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Abstract: The cloud computing paradigm, as a novel computing resources delivery platform,
has significantly impacted society with the concept of on-demand resource utilization through
virtualization technology. Virtualization enables the usage of available physical resources in a way
that multiple end-users can share the same underlying hardware infrastructure. In cloud computing,
due to the expectations of clients, as well as on the providers side, many challenges exist. One of
the most important nondeterministic polynomial time (NP) hard challenges in cloud computing
is resource scheduling, due to its critical impact on the cloud system performance. Previously
conducted research from this domain has shown that metaheuristics can substantially improve cloud
system performance if they are used as scheduling algorithms. This paper introduces a hybridized
whale optimization algorithm, that falls into the category of swarm intelligence metaheuristics,
adapted for tackling the resource scheduling problem in cloud environments. To more precisely
evaluate performance of the proposed approach, original whale optimization was also adapted for
resource scheduling. Considering the two most important mechanisms of any swarm intelligence
algorithm (exploitation and exploration), where the efficiency of a swarm algorithm depends heavily
on their adjusted balance, the original whale optimization algorithm was enhanced by addressing
its weaknesses of inappropriate exploitation–exploration trade-off adjustments and the premature
convergence. The proposed hybrid algorithm was first tested on a standard set of bound-constrained
benchmarks with the goal to more accurately evaluate its performance. After, simulations were
performed using two different resource scheduling models in cloud computing with real, as well as
with artificial data sets. Simulations were performed on the robust CloudSim platform. A hybrid
whale optimization algorithm was compared with other state-of-the-art metaheurisitcs and heuristics,
as well as with the original whale optimization for all conducted experiments. Achieved results in all
simulations indicate that the proposed hybrid whale optimization algorithm, on average, outperforms
the original version, as well as other heuristics and metaheuristics. By using the proposed algorithm,
improvements in tackling the resource scheduling issue in cloud computing have been established,
as well enhancements to the original whale optimization implementation.

Keywords: cloud computing; resource scheduling; metaheuristics; swarm intelligence; whale
optimization algorithm; hybridization

1. Introduction

One of the most important benefits of cloud computing is on-demand provisioning of
requested services and resources over high speed computer networks. With permanent growth
and advancements of network technologies and infrastructure, cloud computing has demonstrated
superior performance in serving different kinds of large-scale and complex end-users’ (clients’) tasks.
Heterogeneous clients’ requirements are supported by sophisticated development platforms and
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applications, along with state-of-the-art physical and virtualized hardware. At the current stage of
technology advancements, cloud computing and the internet of things (IoT) have become essential
concepts that set new goals for industry innovations [1].

One of the most important challenges in the cloud computing domain is resource scheduling.
When performing resource scheduling, at least a satisfying level of quality of service (QoS) should be
maintained by utilizing proper hardware infrastructure and algorithms. A component of the cloud
infrastructure, usually referred as the broker in modern literature, is responsible for mapping requested
end-users’ tasks to the available virtualized hardware that is in most cases implemented in a form
of virtual machines (VMs). The broker performs mapping by executing the scheduling algorithm.
With the growth of the number of submitted tasks and the number of available resources, it becomes
extremely difficult to map tasks to the appropriate VMs for execution. If an inappropriate scheduling
algorithm is used, some VMs may be over-utilized or under-utilized, and the implication of such
scenarios is performance degradation of the cloud system as a whole. The resource scheduling problem
belongs to the group of NP (nondeterministic polynomial time) hard optimization problems.

It should be noted that in the recent computer science literature, the terms task and cloudlet
scheduling are also adopted for the process of mapping submitted end-users’ task to the available VMs.

Many algorithms and techniques for resource scheduling in cloud computing environments are
available. For example, in some systems, classical (deterministic) algorithms are used. However,
classical optimization approaches are not efficient due to the fact that deterministic algorithms
are not capable of generating satisfying, nor optimal or near optimal solutions within a reasonable
computational time for NP hard challenges. Due to the search space complexity and exponential
number of possible solutions, classical approaches are not able to evaluate every potential solution
from the search domain in polynomial time.

