kg/m3 and 11.59 m2, respectively.
Kwon [9] calculated the aerodynamic drag of a Korean high-speed train using the coasting test method.
In Table 3, the aerodynamic drag (Cd) of HEMU-430X predicted in the present study is compared with
that calculated by Kwon [9]. The former was 0.612 and the latter was 0.900. Considering the fact that
the current train consisted of four coaches and the experimental one consisted of six coaches, there was
good agreement between two results in that the drag coefficients for one coach were 0.153 and 0.15,
respectively.

Table 3. Drag coefficient of HEMU-430X.

Train Formation Cd

H. Kwon (from coasting test) TC + 4M + MC (6 coaches) 0.900
Present study TC + 2M + MC (4 coaches) 0.612
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4. Unsteady Flow and Analysis

In this section, the numerical simulation results are presented with the main aerodynamic noise
generation mechanism of a high-speed train.

4.1. Overall Flow Characteristics

Figure 5 shows the computed instantaneous iso-surfaces of the Q-criterion. It can be observed
that strong coherent vortex structures were generated from the bogie fairing, the headlamp, and the
wiper in the first coach. Large vortices were created and propagated from the first bogie, the first
pantograph, and the intercoach space, which are known to be dominant aerodynamic noise sources.
Attached flow generally existed on the TC car (first coach), but the strong separated flows caused by
the first pantograph covered the remaining coaches downstream. Figure 6 shows the instantaneous
iso-contours of the velocity magnitudes at the centered cross-sectional plane. It can be seen that
significant velocity reduction was induced in the underbody. It was also shown that strong separated
flows covered the downstream coaches behind the TC car.
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Figure 6. Instantaneous velocity magnitude contour of open field case.

Figure 7 shows the instantaneous iso-contours of pressure on the central vertical cross-sectional
plane and the horizontal plane. It was seen that the compressible acoustic pressure waves were
propagated from the train coaches. It was identified that the main aerodynamic sources were the bogies,
pantographs, intercoach gabs, and roof fairings. The more detailed aerodynamic source generation
mechanisms in these sources are described in the following three sections.
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4.2. Bogie

Figure 8 shows two bogie models attached to the trailer coach (TC) and the motor coach (MC),
respectively, which commonly consists of a bogie frame, wheelset, break unit, and secondary suspension
between the body of the coach and bogie. The main motor and gear unit are installed in the MC
bogie. Although the noise generated by the pantograph has received the most attention, aerodynamic
noise produced from the bogie region has been estimated to be higher by around 15 dB than that
from the pantograph in terms of the overall noise level of the whole train [10]. Figure 9 shows the
instantaneous iso-contours of vorticity magnitudes at the cross-sectional planes of y = −0.6 m, y = 0 m,
and y = 0.6 m of the first and eighth bogies, respectively. It was shown that flow separation occurred
at the front edge and formed vortices. The vortices were convected downstream, first hit the front
wheelset and then induced wake vortices again. The wake vortices formed behind the front wheelset
were convected inside the bogie region and developed complex, unsteady flow around the brake units
and the rear wheelset. Figure 10 shows the instantaneous surface pressure contours of the first and
eighth bogies. The flow impact on the first bogie was more significant than the flow impact on the
eight bogie, implying that a higher dipolar noise was generated on the first bogie.
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The sound propagation pattern of which the center was located around the first bogie, shown in
Figure 7a,b, manifested the strong aerodynamic source in the first bogie.

4.3. Roof Fairing and Pantograph

Figure 11 shows the first and second pantographs, which consisted of a panhead, a lower arm, an
upper arm, a base frame, and a driving device with pairings. The pantograph is well known to be one
of main aerodynamic noise sources of a high-speed train because it is mounted on the train roof and
exposed to the unsteady flows. Figure 12 shows the iso-contours of instantaneous vorticity magnitude
on the vertical cross-sectional plane of the train. The significant flow separation on the roof was formed
from the first and second pantographs, which can be also identified in Figure 5. Coherent vortices are
generated around the first and second pantograph panheads, which generated the aerodynamic noise
identified in Figure 7.
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M1 car; (b) second pantograph and roof fairing on the M3 car.
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4.4. Intercoach Space

Intercoach space is one of the main noise sources of a high-speed train. Intercoach space can be
categorized as an open cavity that has a large or small streamwise length-to-depth ratio [2]. In an
open cavity which is also known to be aerodynamic noise source, the shear layer is separated from
the leading edge of cavity and spans the entire length of cavity or roll-up to quasi-periodic vortices.
The shear layer or vortices hit the solid rear wall of the cavity and generate aerodynamic noise by
converting the vortical energy to acoustic energy.

