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Abstract: Power quality disturbances (PQDs) have a large negative impact on electric power systems
with the increasing use of sensitive electrical loads. This paper presents a novel hybrid algorithm for
PQD detection and classification. The proposed method is constructed while using the following
main steps: computer simulation of PQD signals, signal decomposition, feature extraction, heuristic
selection of feature selection, and classification. First, different types of PQD signals are generated by
computer simulation. Second, variational mode decomposition (VMD) is used to decompose the
signals into several instinct mode functions (IMFs). Third, the statistical features are calculated in
the time series for each IMF. Next, a two-stage feature selection method is imported to eliminate
the redundant features by utilizing permutation entropy and the Fisher score algorithm. Finally,
the selected feature vectors are fed into a multiclass support vector machine (SVM) model to classify the
PQDs. Several experimental investigations are performed to verify the performance and effectiveness
of the proposed method in a noisy environment. Moreover, the results demonstrate that the start and
end points of the PQD can be efficiently detected.

Keywords: power quality disturbances; variational mode decomposition; permutation entropy;
heuristic feature selection; Multi-Class support vector machine

1. Introduction

Currently, renewable energy, such as photovoltaic and wind energy, is increasingly integrated
with power systems to respond to the global energy crisis. Distribution generation systems with
high penetration and power electronic equipment with nonlinear loads cause serious power quality
disturbances (PQDs). The uncertain behavior of wind energy and PV systems occurs in nonstationary
disturbances due to the random variation of environmental factors [1]. Smart transmission systems
that are equipped with modern power systems increase the applications of nonlinear switched devices,
which exaggerate the power quality problems in distribution systems [2,3]. Furthermore, nonlinear
electronic loads, switching phenomena, short circuit faults, and lightning strikes can cause power
quality disturbances [4]. These disturbances are harmful to electrical equipment and they cause system
faults, computer data loss, and programmable logic controller failures or malfunctions [5]. For instance,
a short circuit fault or transformer energizing may result in variations of the magnitude of voltage
and current waveforms, which create sag, swell, and interruption events [6]. The application of an
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electronic converter might lead to harmonics and notches. Voltage flickers are usually caused by arc
furnaces. Transients and spikes may be caused by lightning or a sudden switching-off for large loads.

Power quality (PQ) is the ability of power systems to deliver undistorted voltage, current,
and frequency signals with a set of limits of electrical properties, which permit power systems to
function under expected operational conditions without a significant loss of performance or life [7].
According to the IEEE standard 1159–1995 [8], the PQD include a wide range of PQ phenomena, namely
transient (impulsive and oscillatory), short duration variations (interruption, sag, and swell), frequency
variations, long duration variations (sustained under voltages and sustained over voltages), and steady
state variations (harmonics, notch, and flicker), with a time scale that ranges from tens of nanoseconds
to steady state. The IEEE standard 1459–2010 [9] includes definitions for the measurement of electric
power quantities under sinusoidal, non-sinusoidal, balanced, and unbalanced conditions. In [10], the
authors presented an IEEE Std.1459 power magnitude measurement system that works as a part of a
PQ improvement structure. It is essential to analyze and identify power disturbances through power
quality event detection to mitigate power quality events. The effective strategy of mitigation action can
be implemented to improve the quality of power systems by classifying power quality disturbances.

Various studies have focused on signal processing methods, such as Fourier Transform (FT),
short time Fourier Transform (STFT), S-transform, and wavelet transform (WT), when considering
that feature extraction plays an important role in power quality analysis [11–13]. However, Fourier
Transform is effective for stationary signals, but it is not suitable for PQD detection. Meanwhile, Short
Time Fourier Transform also has a limitation, as it has a fixed resolution when the time-frequency
window is selected [14]. The wavelet transform has better performance under ideal conditions, but its
ability to detect PQDs is reduced in a noisy background [15]. S-transform (ST) is a time-frequency
analysis method that combines the WT and STFT. ST is utilized to recognize PQDs by using a flexible
localizing Gaussian window. However, in [16], it shows that ST degrades when dealing with some
nonstationary events, especially for transient PQDs.

Recently, empirical mode decomposition (EMD) has been widely used in PQD feature extraction
due to its excellent local adaptive performance [17,18]. In [19], the authors developed a method for
evaluating PQDs by utilizing EMD and the Hilbert transform. Nevertheless, EMD is sensitive to
noise and sampling and it suffers from the problems of recursive calculation and mode mixing [20].
Dragomiretskiy and Zosso proposed a more robust decomposition technique, named variational mode
decomposition (VMD), to overcome the drawbacks of EMD [21]. VMD decomposes a signal into
several band-limited intrinsic modes by updating with Wiener filtering. Each mode has a central
frequency that is gradually demodulated to the corresponding baseband. Different from EMD, the
bandwidth of the VMD intrinsic modes is narrow, which can not only prevent the mode mixing
problem in EMD but also accurately extract time-frequency features.

In highlighting VMD, many studies have tried to enhance its application in signal feature extraction.
Fu et al. [22] proposed a VMD-based method to assess the health status of wind turbines in condition
monitoring fields. Samantaray et al. [23] investigated the detection and classification method for single
and mixed power quality disturbances by utilizing VMD and a decision tree. Abdoos et al. [24] adopted
VMD and ST to extract the PQD features and then used sequential forward selection and sequential
backward selection to eliminate the redundant features. The results demonstrated the satisfactory
performance of VMD in terms of speed and accuracy.

There is still a lack of analysis of the feature extraction effect with classifier accuracy, despite
the numerous studies performed in the field of PQD detection. Few studies have focused on feature
selection during PQD detection. Feature selection also needs to be taken seriously since not all
features are involved in PQD detection. Features with useful information the increase the accuracy
of PQD classification. Meanwhile, redundant features may mislead the classifier and reduce the
computational efficiency.