When tackling NP hard tasks, such as cloud computing resource scheduling, instead of using
classical optimization techniques, methods that evaluate only promising parts of the search space (not
the whole search domain) by using a smart mechanism when choosing which solutions to evaluate
next, should be utilized. One of the most efficient ways to tackle the resource scheduling problem is
the implementation of heuristics and metaheuristics based approaches that do not guarantee finding
an optimal solution, but in practice, they proved able to generate satisfying solutions within the
polynomial time.

According to the literature survey, metaheuristics, especially those that are inspired by nature
(nature-inspired, bio-inspired), have proven to be robust approaches that can efficiently tackle the
cloud computing resource scheduling issue [2–4].

One class of the most well-known metaheuristics that are inspired by natural phenomena is
swarm intelligence. Swarm intelligence approaches are population-based, stochastic and iterative.
Many real-life problems, such as the localization problem in wireless sensor networks (WSNs) [5,6],
drone placement [7], robot path planning [8,9], the network planning problem in radio frequency
identification (RFID) networks [10], machine learning optimization [11], image processing [12],
computer aided diagnostic systems [13–15], portfolio optimization [16], and more have been
successfully tackled by utilizing swarm intelligence. In addition to numerous applications, swarm
intelligence algorithms have been constantly modified, hybridized [17–19] and parallelized [20,21]
with the aim of achieving the best possible results.

1.1. Objectives, Contributions, Question and Methodology of the Proposed Research

In this paper we propose an implementation of the enhanced whale optimization algorithm
(WOA) adapted for tackling the resource scheduling challenge in cloud computing environments.
We improved the basic WOA approach by performing hybridization with the artificial bee colony
(ABC) and firefly algorithms (FA), which are also categorized as swarm intelligence metaheuristics.

The WOA was created by Mirjalili and Lewis in 2016 [22] and shortly after many modified and
improved WOA versions emerged [23–25]. Some WOA adaptations for resource scheduling in cloud
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computing can be found in the literature survey [26]. However, a hybrid between the WOA and ABC
and FA metaheuristics, as is proposed in this paper, has never been implemented and tested before on
any problem.

The main motivation behind the proposed research is the fact that swarm intelligence
metaheuristics proved to be robust and effective optimization methods for solving many different types
of real-environment NP hard optimization problems [27,28], as well as the fact that swarm intelligence
algorithms have already been successfully applied to various models (single and multi-objective) of
resource scheduling in cloud computing [2,29,30].

The main objective of the research proposed in this paper is to try to establish further
enhancements in tackling the resource scheduling challenge in cloud computing environments by using
swarm intelligence approaches. Guided by the main objective, we have implemented a hybridized
WOA metaheuristic and have validated its performance for two resource scheduling models. The
first model is single-objective, and aims to minimize the makespan indicator, while the second model
belongs to the group of multi-objective optimization, where makespan and total cost objectives were
taken into consideration.

The secondary objective of the proposed research is an attempt to address observed deficiencies
of the original WOA implementation by performing hybridization with other state-of-the-art swarm
intelligence algorithms. For this purpose, as well as for the goal of establishing more accurate
evaluation of the proposed hybrid WOA’s performance, we first tested our devised approach on a larger
set of bound-constrained benchmarks and compared the obtained solutions’ quality and convergence
speed with the results of the original WOA implementation against the same test instances.

It has to be noted that the authors have conducted research with improved and hybridized swarm
intelligence algorithms before [31,32], and that they have also implemented some swarm intelligence
approaches for resource scheduling tasks in cloud computing environment [4,33]. Hence, the research
presented in this paper is the result of authors previous experience in this domain, as well as their
recent work with WOA metaheuristic and resource scheduling problems in cloud computing.

According to the research objectives, the basic research question addressed in this paper is: “Is
it achievable to establish further improvements in solving the cloud computing resource scheduling
problem by using swarm intelligence algorithms?” The second research question, that falls into domain
of bio-inspired metaheuristics, can be formulated as follows: “Is it possible to improve performance of
original WOA approach by performing hybridization with other swarm algorithms that proved to be
efficient optimization methods?”