The acoustic waves propagating upstream hit the leading edge of the cavity and enhance the
development of the shear layer. This feedback phenomenon sometimes strengthens the aerodynamic
noise by the resonance of its feedback frequency with the cavity acoustic modes. Figure 13 shows the
iso-contours of instantaneous vorticity magnitude in intercoach regions. Typical shear-lay vortices
in the wide-open cavity were identified in the upper part cavity, while the closed shear layers in the
narrow open cavity were formed in the side part cavity of the intercoach space. Compared to the
typical open cavity, however, the flow structure in the upper part of first intercoach space showed
a more complex pattern. A strong shear layer was formed from the wind-shield and induced fluid
flow from the inside cavity to the outside in the upper part of the cavity of the first intercoach region.
Figure 14 shows the streamlines of fluid passing around the intercoach space. Heavy spiral flow was
generated from the bogie side and rose to the roof side in the first intercoach space. On the other
hand, spiral flows originated from the upper intercoach spaces in the second and third intercoaches.
These complex vortices caused aerodynamic noise in the intercoaches, which was observed in Figure 7.Appl. Sci. 2019, 9, 4924 10 of 14 
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5. Decomposition of Surface Pressure

The illustrative wavenumber–frequency analysis was conducted by applying Equation (6) to the
predicted surface pressure fields on the roof and the left-side wall surfaces of the TC car shown in
Figure 15. The sampling rate fs and the frequency interval ∆f were 5000 Hz and 2.03 Hz, respectively.
The wavenumber intervals ∆kx and ∆kz were 0.01954 (1/m) and 0.4379 (1/m), respectively. The power
spectral density obtained from the wavenumber–frequency transform is plotted in Figure 16. The slanted
Dirac cone (−c0 + U0 ≤ ω/k ≤ c0 + U0) was distinctly identified. To show the characteristics of the
wavenumber–frequency diagram more clearly, the two-dimensional spectrum at the cross-sectional
plane of ky = 0 and kz = 0 for the roof and left-side walls is shown in the right side of Figure 16.
Strong compressible components were identified, between the characteristic lines of which the slopes
corresponded to the phase speeds of |−c0 + U0| = 259.67 m/s and |c0 + U0| = 426.33 m/s, while most
of the incompressible components were located on the line of slope Uc � 0.9U0 = 75.00 m/s.Appl. Sci. 2019, 9, 4924 11 of 14 
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These distinctly separated regions manifested that the LES simulation effectively captured the 
acoustic wave propagation as well as the aerodynamic noise generation in the external flow of the 
high-speed train. Figure 17a,b shows the power spectral density diagrams for the decomposed 
incompressible and compressible parts, respectively, and the corresponding power spectral density 
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(b) left-side wall region.

These distinctly separated regions manifested that the LES simulation effectively captured the
acoustic wave propagation as well as the aerodynamic noise generation in the external flow of the
high-speed train. Figure 17a,b shows the power spectral density diagrams for the decomposed
incompressible and compressible parts, respectively, and the corresponding power spectral density
levels which were obtained by integrating the power spectral density over the entire wavenumber
ranges in the form

S(ω) =

∫ ∫
S(k, ω)dkx1kx2 (13)
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In order to obtain the compressible and incompressible surface pressure fields in the time-space 
domain, the inverse Fourier transform was taken for each separated region shown in Figure 18. 
Figure 19 shows the snapshot of incompressible and compressible surface pressure fields obtained in 
this way, together with the total pressure field for all coaches. It can be seen that the magnitudes of 
the incompressible components were generally much higher than those of the compressible ones, so 
that the total pressure field was almost similar to the incompressible pressure field. Although the 
magnitudes of compressible components were much lower, the present numerical method was able 
to extract the hidden acoustic pressure field successfully. It is well known that subsonic surface waves 
support an evanescent wave in a fluid which is always confined to the vicinity of the interface [11]. 
This fact implies that the acoustic pressure field with higher phase speed than the incompressible 
pressure field may make more contribution to the interior sound field of a high-speed train, which 
needs to be investigated in a future study. 

Figure 17. Pressure spectrum at Point 1 and Point 2: (a) locations of Point 1 and Point 2; (b) pressure
spectrum at Point 1; (c) pressure spectrum at Point 2.

Equation (13) represents the averaged power spectral density levels of pressure over the surface
regions shown in Figure 18. It can be seen that the incompressible pressure parts dominated in most of
the frequency range, except for 120 Hz. This strong tonal component was caused by the coherent vortex
shedding from the wiper, the headlamp, and first bogie fairing, as shown in Figure 17. The pressure
spectrum obtained at the indicated locations showed the tonal peak at the frequency of 120 Hz.
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Figure 18. Decomposed power spectral density diagram of incompressible (left), compressible (middle)
parts at a given ky, kz = 0 and power spectral density levels by integrating over all wavenumbers
(right)—reference pressure 20 µPa: (a) roof wall region; (b) left-side wall region.