In this paper, a novel methodology is developed for the detection and classification of power
quality disturbances in a microgrid system. Different from the method that is introduced in the
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reviewed studies, this proposed approach takes advantage of VMD, permutation entropy, and Fisher
scoring to obtain the relevant features for classification. Specifically, VMD is utilized to decompose the
obtained signal into a cluster of sub-intrinsic mode functions. Afterwards, the statistical features, such
as RMS, standard deviation, and multiscale moments, are extracted from each IMF under noise-free
and noisy environments. Furthermore, the permutation entropy and Fisher scoring are used to
effectively identify the relevant features. Both of the two analysis methods are essential and constitute
a two-stage heuristic feature selection method. Finally, an SVM classifier is implemented to identify
the different types of the PQ disturbance signals through the optimized feature vectors. Experimental
investigations are performed while using the proposed methodology in both a simulation model and
real microgrid platform.

The main contributions of the proposed approach include the following aspects:

(1) VMD is more capable of PQD signal decomposition when compared with wavelet packet
decomposition due to its adaptive and robust characteristics, especially in dealing with recursive
calculation and mode mixing problems. Additionally, the start and end points of a PQD event
can be detected by using VMD and permutation entropy.

(2) The two-stage heuristic feature selection technique consists of permutation entropy, and the Fisher
score is utilized to eliminate any irrelevant features, which not only enhances the generalization
capability and detection accuracy of the classifier, but also releases the computational complexity
in terms of efficiency.

(3) The proposed algorithm has sufficient flexibility under different levels of noisy environments,
either for the detected sensitivity or specificity of the PQD.

2. Theoretical Background

2.1. Variational Mode Decomposition

Different from EMD, VMD is an adaptive and non-recursive method that can analyze both
nonstationary and nonlinear signals. The scope of VMD decomposes a signal into band-limited
sub-signals by using a non-recursive calculation method. Each decomposed sub-signal has certain
sparse properties in the frequency domain. Additionally, the decomposed sub-signal is defined as the
mode as well as EMD. Moreover, each sub-signal is assumed to be concentrated around a corresponding
frequency centre. Thus, the bandwidth of each sub-signal can be chosen by utilizing the H1 Gaussian
smoothness for the transformed signal.

VMD first utilizes the Hilbert transform to convert each mode uk into an analytical expression uk
+

in a single-sided spectral domain to obtain the bandwidth of each mode function:

u+
k (t) =

(
δ(t) +

j
πt

)
∗ uk(t) (1)

After the Hilbert transformation, the frequency spectrum of each mode is shifted to the baseband
and the corresponding estimated centre frequency ωk is adjusted by using an exponential tuned term.
Subsequently, the bandwidth is estimated according to the Gaussian smoothness of the demodulated
signal by utilizing the squared L2-norm of the gradient [25]. Thus, the VMD process is realized by
solving a constrained variational problem [26]:

min
{uk},{ωk}

 K∑
k=1

‖∂

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e− jωkt

‖

2

2

, subject to
K∑

k=1

uk(t) = f (t) (2)

where f (t) is the target signal, {uk}: = {u1, . . . , uK} represents the set of the decomposed modes, and {ωk}:
= {ω1, . . . , ωK} represents the respective centre frequencies, respectively. Subsequently, the constraint
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optimization problem in Equation (2) can be converted into an unconstrained problem via a quadratic
penalty term and Lagrangian multipliers, as below:

L({uk}, {ωk},λ) = α
K∑

k=1
‖∂

[(
δ(t) + j

πt

)
∗ uk(t)

]
e− jωkt

‖
2

2
+ ‖ f (t) −

K∑
k=1

uk(t)‖
2

2
+

〈
λ(t), f (t) −

K∑
k=1

uk(t)
〉

(3)

To solve the original minimization problem, the alternate direction method of multipliers (ADMM)
is adopted to determine the saddle point of the augmented Lagrangian in a sequence of iterative
suboptimizations. [21] summarizes the details of the VMD algorithm. By this process, all of the
mode functions are obtained and updated by Wiener filtering to tune the centre frequency in the
spectral domain:

ûn+1
k (ω) =

f̂ (ω)−
∑

i<k ûn+1
i (ω)−

∑
i>k ûn

i (ω)+
λ̂n(ω)

2

1+2α(ω−ωn
k )

2 (ω > 0)

ωn+1
k =

∫
∞

0 ω
∣∣∣ûn+1

k (ω)
∣∣∣2dω∫

∞

0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(4)

The centre frequency ωk
n is calculated from the weighted centre of each mode in the spectral

domain: the centre represents the frequency of the least squares linear regression of the instantaneous
phase. Figure 1 presents the VMD algorithm as well as Appendix A.
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2.2. Permutation Entropy

Entropy is a conventional approach to indicate the degree of uncertainty for a random system
in the field of information theory. As entropy increases with the degree of randomness for an
observed system, it can be utilized in a quantitative analysis for feature extraction in the field of
PQD detection. Permutation entropy is one of most popular entropies in signal processing [22]. The
temporal information of the monitored object is recognized according to permutation entropy by
counting the ordinal patterns. Permutation entropy can estimate the complexity of a time-series after
comparing the neighbouring values. By definition, permutation entropy is calculated by the time-series
probability density function that is based on Shannon entropy. For a time domain series with a finite
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length of N, {x(t)} (t = 1, 2, . . . , N), a segment can be constructed by an m-order dimension. Each
m-order segment is then sorted in an ascending sequence that is defined as permutation pattern π. The
m-order segment X is defined in Equation (5) while considering the time delay α:

Xm
i =

{
x(i + α( j1 − 1)), x(i + α( j2 − 1)), · · · , x(i + α( jm − 1))

}
(5)