In the presented research, a simulation in the standard environment with classic benchmark
instances was utilized as the research methodology. Three types of simulations were performed. The
first simulation was conducted for standard unconstrained benchmark problems, while the second
and the third were performed by using two different resource scheduling models in cloud computing
with real (second simulation), as well as with artificial (third simulation) data sets.

The main contributions of the proposed research can be differentiated into two groups:
enhancements of resource scheduling in cloud computing and improvements by hybridization of the
WOA metaheuristic.

Resource scheduling simulations were conducted in a robust and adaptable CloudSim framework
environment. All the necessary details and inner workings of the proposed research, including the
settings of the algorithms’ control parameters, simulation framework settings and utilized data sets,
are fully provided in this paper, hence the researchers who want to implement proposed approaches
and to run simulations have more than enough information to do this on their own.

1.2. Paper’s Composition

The proposed paper is organized as follows. After the Introduction, Section 2 presents the cloud
computing environment and describes the concept of resource scheduling with all the details that
are necessary for understanding the conducted research. The whole section is devoted to cloud
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computing as its principles and architecture are enabling efficient utilization of available resources over
the communication network with the objective of satisfying clients’ requests. The need for resource
scheduling and provisioning increases with the rise of submitted requests. The notion of resource
scheduling becomes an important aspect of the cloud computing paradigm, where the goal is to execute
all the tasks within the least possible time interval. Section 2 also addresses the applications of swarm
intelligence algorithms in cloud scheduling where many examples can be found in the literature.

The mathematical formulation of the cloud computing resource scheduling models, that were
employed in our simulations, is given in Section 3. The single-objective scheduling model that was
used in simulations with the real data set is described, followed by the multi-objective model that was
utilized with the artificial data set. In this section, basic terminology and performance metrics that are
necessary for understanding the conducted simulations are also introduced.

The original, as well as the proposed hybrid WOA metaheuristics, are described in Section 4.
In this section the original WOA approach is presented and its deficiencies that were noticed during
the empirical simulations, are addressed from the theoretical, as well as from the practical standpoint.
Finally, the proposed hybrid WOA, which incorporates certain carefully chosen components from the
ABC and FA swarm intelligence metaheuristics, is shown.

Section 5 is the experimental section, where obtained simulation results of the proposed hybrid
algorithm are presented. As stated above, to validate and to measure improvements of the hybrid
WOA over the original WOA, first, tests were performed on a wide set of bound-constrained
benchmarks. Side-by-side comparison was conducted between the basic and hybrid approaches.
Moreover, in comparative analysis other state-of-the-art swarm algorithms have been included that
were validated against the same benchmarks. A major part of this section shows results of conducted
simulations for two cloud computing resource scheduling models. As in the case of unconstrained
benchmarks, comparative analysis was also performed with the original WOA, as well as with other
well-known heuristics and metaheuristics. Most of the simulation results are visualized.

In the final Section 6, conclusions, regarding the performance of our proposed hybrid WOA, that
have been derived from the results of conducted simulations, are summarized. Also, future potential
research directions from the domain of bio-inspired metaheuristics, as well as from the sphere of cloud
computing challenges, are provided.

2. Cloud Computing Paradigm, Scheduling and Literature Review

In this section of the paper, the architecture and basic principles of the cloud computing paradigm
are described. Later, the process of cloud computing resource scheduling is presented, along with
the most commonly utilized scheduling algorithms. Finally, a brief overview of swarm intelligence
applications in the area of cloud computing is provided.

2.1. Cloud Computing Principles and Architecture

The permanent and continual improvements in computing and networking technologies have
led to the rapid growth of requirements for accessing the data and software services from an efficient
networking environment that provides elasticity, scalability, security, and reliability. This environment
that enables the usage of resources with enough processing power to meet all end-user’s demands
over high-speed broadband networks, is cloud computing. Due to its adaptability and versatility, the
cloud computing paradigm has been extensively implemented in many industries, and it has also been
adopted by the academic and scientific communities.