In order to obtain the compressible and incompressible surface pressure fields in the time-space
domain, the inverse Fourier transform was taken for each separated region shown in Figure 18.
Figure 19 shows the snapshot of incompressible and compressible surface pressure fields obtained
in this way, together with the total pressure field for all coaches. It can be seen that the magnitudes
of the incompressible components were generally much higher than those of the compressible ones,
so that the total pressure field was almost similar to the incompressible pressure field. Although the
magnitudes of compressible components were much lower, the present numerical method was able to
extract the hidden acoustic pressure field successfully. It is well known that subsonic surface waves
support an evanescent wave in a fluid which is always confined to the vicinity of the interface [11].
This fact implies that the acoustic pressure field with higher phase speed than the incompressible
pressure field may make more contribution to the interior sound field of a high-speed train, which
needs to be investigated in a future study.Appl. Sci. 2019, 9, 4924 13 of 14 
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TC Car M1 Car M4 Car MC Car 

Roof Left Side Roof Left Side Roof Left Side Roof Left Side 
Total 112.5 121.0 127.2 124.8 119.0 127.3 128.3 124.9 

Comp. 109.0 114.4 109.7 111.6 105.2 112.7 111.2 111.9 
Incomp. 110.0 120.0 127.1 124.6 118.8 127.2 128.2 124.7 

6. Conclusions 

In this study, the flow field around the high-speed train HEMU-430X running at the speed 300 
km/h in an open field was computed by employing highly accurate large eddy simulation techniques 
with more than 300 million grid points. The predicted mean aerodynamic drag of the trains showed 
a good agreement with that reported in the available literature. The detailed analysis of the unsteady 
flow field identified three dominant aerodynamic noise source regions: the first bogie, the first 
pantograph, and the first intercoach space. In order to decompose surface pressure fluctuations into 
hydrodynamic and acoustic fluctuations, a wavenumber–frequency analysis was performed on the 
fluctuating surface pressure field on the train. The wavenumber–frequency diagrams of power 
spectral density showed two distinct regions corresponding to the hydrodynamic and the acoustic 
components of the surface pressure fluctuations. The application of inverse wavenumber–frequency 
transforms on each of the hydrodynamic and the acoustic components in the wavenumber–frequency 
domains successfully decomposed the surface pressure fluctuations into their incompressible and 
compressible parts in the time-space domains. The power spectrum levels of surface pressure were 
estimated for each coach’s surface. The sidewall surface of the TC car was found to be subject to the 
highest power level due to the compressible surface pressure field. To the best of authors’ knowledge, 
this is the first publication on the surface pressure power level due to compressible and 
incompressible pressure fields. The current results can be utilized to devise a useful measure for the 
reduction of interior cabin noise in high-speed trains. 

Figure 19. Decomposed instantaneous surface pressure field at time domain: (a) original total pressure
field; (b) decomposed incompressible pressure field; (c) decomposed compressible pressure field.
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The current wavenumber–frequency analysis was applied to the surface pressure fields on the
roof and sidewall of all coaches. Table 4 summarizes the predicted overall power levels of total,
incompressible, and compressible pressure fields. The highest total power levels were identified on
the roofs of the M1 car and MC car, both of which were subjected to downstream flow behind the
pantographs. The highest compressible pressure level was identified on the sidewall of TC car, which
was directly exposed to the acoustic waves generated by the first bogie and the first intercoach space.

Table 4. Estimated overall power spectral density levels for each pressure field; unit: dB.

TC Car M1 Car M4 Car MC Car

Roof Left Side Roof Left Side Roof Left Side Roof Left Side

Total 112.5 121.0 127.2 124.8 119.0 127.3 128.3 124.9
Comp. 109.0 114.4 109.7 111.6 105.2 112.7 111.2 111.9

Incomp. 110.0 120.0 127.1 124.6 118.8 127.2 128.2 124.7

6. Conclusions

In this study, the flow field around the high-speed train HEMU-430X running at the speed 300 km/h
in an open field was computed by employing highly accurate large eddy simulation techniques with
more than 300 million grid points. The predicted mean aerodynamic drag of the trains showed a good
agreement with that reported in the available literature. The detailed analysis of the unsteady flow
field identified three dominant aerodynamic noise source regions: the first bogie, the first pantograph,
and the first intercoach space. In order to decompose surface pressure fluctuations into hydrodynamic
and acoustic fluctuations, a wavenumber–frequency analysis was performed on the fluctuating surface
pressure field on the train. The wavenumber–frequency diagrams of power spectral density showed
two distinct regions corresponding to the hydrodynamic and the acoustic components of the surface
pressure fluctuations. The application of inverse wavenumber–frequency transforms on each of the
hydrodynamic and the acoustic components in the wavenumber–frequency domains successfully
decomposed the surface pressure fluctuations into their incompressible and compressible parts in
the time-space domains. The power spectrum levels of surface pressure were estimated for each
coach’s surface. The sidewall surface of the TC car was found to be subject to the highest power level
due to the compressible surface pressure field. To the best of authors’ knowledge, this is the first
publication on the surface pressure power level due to compressible and incompressible pressure
fields. The current results can be utilized to devise a useful measure for the reduction of interior cabin
noise in high-speed trains.

A planned future study aims to incorporate the decomposed surface pressure fields for the
prediction of the interior cabin noise of the high-speed train. The result will be utilized to assess the
relative contributions of the incompressible and compressible surface pressure fields to the interior
noise, and thus help to develop an effective cabin structure design for low interior noise.
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