From practical experience, the time lag α is selected as 1 and the value m is from 3 to 7. Hence,
the number of m-order permutation patterns π is the factorial of m. The relative frequency of each
permutation pattern π is calculated in Equation (6):

p(π) =
H
{
Xm

i has typeπ, i
∣∣∣1, 2, . . . , N −m + 1

}
N −m + 1

(6)

where H represents a number. Subsequently, permutation entropy PE(m) is calculated while using the
probability density function p(π) for the relative frequency in Equation (7):

PE(m) = −
m!∑

i=1

p(πi) log(p(πi)) (7)

2.3. Fisher Score- Based Feature Selection Method

As mentioned above, a number of features can be extracted according to the behavior of the
statistical method. However, the extracted features are not all useful for the classification, which
might be redundant or irrelevant. It is essential to select the significant features and discard irrelevant
features to improve the accuracy of the classification. Meanwhile, low dimensionality is beneficial
to simultaneously reduce the computation burden and improve the efficiency of the classification
algorithm. Various methods, such as Laplacian Score, Fisher score, ReliefF, Wilcoxon rank, and Gain
Ratio, are valid for feature selection.

The Fisher score is one of the most popular algorithms for ranking the priority of features [27,28].
As a supervised algorithm, the Fisher score ranks extracted features by the Fisher criterion. In this
method, the extracted features can be quantified in discriminative scores for different classes. For
instance, the data set {fik(1), fik (2), . . . fik (N)} is defined as the kth feature in the ith class. First, the
mean value uik and standard deviation σ2

ik of the kth feature are calculated, as follows:

uik =
1
N

Ni∑
p=1

fik

σ2
ik =

1
N

Ni∑
p=1

( fik − uik)
2

(8)

Afterwards, the Fisher score value FSij between the ith and the jth class can be quantified,
as follows:

FS(k)
i j =

C∑
k=1

(
f k
i j − uk

i

)2

C∑
k=1

∑
yi∈k

(
f k
i j − uk

i

)2
(9)

As observed from the Fisher score expression, a large value represents a highly relevant correlation
of the kth feature between the ith and the jth classes. A larger Fisher score indicates that the
corresponding feature reveals more relevant distinction between the classes. The feature has a high
priority to be chosen for the training model.
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3. Proposed Method

Figure 2 presents the flowchart of the proposed method. The main scheme is implemented in four
steps: PQD generation in a computer simulation, feature extraction, optimization of feature selection,
and pattern recognition. In this paper, the proposed algorithm is designed to classify 13 classes of
different signals, which are generated as a pure sine signal, sag, swell, interrupt, harmonics, sag with
harmonics, swell with harmonics, interrupt with harmonics, flicker, oscillatory transient, impulsive
transient, periodic notch, and spike. Second, by utilizing VMD to decompose the target signal into
several IMFs, the feature vector is extracted in the statistical analysis method. Third, permutation
entropy is imported to filter the invalid IMFs. Subsequently, the Fisher score is adopted to eliminate the
redundant features to optimize feature selection. Finally, the classifier is realized by SVM to recognize
different PQD patterns.
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The training data is generated from computer simulation with the 13 classes mentioned above.
The dataset size of each class is 1000. After training, several analysis methods, such as confusion matrix
and receiver operating characteristic curve, are imported to evaluate the performance of the training
model, which is presented in Section 4.4. In another word, the artificial dataset of the simulation signals
is utilized for the training and developed set. Additionally, the trained model will be tested on the real
experimental setup to verify the effectiveness of the classifier, which is presented in Section 4.5.

As specific implementation, the data generation and preprocessing, including the VMD algorithm,
is realized on the Python script in the training stage. Subsequently, the public feature extraction
library, LibXtract, is integrated with the console application to extract features. Afterwards, the feature
heuristic selection and classifier model is trained on the server setup in Anaconda Python. In the
training stage, the fault simulator system and the data acquisition system are both integrated on
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the LabVIEW environment. In particular, the communication is realized by the data-logging and
supervisory control (DSC) packet. Additionally, the DAQmx driver packet realizes the data acquisition
system. The experimental voltage/current data in time domain is obtained and saved as csv format in
files. As an alternative method, the proposed algorithm can be realized on other platforms, such as
C++ and Matlab.

3.1. Computer Simulation of PQDs

In this work, a set of signals for training is artificially obtained through computer models.
The artificial PQD signals consist of 10 single types, including pure a sine signal, sag, swell, interrupt,
harmonics, flicker, oscillatory transient, impulsive transient, periodic notch, and spike. The multiple
types consist of sag with harmonics, swell with harmonics, and interrupt with harmonics. The
definition of the PQD signals with the parameter variations is based on the IEEE-1159 standard [29],
as presented in Table 1. Waveform signals with 10 cycles are generated for 2000 points at a 10 kHz
sampling frequency. The parameter A represents the normalized amplitude at a constant value. The
parameter α represents the intensity levels of the sag, swell, and interruption. The expression u(t)
denotes the time step function.

Table 1. Mathematical model of the power quality disturbances.