Many definitions of cloud computing are available, but one of the most important is provided
by the National Institute of Standards and Technology (NIST), which states that “cloud computing
can be depicted as a model for enabling ubiquitous and convenient on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management effort, or service
provider interaction” [34]. One other definition defines cloud computing as an “elastic and distributed
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system in which computing resources, such as processing power and storage space, information
and software, are propagated through the network and delivered in the distributed location in the
cloud where, it can be shared and obtained” [35]. The third definition, that we selected from the
computer science literature, states that the “cloud represents a collection of heterogeneous hardware
and software resources which provides services and fast processing resources with high availability
to the cloud users in a way that it is not necessary that the end-users have their own hardware and
software infrastructure” [30].

In order to successfully execute submitted tasks, the cloud computing environment is supported
by virtualization technology and hyper-converged infrastructure (HCL). Moreover, these two
technologies are enabling cloud computing services due to the fact that they make cloud computing
feasible. Without virtualization and HCL, cloud computing as a service delivery model would not be
economically justified for cloud clients (end-users), as well as for cloud service providers (CSPs).

The concept of virtualization, as an abstraction of computing resources, is used along with the
scheduling, where simultaneously submitted diverse tasks are being executed by different VMs, that
are disjointed from the physical hardware infrastructure. The basic component of virtualization, which
is responsible for controlling and synchronizing VM execution is the hypervisor, also known as the
virtual machine monitor (VMM). In cloud environments, type 1 hypervisors are used. The type 1
VMM (bare-metal hypervisor) executes directly above the physical hardware and it is much faster than
the type 2 hypervisor (hosted VMM) that runs above the host operating system.

2.2. Resource Scheduling in Cloud Computing

The flexibility of cloud computing services is reflected in the effectiveness of the demanded
resources being provided to the end-users over the internet. Cloud computing centralized
infrastructure administers various types of tasks, which are sometimes complex and resource
consuming. In order to establish the connection between the tasks and the resources that will
execute those tasks, with the availability in mind, scheduling techniques and algorithms that enable
this link between the resources (VMs) hosted in the cloud data centers and the tasks submitted by the
end-users, should be employed.

The notion of resource scheduling becomes an important aspect of the cloud computing paradigm,
where the goal is to execute the tasks in the least amount of time and with the least possible resource
consumption. More precisely, the goal is to determine the best resource (VM) for executing each of
requested tasks. This objective is carried by the scheduling algorithm. The scheduler should help in
enhancements of QoS, such as reliability, productivity, resource utilization, energy consumption, cost
of the execution, etc. [29].

By using scheduling algorithms, an optimal (or near optimal) allocation of available resources
among requested tasks can be obtained in finite time to achieve desired QoS [2]. The goal of scheduling
is to build a plan that determines on which resources and when each task will be executed. It should
be noted that a scheduling has been for years a current research topic in various domains, for example
job shop scheduling, operating system scheduling, etc.

As already stated in Section 1, the terms resource scheduling, task scheduling, and cloudlet
scheduling are used interchangeably in the modern literature. The notion of the cloudlet is adopted
from the CloudSim framework, where the submitted end-users’ tasks are referred to as cloudlets. Also,
the term resource refers to the VM.

With resource scheduling certain issues may arise. Arisen issues can be handled with effective
provisioning algorithms, which should analyze and organize the upcoming workload in an adequate
way. These issues are connected to the workload arrangement, which depends on the types of requests.
If a classical pay-as-you-go model is utilized, on-demand scheduling, where the cloud provider enables
access to the resources in a reasonable time followed by random workload, is appropriate.

However, online scheduling can cause problems. If distribution of the workload to VMs is
unequal, a scenario where some machines are executing more tasks and are exceeding their capacity
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and overflowing the schedule time, may emerge. This is known as the issue of load balancing. Efficient
load balancing algorithms, that distribute the load evenly on all available VMs should be employed.

Another issue may arise in scenarios where there are more or less available VMs than the real
resources’ need of submitted tasks. In the first case, where there is less than the needed VMs available,
a scenario of under provisioning may occur. In the latter case, there is a scenario of over provisioning.
Neither of them are good. If there is under provisioning, clients’ needs could not be processed
efficiently and that can lead to end-users’ dissatisfaction. On the contrary, if there is over provisioning,
the costs of resource utilization are unnecessarily increased.