Label PQD Type Mathematical Mode Parameters

C1 Pure Sine y(t) = A sin(ωt) A = 1
ω = 2π ∗ 50

C2 Sag y(t) = A[1− α(u(t− t1) − u(t− t2))] sin(ωt) 0.1 ≤ α ≤ 0.9
T ≤ t2 − t1 ≤ 9T

C3 Swell y(t) = A[1 + α(u(t− t1) − u(t− t2))] sin(ωt) 0.1 ≤ α ≤ 0.8
T ≤ t2 − t1 ≤ 9T

C4 Interrupt y(t) = A[1− α(u(t− t1) − u(t− t2))] sin(ωt) 0.9 ≤ α ≤ 1;
T ≤ t2 − t1 ≤ 9T

C5 Harmonics y(t) = A[α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)]
0.05 ≤ α3,α5,α7 ≤ 0.15∑
α2

i = 1

C6 Flicker y(t) = A
[
1 + α f sin(βωt)

]
sin(ωt)

0.1 ≤ α ≤ 0.2
5 ≤ β ≤ 20Hz

C7 Oscillatory transient y(t) = A
[
sin(ωt) + α−c(t−t1)/τ sin(ωn(t− t1)t)(u(t1) − u(t2))

] 0.1 ≤ α ≤ 0.8
0.5T ≤ t2 − t1 ≤ 3T
8ms ≤ τ ≤ 40ms
300 ≤ fn ≤ 900Hz

C8 Impulsive transient y(t) = A[1− α(u(t− t1) − u(t− t2))] sin(ωt) 0 ≤ α ≤ 0.414
0.05T ≤ t2 − t1 ≤ 0.1T

C9 Periodic notch
y(t) = sin(ωt) − sign(sin(ωt))

×

{
9∑

n=0
K × [u(t− (t1 − 0.02n)) − u(t− (t2 − 0.02n))]

} 0 ≤ t1, t2 ≤ 0.5T
0.01T ≤ t2 − t1 ≤ 0.05T
0.1 ≤ K ≤ 0.4

C10 Spike
y(t) = sin(ωt)+sign(sin(ωt))

×

{
9∑

n=0
K × [u(t− (t1 − 0.02n)) − u(t− (t2 − 0.02n))]

} 0 ≤ t1, t2 ≤ 0.5T
0.01T ≤ t2 − t1 ≤ 0.05T
0.1 ≤ K ≤ 0.4

C11 Sag with harmonics y(t) =
A[1− α(u(t− t1) − u(t− t2))][α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt)]

0.1 ≤ α ≤ 0.9;
T ≤ t2 − t1 ≤ 9T
0.05 ≤ α3,α5,α7 ≤ 0.15;∑
α2

i = 1

C12 Swell with harmonics y(t) =
A[1 + α(u(t− t1) − u(t− t2))][α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt)]

0.1 ≤ α ≤ 0.9
T ≤ t2 − t1 ≤ 9T
0.05 ≤ α3,α5,α7 ≤ 0.15∑
α2

i = 1

C13 Interrupt with harmonics y(t) =
A[1− α(u(t− t1) − u(t− t2))][α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt)]

0.9 ≤ α ≤ 1
0.05 ≤ α3,α5,α7 ≤ 0.15∑
α2

i = 1

In this work, all of the studied cases are based on pure normal-class sinusoidal signals that can
vary their amplitude within 10% of their ideal magnitude. Additionally, the probability of a signal
containing noise must be considered. Therefore, the simulated signal is coupled with Gaussian noise
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contamination at different signal-to-noise ratios (SNRs) in this paper. The SNR is defined, as follows,
where Ps represents the original signal power and Pn represents the noise power correspondingly.

SNR = 10 ∗ log
( Ps

Pn

)
(10)

3.2. PQD Feature Extraction

For the recognition of different PQD patterns, it is essential to utilize a classifier to analyze the
signal that is obtained from the voltage or current sensors. However, it is difficult to identify the
time-series signal directly for common classification methods. As feature extraction plays an important
role in the pattern recognition schemes, VMD is utilized to decompose the obtained signal into several
IMFs for potential feature extraction in this paper. The sub-mode decomposed by VMD contains a
specific spectrum, which can accurately trace the signal changes of the power quality. Thus, signal
decomposition can effectively eliminate the impact of noise and separate the useful components in
high level modes. As mentioned above, the decomposition results depend on the mode number, which
is defined as K. When considering the harmonic components that exist in the PQD signal, the value of
K is selected as 5. Additionally, parameter α of the data-fidelity constraint is selected as 2500 based on
the experimental trial. Subsequently, by generating artificial PQD signals, the IMF is decomposed by
VMD. After the decomposition, the statistical features are calculated and extracted from each mode in
the time domain. Table 2 marks and lists all of the features and the corresponding labels.

Table 2. Statistical parameters for feature extraction.

No. Statistical Feature Expression

1 RMS RMS =

√
1
K

K∑
k=1

[x(k)]2

2 Mean µ =
K∑

k=1
[x(k)]/K

3 Standard Deviation σ =

√
K∑

k=1
[x(k) − x]2/(K − 1)

4 Variance var =
K∑

k=1
[x(k) − x]2/K

5 Range range = max(x(k)) −min(x(k))

6 Kurtosis KT =
∑K

k=1 [(x(k) − x)/σ]4/K

7 Skewness SK =
∑K

k=1 [(x(k) − x)/σ]3/K

8 Average Deviation σ =
∑K

k=1

∣∣∣x(k) − x
∣∣∣/K

9 Permutation Entropy PE = −
m!∑

i=1
p(πi) log(p(πi))

With the proposed feature extraction method, the PQD signals are decomposed into five IMFs.
Subsequently, the statistical feature vectors are given as the following equations, where F1, F2, . . . , F9



Appl. Sci. 2019, 9, 4901 9 of 22

represent the feature vectors of RMS, standard deviation, variance, range, skewness, kurtosis, mean,
average deviation, and permutation entropy, respectively.

F1 = [RMS1 RMS2 RMS3 RMS4 RMS5]
F2 = [µ1 µ2 µ3 µ4 µ5]

F3 = [σ1 σ2 σ3 σ4 σ5]

F4 = [var1 var2 var3 var4 var5]

F5 = [range1 range2 range3 range4 range5]

F6 = [KT1 KT2 KT3 KT4 KT5]

F7 = [SK1 SK2 SK3 SK4 SK5]

F8 = [σ1 σ2 σ3 σ4 σ5]

F9 = [PE1 PE2 PE3 PE4 PE5]

(11)

The data must be normalized between 0 and 1 by using the min-max normalization method in
Equation (12), where Zi is the normalized data, Fmax is the maximum data of the vector, and Fmin is the
minimum data, respectively, since the elements of the extracted feature sets have different units.

Zi =
Fi − Fmin

Fmax − Fmin
(12)

After normalization, the feature set F is obtained while using Equation (13).

F = [F1 F2 F3 F4 F5 F6 F7 F8 F9 ] (13)

3.3. PQD Feature Heuristic Selection

The original feature vectors in high dimensions contain not only useful information, but also
redundant messages. As a result, the original high dimensional feature vectors would lead to the waste
of computer resources and a decrease in accuracy. In this paper, a two-stage heuristic feature selection
algorithm is adopted to filter relevant features for the classification of PQDs. When considering the
function of the VMD method, some decomposed IMFs may be the separated noise, which contains
little useful information. As a result, it is obligatory to remove these feature vectors extracted from the
useless IMFs. Further, permutation entropy is imported by estimating the time-series complexity of
the obtained IMF to select IMFs. In this work, a hard threshold of permutation entropy is computed to
select valid IMFs, which is set as 0.6. In other words, if the permutation entropy of the IMF is larger
than 0.6, the decomposed IMF is treated as chaotic with less useful information [30].

In the second stage, the Fisher score is adopted to filter the relevant features. As described
above, if the feature is highly relevant, the corresponding Fisher score is relatively large. Hence, the
classification accuracy would achieve perfection. On the contrary, if the feature shows irrelevance for
the classification result, the Fisher score is near zero. In this circumstance, the classifier would have
poor performance. In addition, one point should be noted: the threshold selection of the Fisher’s score
is very important. In this study, the threshold value of the Fisher score is set as 0.25 and Section 4.3
discusses the reason of the threshold selection.

3.4. Multiclass Classification for PQDs

After feature selection, a support vector machine (SVM) is utilized as the classifier to identify the
pattern of PQDs. It is essential to adjust the strategies that are used for multiclass classification since
the original SVM was designed for binary classification. When compared with binary classification
problems, multi classification is more complex and it contains large datasets [31]. In this paper, the
strategy “one-versus-rest” (OVR) is adopted to expand the SVM for multiclass classification. For an
N-class problem, N hyperplanes are generated for N classes. When generating the ith hyperplane of
the ith class, SVM treats the ith class as the positive case. Meanwhile, the rest are treated as a negative
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class. During the classifying process, all of the samples are required in each quadratic programming
problem. The new sample is assigned to the corresponding class by calculating the closest distant to
the hyperplane.

Figure 3 gives an example of the OVR strategy. When considering a data set with four classes
marked C1, C2, C3, and C4, the OVR strategy treats each class as the positive example and the rest as
negative examples. Therefore, four classifiers will be trained to give the predicted result. If there is
only one classifier like f 3 predicts the sample as positive, the final result is determined. Otherwise, it is
usually referred the forecast confidence given by each classifier. Subsequently, choose the maximum
value as the final result.
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In this paper, the radial basis function (RBF) is chosen as the kernel function of the SVM, because
the selected features are nonlinear and the quadratic programming problem is not linearly separable. By
choosing a nonlinear kernel, the SVM model will build a nonlinear classification boundary. Furthermore,
the penalty parameter C and the adjustable parameter γ in the SVM with an RBF kernel are optimized by
conducting the grid search algorithm. In particular, C is the penalty coefficient, which is representative
of the tolerance for error. The higher C is, the less error is tolerated, which makes the classifier model
over-fit. The smaller C is, the easier it is to under-fit. If C is too large or too small, the generalization
ability of the classifier would be poor. Parameter γ comes with the RBF function when it is selected as
kernel. It implicitly determines the distribution of data after mapping to the new eigenspace. The
larger the gamma is, the less the support vector is, the smaller the gamma value is, and the more the
support vector is.

4. Experimental Results and Discussion

4.1. Experimental Setup

A microgrid platform is built in the laboratory environment to verify the proposed method, as
shown in Figures 4 and 5. The microgrid platform is designed in a double layer structure with a flexible
topology that contains flexible line connection, distributed generations like PV array and wind turbine,
line impedance simulators, including resistance, and inductive and capacitive loads (100 kW RLC
Load). To be specific, the distributed generations consist of centralized inverters for the photovoltaic
roof, microinverters for the photovoltaic roof, a photovoltaic simulator, a diesel generator simulator,
and a wind turbine simulator. Moreover, the load of the microgrid platform consists of lighting systems,
an induction motor, charging piles for electric vehicles, and a 100 kW programmable PLC load. The
microgrid platform is designed to operate at 400 V three phases with 50 Hz. Two sub-microgrid layers
are coupled with bidirectional converters, which allow for the electrical energy to be transmitted in
bidirectional flows. These sub-microgrid layers are connected to the bulk power system by deploying
the three phases AC bus. Moreover, the microgrid platform is able to simulate different line faults to
recur by utilizing the line impedance simulator under the logical program control.
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4.2. PQD Signal Decomposition and Detection

An artificial signal that represents an interruption with harmonics will be discussed, as follows, in
order to verify the effectiveness of VMD. Figure 6 shows the PQD type of the interruption with third
and fifth harmonics in the time series. As seen, the electric power is interrupted from 0.035 s to 0.117
s. Meanwhile, the obtained signal is contaminated with the third and fifth harmonics. Additionally,
white noise is added with 25 dB SNR to represent the real signal.
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Figure 6. Original signal of interruption with harmonics.