Scheduling algorithms can be divided into static and dynamic algorithms [29,36]. Static scheduling
algorithms before execution (upfront) require detailed information regarding the tasks, such as
length, number of tasks, and the deadlines for its execution, as well as information regarding the
resources (VMs) that should be provided, such as available processing power, memory capacity, energy
consumption, etc. Due to the dynamic nature and inconsistencies in the cloud computing environment
and the number of requests and resources, the static algorithms are not adequate for this type of
system, because they are not able to adjust the distribution of workload between the VMs well. In most
cloud computing scenarios, static scheduling algorithms establish lower than average performance.

Moreover, practice has shown that the performance issues with static scheduling algorithms
affect the QoS indicators: makespan, reliability, availability, etc. Some examples of static scheduling
algorithm instances include heuristics, like round robin (RR), first in first out (FIFO), and shortest job
first (SJF).

With the above mentioned in mind, dynamic scheduling algorithms are more appropriate to for
implementation in cloud computing infrastructure, as, instead of focusing on detailed information
regarding the tasks and resources, their activities are based towards the nodes (VMs) monitoring
activities. Dynamic scheduling algorithms are constantly monitoring changes in the cloud environment
and shifting the workload from one to different nodes depending on the overloaded condition.

Dynamic scheduling algorithms are able to establish good load balancing in cloud systems
with a lower degree of imbalance between VMs (nodes). Some examples of dynamic resource
scheduling algorithms are heterogeneous earliest finish time (HEFT), clustering based heterogeneous
with duplication (CBHD), and weighted least connection (WLC). Also, as already stated in Section 1,
metaheuristic approaches, particularly swarm intelligence, have proven to be efficient dynamic
resource scheduling techniques. For more information regarding swarm algorithm applications
to the cloud computing domain, please refer to Section 2.3.

The need for sophisticated resource scheduling algorithms rises with the constant growth in
number—as well as in the complexity—of submitted tasks. Existing scheduling algorithms and
techniques should be improved, and new ones should be devised, accordingly. The scheduling of
resources must be efficient in order to satisfy end-users’ requirements with no negative impact on the
service level agreement (SLA).

2.3. Swarm Intelligence Overview and Cloud Computing Applications

Metaheuristics can be defined as high-level procedures or heuristics that simulate behavior of
some kind of natural phenomenon or system. Metaheuristics are trying to gradually improve potential
problem solutions in a set of iterations by using randomness.

By utilizing the criteria of type of phenomenon that is simulated, metaheuristics can be categorized
into two groups: bio-inspired (nature-inspired) metaheuristics and those that are not inspired by nature.
The nature-inspired approaches are further segmented into evolutionary algorithms (EA) and swarm
intelligence. The most widely used EA approach is genetic algorithm (GA) [37].

Swarm intelligence is a rather new category of nature-inspired algorithms that mimics the
collective behavior of a group (swarm) of organisms from nature. Examples of such groups include
colonies of bees and ants, flocks of birds and fish, herds of elephants, groups of bats, etc. Nature can
be portrayed as an inspiring source of concepts, mechanisms, and principles for designing artificial
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computing systems that are able to address complex computational problems [38]. One of the most
essential characteristics of a swarm is that it consists of relatively simple and unsophisticated agents,
which collectively show intelligent behavior.

Swarm intelligence algorithms have many implementations for heterogeneous NP hard tasks
from the real-world, including in the area of cloud computing, as can be seen in the literature. In the
following few paragraphs, a brief review of some the most well-known swarm intelligence approaches
is presented along with its applications in the cloud computing domain.

The artificial bee colony (ABC) algorithm simulates groups of honey bee swarms [39], and it is
known as a successful solver of NP hard challenges [40–42]. The ABC algorithm has several successful
applications in cloud computing. In [43], the authors implemented a technique that combines task
migration with cloud computing load balancing using the ABC approach. The agile task handling
approach using ABC has been shown in [44], where the authors have focused on improving makespan
time and the degree of imbalance indicators. Multi-objective task scheduling approaches using ABC
have also been implemented where the objectives of energy consumption, time span of the tasks,
resource cost, and utilization were taken into consideration [45].

The firefly algorithm (FA) algorithm was inspired by the lighting properties of the fireflies.
It was created by Yang in 2009, and it was first tested on standard benchmark problems [46]. Many
modified and hybridized versions of the FA can be found in the literature [47–50]. Recently, the FA
has been applied in the deep learning domain [51] for designing convolutional neural network (CNN)
architecture [52]. The FA algorithm has also been implemented in many practical problems from the
cloud computing domain, where it showed good performance. Some of the examples include the
workflow scheduling problem [53] and load balancing [54].

Other swarm intelligence algorithms that have been devised by Yang are the bat algorithm
(BA) [55] and cuckoo search (CS) [56]. Similar to the FA, the BA and CS have showed superior
performance metrics when tackling many practical challenges [16,57–59]. The BA algorithm has also
been adapted for cloud computing challenges such as scheduling workflow applications [60,61] and
cloud service composition [62]. There are also some implementations of the CS algorithm for the cloud
computing domain [63,64].

The monarch butterfly optimization (MBO) is a relatively novel algorithm that was created by
Wang [65]. Shortly after it was devised, many MBO versions emerged [66–68]. The MBO has also
been implemented for cloudlet scheduling problems in cloud computing environments [4]. Another
relatively new swarm approach that is worth mentioning is the tree growth algorithm (TGA) [69].
With many implementations, the TGA is positioned as a robust optimization method [70,71]. Some
TGA adaptions for cloud computing load scheduling can be found in the literature survey [33].

Some other swarm intelligence representatives that have been implemented for cloud computing
problems include particle swarm optimization (PSO) [30], gravitational search algorithm (GSA) [35],
ant colony optimization (ACO) [72–74], moth search (MS) [75], and many others [76].

In addition to the mentioned swarm intelligence algorithms, many others have also proven to
be efficient optimization approaches, for example elephant herding optimization (EHO) [5,7,31,32,77],
the fireworks algorithm (FWA), [78–80], and brain storm optimization (BSO) [81].

3. Proposed Models

As stated above, for the purpose of the research that was presented in this paper we conducted
two types of cloud computing resource scheduling simulations: one with a real data set and one with
an artificial data set. In each simulation, we used slightly different resource scheduling models.

When performing resource scheduling simulations with a real data set, we used the
single-objective model, where we took the makespan (MS) as the objective, as in [75]. In simulations
with an artificial data set we employed multi-objective resource scheduling with MS and budget cost
objectives, as in [26,64].

After we show a basic background information, both models will be presented.
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The cloud hardware infrastructure is organized in the cloud data centers. The cloud data centers
have a limited number of physical servers, which are usually refereed as hosts. Each host has many
attributes such as a host unique identifier (hostID), number of processing elements (PE), performance
of each PE defined in MIPS (million instructions per second), etc. Each physical server can host
multiple VMs that utilize a time-shared or space-shared VM scheduling policy.

When clients (end users) send tasks to the cloud system environment, the tasks first arrive at
the task manager component, which organizes the tasks and provides the status of each requested
task to the end user. It then forwards the requested tasks to the next component, the task scheduler.
The task scheduler assigns all the tasks to the available and suitable VMs by employing the scheduling
algorithm. Each VM is considered available if it has finished the processing of previous tasks, or if it
does not have a task up ahead. The goal is to effectively use available VMs for tasks processing, but not
to overload the cloud system. The result of overloading the cloud system would be malfunctions,
end-user dissatisfaction, etc.

The basic goal of tackling the resource scheduling problem in cloud infrastructure is allocation
of available cloud system resources to submitted tasks, by achieving one or more objectives,
like minimization of the makespan (MS) or time completion of the tasks from the queue, minimization
of the total cost and energy consumption by cloud resources, etc. [26,75].

In modern cloud computing literature, the most commonly used resources are VMs. For that
reason, throughout the rest of this paper, the terms VMs and resources will be used interchangeably.

3.1. The Model Utilized in Simulations with a Real Data Set (First Model)

As already mentioned, the first model was utilized in simulations with a real data set and it is
similar to the model presented in [75]. This model includes only the MS objective.