Figure 7 presents the different decomposition result of VMD, and Figure 7a–d represent the
decomposed number K = 3, 4, 5 and 6, respectively. When K = 3 in Figure 7a, it appears that the
PQD signal is under-decomposed. Although the fundamental component is obtained in the first IMF,
the third and fifth harmonics mix in the second IMF. Figure 7b shows the same result. When K = 5
in Figure 7c, the first three IMFs are decomposed as fundamental components, the third and fifth
harmonics, effectively. Interestingly, the fourth IMF presents two mutation pulses for detecting the start
and the end of the PQD. By setting an appropriate threshold, the start and the end of the PQD can be
easily detected and implemented on the hardware with less computational cost. Meanwhile, Figure 7d
also shows a similar result when K = 6, which reveals that the PQD signal is over-decomposed, because
the other two IMFs share the noise component. Nevertheless, this situation is less harmful than the
under-decomposed situation, since feature selection in the next step will help to filter redundant
IMFs. Moreover, from Figure 7c, it is apparent that the first four IMFs carry valid information and
the remaining IMFs are invalid. Therefore, it is obligatory to consider these four IMFs for feature
extraction. Meanwhile, the permutation entropy of each IMF is 0.231, 0.357, 0.442, 0.553, and 0.689,
which verifies the observation results.

Additionally, as referred to in Ref. [24], the wavelet packet decomposition (WPD) is imported for
comparison. Figure 8a,b present the decomposition result by WPD when the decomposition level is 2
and 3, respectively. In Figure 8a, since the decomposition level is 2, the corresponding wavelet node is
4, which reveals that WPD can only filter noise, but the first node still retains the main component of
the original signal. Though the number of the wavelet nodes increases to 8, it still reveals a similar
result in Figure 8b. By contrast, VMD performs better, even if the decomposed number K is not suitable
for decomposition. The reason for this phenomenon is that each node of the wavelet packet can be
approximately treated as a band-pass filter at the specific frequency range. As mentioned in Section 3.1,
the sampling frequency is selected as 10 kHz. For the two levels of WPD that are shown in Figure 8a,
the band width of each node is approximately 1.25 kHz. Meanwhile, for the three levels of WPD that
are shown in Figure 8b, the band width of each node is approximately 0.625 kHz. However, the PQD
signal is defined as the interruption of the third and fifth harmonics, where sinusoidal components
with frequencies of 50 Hz, 150 Hz, and 250 Hz exist. Hence, all of these components are retained and
mixed in the first node, so the WPD does not seem to work effectively. Based on the decomposition
result, VMD is adaptive and robust for PQD signal decomposition, especially for recursive calculation
and mode mixing problems.
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Figure 7. Power quality disturbances (PQD) signal decomposition results by variational mode
decomposition (VMD). (a) When K = 3 by VMD; (b) when K = 4 by VMD; (c) when K = 5 by VMD; and,
(d) when K = 6 by VMD.
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4.3. Feature Selection Analysis

The Fisher score with permutation entropy, which is described in Section 3.3, is utilized to filter
redundant features as a feature heuristic selection method. Specifically, the embedded dimension
parameter of permutation entropy is set to 6. Based on the experimental trial, the time delay parameter
of permutation entropy is set to 1. The hard threshold of permutation entropy is set to 0.6. Figure 9
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presents the correlation of the top 16 selected features, which represent the IMF2 RMS, IMF2 standard
deviation, IMF2 variance, IMF2 average deviation, IMF2 kurtosis, IMF2 skewness, IMF2 range, IMF2
permutation entropy, IMF1 permutation entropy, IMF1 variance, IMF1 standard deviation, IMF1 RMS,
IMF1 average deviation, IMF1 kurtosis, IMF1 range, and IMF4 permutation entropy. As shown, each
feature is imported into the training dataset to determine the classification accuracy, with the aim of
showing the effectiveness of the feature selection method. The experiments are conducted 50 times to
avoid errors and stochastic disturbances. Subsequently, the accuracy results are generated by averaging
the calculations. If the feature is irrelevant to the target class, the corresponding Fisher’s score is nearly
zero. Hence, the average accuracy of the classification would be poor. Conversely, if the feature is
highly relevant, the corresponding Fisher score is relatively large. Thus, the classifier that is constructed
by relevant features would achieve perfect accuracy. Moreover, the threshold value of the selected
feature is very important. Threshold selection is discussed in the following paragraph.
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Figure 9. Correlation between features and classification accuracy.

In this case, the SVM classifier is adopted to focus on the effects of the selected features. To be
specific, the sample data sets are partitioned into 10 equal folds, and the tests were performed in
10 iterations. The number of each test instance is 1000. For the SVM classifier, the cost values C and γ

of the SVM model are set to 100 and 0.02, respectively, and the linear kernel is selected as the kernel
function. The classification threshold is set to 0.5. For each PQD class, the data sets were split into the
training data sets and the test data sets. The ratio of the samples for the training and test is 4:1.

Two feature ranking methods, Fisher’s score only and Fisher’s score with the permutation
algorithm, were used for feature selection for comparison. Figure 10a,b show the precision and recalls
results by extracting different features according to the Fisher’s score only and Fisher’s score with the
permutation algorithm, respectively. The average precision and average recall ratio reached 96.5%
when the top 24 ranked features were selected by the Fisher’s scoring algorithm. Similarly, the average
precision and the average recall ratio according to the Fisher’s score with the permutation algorithm
achieved 97.6% when the SVM classifier was trained by feeding the 16 top-ranked features. However,
the SVM classifier that was trained by the Fisher’s score with the permutation selection algorithm
showed better performance. Moreover, it cost less dimensions for feature vectors.