The mathematical formulation of the single-objective resource scheduling model includes the
following. Let CI denote the cloud infrastructure that consists of Nph physical hosts (PH), where in
turn each host is composed by the Nvm virtual machines (VM):

CI = {PH1, PH2, ..., PHi, ..., PHNph}, (1)

where each PHi(i = 1, 2, 3, ..., Nph) can be denoted as:

PHi = {VM1, VM2, ..., VMj, ..., VMNvm}, (2)

where VMj represents the j-th VM that is allocated within the particular physical host. Each VMj is
defined with the following set of properties (attributes):

VMj = {VMIDj, MIPSj}, (3)

where VMIDj and MIPSj denote the unique identifier (serial number) and processing performance in
terms of MIPS units of VMj, respectively.

The end-users submit set of tasks (TSK) that should be mapped and processed on a available and
adequate VM:

TSK = {T1, T2, T3, ..., Tk, ..., TNtsk}, (4)

where the Ntsk presents the total number of tasks submitted by the end-users, and task Tk represents
the k-th task in the sequence, which can be more accurately defined as:

Tk = {TIDk, lengthk, ETCk, Pk}, (5)

where TIDk and lengthk denote the unique identifier and the length expressed in million instruction
(MI) units of the task k. The Pk represents the priority of the task k, while the ETCk denotes the expected
time to complete for a task k.
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The allocation (mapping) of Ttsk tasks to Nvm VMs has a immense impact on the general cloud
system performance.

The expected time to complete (ETC) of the k-th task on the j-th VM can be calculated as follows:

ETCk,j =
lengthk
MIPSj

, (6)

where j = 1, ..., Nvm and k = 1, ..., Ntsk.
The ETC matrix could be considered and used as a task model for a cloud environment with

heterogeneous resources [29].
The ETC matrix of a size NtskxNvm denote the execution time required to complete each task on a

each VM machine [75]:

ETC =


ETC1,1 ETC1,2 ETC1,3 · · · ETC1,j · · · ETC1,Nvm

ETC2,1 ETC2,2 ETC2,3 · · · ETC2,j · · · ETC2,Nvm

ETC3,1 ETC3,2 ETC3,3 · · · ETC3,j · · · ETC3,Nvm

· · · · · · · · · · · · · · · · · · · · ·
ETCNtsk ,1 ETCNtsk ,2 ETCNtsk ,3 · · · ETCNtsk ,j · · · ETCNtsk ,Nvm

 .

If we ought to establish the MS objective as in [75], first the execution time (ET) of all VMs has to
be calculated. The execution time of the j-th VM (ETj) for the task k depends on the decision variable
xk,j [29]:

xk,j =

{
1, if Ck is allocated to VMj,

0, if Ck is not allocated to VMj.
(7)

Then, the ETj, where j is in the range [1, Nvm], can be calculated as:

ETj =
Ntsk

∑
k=1

xk,j · ETCk,j. (8)

The MS objective is the maximum of ET for all VMs:

MS = max[ETj]
Nvm
j=1 , (9)

∀k ∈ [1, Ntsk]mapped to jth VM, j = 1, 2, 3, ..., Nvm. (10)

In order to more adequately evaluate the performance of the proposed metaheuristics, we have
considered the degree of imbalance (DI) which can be calculated as:

DI =
Tmax − Tmin

Tavg
, (11)

where Tmax, Tmin and Tavg defines the maximum, minimum, and average execution time of all VMs,
respectively. The degree of imbalance (DI) was employed as well in [75].

3.2. Model Used for Simulations with Artificial Data Set (Second Model)

The second model, which was utilized in practical simulations with artificial data sets, belongs to
the group of multi-objective resource scheduling models with the basic objectives of minimizing the
MS and the budget cost. A similar model was employed in [26,64].

This model is known in the literature as a resource scheduling model based on the performance
and budget constraints [64]. The performance function is represented by the MS. One of the
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requirements of this model is that all the tasks should finish before the deadline and with costs
that fall into the scope of a predefined budget.