Interestingly, as observed from the average precision and the average recall ratio, the accuracy was
initially increased with the increased number of top-ranked features, because the decision boundary of
the SVM hyperplane is more clearly separated by increasing the relevant feature vectors. However,
once the feature dimension reached the proper ranking feature point, the performance of the classifier
continued to decrease due to redundant features. After a decrease, the average precision and average
recall ratio increased again, because the SVM imported the slack variable and the penalty factor to
construct the decision boundary in soft intervals, which improved the robustness and generalization of
the classifier.
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Figure 10. Identification accuracy results with different numbers of selected features. (a) Training
result only by Fisher’s scoring method; and, (b) training result by Fisher’s score and the permutation
entropy method.

The accuracy of the SVM classifier is compared under different ratios of training and testing sets to
further investigate the effectiveness of the heuristic selection method. The percentages of the training
set were increased by 5%, 10%, 15%, 20%, 25%, 30%, and 35%. 1000 trials were performed for each
training set percentage to reduce random effects. Figure 11a,b presents the bar graphs of the average
accuracy for different percentages of training and testing sets. The error standard deviations are also
marked in figures. As discussed in Figure 11, the top 24 features are selected during training and
testing. Overall, the training and test accuracies with heuristic selection were both better than the
values without selection. When the training percentage is set as 5%, the training accuracy is larger than
the testing accuracy, as shown in Figure 11a as well as Figure 11b, which reveals that the training model
is underfitting. With the increased percentage of the training sets, the testing accuracy is enhanced.
Meanwhile, the classification error is decreased. When the training percentage increases to 30%, the
training and test accuracies approach one another when the feature heuristic selection method is used.
Nevertheless, neither the training nor the test accuracy are consistent, regardless of the increasing
percentages of the training set.
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Figure 11. Accuracy comparison with different training percentages. (a) classification accuracy with
feature heuristic selection; and, (b) classification accuracy without feature selection.

4.4. Performance Analysis

The performance of the proposed method can be depicted by the following values: precision
for the correctly identified type of PQD, Poccur; recall for the correctly identified type of PQD, Roccur;
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precision for the incorrectly identified type of PQD, Pother; and, recall for the incorrectly identified type
of PQD, Rother.

Pde f ect =
TP

TP+FP
Rde f ect =

TP
TP+FN

Pother =
TN

TN+FN
Rother =

FP
FP+TN

Accuracy = TP+TN
TP+FP+TN+FN × 100%

(14)

As shown in Equation (14), TP represents the number of true positive instances, which means that
the estimated PQD type is correctly classified. FP represents the number of false positive instances,
which means that another PQD is classified incorrectly as the estimated PQD type. FN represents
the number of false negative instances, which means that the estimated PQD type is incorrectly
classified as another PQD type. TN represents the number of true negative instances, which means
that another PQD type is correctly identified as the corresponding PQD. Table 3 presents the confusion
matrix of the PQD classification for the validation data sets. The classification results achieve high
accuracy, as observed from the confusion matrix. However, there are still some mistakes due to the
similar characteristics of some PQD types. For instance, two C4 (Interrupt Disturbances) samples are
incorrectly assigned to C2 (Sag). Meanwhile, three C2 samples are also incorrectly assigned to C4,
because the formula definitions of C2 and C4 are the same, and the only difference between these two
classes is parameter α. As referred to above in Table 2, parameter α randomly varies over a range. To
be specific, for C2 (sag), the range of parameter α is from 0.1 to 0.9. For C4 (interrupt) and the range of
parameter α is from 0.9 to 1. When parameter α is selected to be near for both classes, the features
that were extracted from the signal are also similar. In this circumstance, it would lead to an incorrect
classification. The results for C11 (Sag with harmonics) and C13 (Interruption with harmonics) also
verify this situation.

Table 3. Confusion matrix of PQD classification.

Assigned Class
True Class

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 418 0 0 0 0 0 0 0 0 0 0 0 0
C2 0 394 0 4 0 0 0 0 0 0 0 0 0
C3 0 0 390 0 0 0 0 0 0 0 0 0 0
C4 0 5 0 411 0 0 0 0 0 0 0 0 0
C5 0 0 0 0 397 0 0 0 0 0 0 0 0
C6 0 0 0 0 0 427 0 0 0 0 0 0 0
C7 0 0 0 0 0 0 407 0 0 0 0 0 0
C8 0 0 0 0 0 0 0 396 0 0 0 0 0
C9 0 0 0 0 0 0 0 0 407 0 0 0 0

C10 0 0 0 0 0 0 0 0 0 406 0 0 0
C11 0 0 0 0 0 0 0 0 0 0 401 3 4
C12 0 0 0 0 0 0 0 0 0 0 3 413 0
C13 0 0 0 0 0 0 0 0 0 0 3 0 398

The receiver operating characteristic (ROC) curve is adopted to depict the tradeoff relationship
between the true positive rate and the false positive rate to evaluate the performance of the proposed
classifier, as shown in Figure 12. Ten OVR classifiers were constructed due to the ten PQD types
since the “one-versus-rest” (OVR) structure was utilized for multiclass classification in this paper.
Subsequently, ten ROC curves were drawn to represent the true positive rate versus the false positive
rate at various threshold values of θ. To be specific, the threshold varied from 0 to 1 with a step of
0.02. By giving the threshold θ, the average values of the true positive rate and false positive rate
were calculated. The areas of the four ROC curves from the C1 class to the C10 class were 0.979, 0.958,
0.949, 0.963, 0.957, 0.978, 0.947, 0.965, 0.986, and 0.987. For the PQD classification, a large false positive
rate would cause false alarms, which would result in unexpected or even mistaken strategy responses
for power grids. More seriously, a large false positive rate would lead to worse consequences in the
distribution generation systems with high penetration. By contrast, a small true positive rate would
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degrade the usability of the PQD detecting system. Being observed from the ROC curves, the proposed
method has enough flexibility to satisfy various requirements, either for the disturbance-detected
sensitivity or specificity.Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 22 
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4.5. Accuracy Under a Real Noisy Environment

The signals in the real power systems are contaminated with the high probability of containing
noise. Therefore, an artificial test signal is constructed with different intensities of white Gaussian
noise (AWGN). The intensity of the white Gaussian noise is given as the signal to noise ratio (SNR),
which is defined in Equation (10), where Ps and Pn are the power of the signal and noise, respectively.

Table 4 shows the performance of the proposed classifier under different SNRs between 20 and
50 dB, which is conducted on the real microgrid platform. The robustness of the proposed algorithm is
tested for 500 test samples for each PQD class in the presence of noise. The type of PQD events and the
number of PQD events are selected in random series during the test stage. Overall, the classification
accuracy decreases as the SNR level decreases. Nevertheless, the classification accuracy still reaches
greater than 94%, even if the SNR drops to 20 dB. The results demonstrate that the SVM classifier
of the proposed algorithm is less sensitive in a noisy environment. The reason that the classifier is
insensitive to noise is attributed to the satisfactory performance of the algorithm. Each mode has
a central frequency with a narrow bandwidth since VMD decomposes the signal into band-limited
modes by updating with Wiener filtering. In this method, the disturbance signal is effectively separated
from noise, which benefits the procedure of feature extraction for the SVM classifier.

Table 4. Performance of PQD classification accuracy under a noisy environment.

Assigned Class
Signal to Noise Ratio

20 dB 30 dB 40 dB 50 dB

C1 100% 100% 100% 100%
C2 95.4% 98.2% 98.8% 99.2%
C3 99.2% 100% 100% 100%
C4 100% 100% 100% 100%
C5 94.2% 97.8% 97.8% 99.6%
C6 94.4% 98.0% 99.6% 100%
C7 97.6% 99.6% 99.6% 99.6%
C8 100% 100% 100% 100%
C9 100% 100% 100% 100%
C10 98.0% 98.4% 99.8% 100%
C11 95.4% 95.8% 97.2% 98.8%
C12 96.2% 96.6% 97.6% 98.4%
C13 95.6% 97.8% 98.6% 99.2%

Overall 97.38% 98.63% 99.15% 99.60%
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5. Conclusions

This paper proposes a novel approach for PQD detection and classification. At the first stage, the
proposed algorithm takes advantage of VMD to decompose the obtained signal into a series of intrinsic
mode functions. Subsequently, the statistical features, such as RMS, standard deviation, and multiscale
moments, are extracted from each IMF. Subsequently, a two-stage heuristic feature selection algorithm
is introduced to rank the dominant features based on permutation entropy and the Fisher score. Finally,
the reconstructed feature vectors are imported into a multiclass SVM classifier for training to identify
the different types of PQD signals. The artificial dataset of the PQD signals is utilized for the model
training and developing in order to improve the robust of the PQD classifier. Subsequently, the trained
model is tested on the real experimental setup. Several analysis methods, such as confusion matrix
and receiver operating characteristic (ROC) curve, are imported and analyzed the performance of the
trained classifier model. Afterwards, the trained model is tested on the real microgrid platform to
verify the effectiveness of the proposed algorithm.

The conclusions of this research are summarized, as follows. Signal preprocessing is obligatory
at the first stage. The VMD process is beneficial for both signal de-noising and PQD detection. The
permutation entropy analysis had the ability to identify useful IMFs that were obtained from VMD,
which is vital in the feature selection process. By identifying the dominant features, the accuracy and
the computational efficiency are both improved. Particularly, permutation entropy combined with
the Fishe score showed better performance in ranking the relevant features. According to the real
experimental data analysis, the proposed approach showed enough flexibility under different noisy
environments, either for PQD detection sensitivity or specificity.
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Appendix A

In order to present the VMD algorithm, we introduce an application example on a simple signal.
The artificial signal is consist of three sine signals, which is defined as:

f (t) = cos(2π f1t) + 0.25 cos(2π f2t) + 0.16 cos(2π f3t) (A1)

where f 1 = 3 Hz, f 2 = 12 Hz, f 3 = 28 Hz, and the sample frequency is 1000 Hz, sampling time is 1 s. It is
obvious that the artificial signal can be decomposed into three modes. As it mentioned above, the
decomposition results depend on the mode number, which is defined as K. Therefore, we select K as 3.
The decomposition result is presented in Figure A1. Observed from Figure A1, the artificial signal is
decomposed effectively, where three modes are clearly separated.
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Figure A1. The decomposition result by VMD when K = 3 and α = 2500. (a) The original signal; (b) No.
1 mode component; (c) No. 2 mode component; (d) No. 3 mode component.

Then we would like to discuss the value choice of K. If K is too small (K = 2), the signal is
underbinning. Then the decomposed results are shown in Figure A2. It is apparent that each mode is
either shared by neighboring modes.
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Figure A2. The decomposition result by VMD when K = 3. (a) No. 1 mode component; (b) No. 2
mode component.

If K is too small (K = 4), the signal is overbinning. Then the decomposed results are shown in
Figure A3. It seems that each mode is separated clearly as pure sine signal. However, compared with
Figure A3a,b, the frequencies of two modes are same, which is like mode duplication.



Appl. Sci. 2019, 9, 4901 20 of 22

Based on what discussed above, we can see that the VMD algorithm is able to decomposed
signal in an adaptive method. As same as a classical shortcoming of many segmentation algorithms,
it is vital to preset the number of clusters in initial stage. For the VMD algorithm, the choice of K is
important. Moreover, the parameter α of the data-fidelity constraint, which influences the tightness of
the band-limits, is also important in the decomposition. The details of the VMD parameters can be
referred in [19].
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Figure A3. The decomposition result by VMD when K = 3 and α = 2500. (a) The original signal; (b) No.
1 mode component; (c) No. 2 mode component; (d) No. 3 mode component.
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