Our multi-objective model in the cloud computing environment, besides the MS objective,
also takes into account the cost function of the CPU and memory of the VMs (resources). Mathematical
formulations which are used in this research are similar to those in [26]. The overall budget cost
for task scheduling is defined by combining the cost function of the CPU and memory. Afterwards,
the fitness is calculated by adding the budget cost function and MS of the process of scheduling.

The fitness depends on the solution’s quality. The solutions ought to have minimum MS
and minimum cost functions. First, the cost of the CPU time of VM j is calculated by using the
following equation:

C(x) =
NVM

∑
j=1

Ccost(j), (12)

where the Ccost(j) denotes the cost of the CPU of the virtual machine VMj, and the NVM represents the
total number of VMs in the cloud infrastructure. The notation x denotes a feasible solution. The Ccost(j)
can be further calculated as:

Ccost(j) = Cbase × Cj × tij + CTrans, (13)

where the Cbase denotes the cost basis, Cj denotes the CPU time cost of the virtual machine VMj, the tij
is the time in which the task Ti is refined in the resource Rj (virtual machine VMj). CTrans represents
the transmission cost of the CPU. The Cbase and CTrans are constants:

Cbase = 0.17/hr, (14)

CTrans = 0.005. (15)

To calculate the cost function of a memory, the following equation is used:

M(x) =
NVM

∑
j=1

Mcost(j), (16)

in which the Mcost(j) presents the cost of the memory of the virtual machine VMj. The total number
of virtual machines is denoted as NVM. The Mcost(j) can be calculated as follows:

Mcost(j) = Mbase ×Mj × tij + MTrans, (17)

where the base of the memory is represented as Mbase, the memory of virtual machine VMj is Mj and
tij denotes a time when the task Ti is processed on the resource Rj (virtual machine VMj). The MTrans
presents the transmission cost of the memory. The values of Mbase and MTrans are constants:

Mbase = 0.05GB/hr, (18)

MTrans = 0.5. (19)

Finally, the budget cost is calculated by adding the cost function of the CPU and memory of
the VM:

B(x) = C(x) + M(x), (20)

where the B(x) presents the budget cost function for the end-user, C(x) denotes the cost function of the
CPU and the M(x) is the cost function of the memory. Hence, the fitness is calculated by the following:

H(x) = MS(x) + B(x), (21)
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where MS(x) denotes the MS value, that is, the performance function and it should be less than or
equal to the deadline of the task. The MS is defined by the following equation:

MS(x) ≤
|T|

∑
i=1

Di, (22)

in which Di presents the deadline for the task Ti, In the previous equation (Equation (21)), B(x) denotes
the budget cost function of the tasks that comprises of the CPU cost and memory cost, and it should be
less than or equal to the end users’ budget cost. According to this, the constrained budget cost function
B(x) can be modeled:

B(x) ≤
|T|

∑
i=1

Bi, (23)

where Bi denotes the end users’ budget cost of the task Ti.
For more information about this resource scheduling model in cloud enviroments, please refer

to [26,64].

4. Original and Hybrid Whale Optimization Algorithm

The WOA was first proposed in 2016 by Mirjalili and Lewis [22] for tackling unconstrained
and constrained continuous optimization problems. The main inspiration behind this approach is
bubble-net hunting strategy of humpback whale. In only a couple of years, the WOA positioned as a
robust optimizer capable of solving different kinds of problems, particularly in modified/improved
implementations [23,24].

In this section, we first give brief insights into the details of the original WOA. Afterwards
we present theoretical discussion of the basic WOA’s version drawbacks that we discovered
during practical simulations, along with the possible directions for its improvements. Finally, we
show our devised hybrid WOA approach that overcomes some of the deficiencies of the original
WOA implementation.

4.1. Original Whale Optimization Algorithm Overview

The search process of the WOA is performed by mathematically modeling the humpback whales
bubble-net feeding strategy. In the nature, humpback whales express a form of cooperating behavior
while hunting their prey by performing a distinctive hunting strategy, which is in the literature refereed
as a bubble-net feeding strategy.

The humpback whales perform the bubble-net feeding strategy by diving below a shoal of prey,
where they simultaneously blow bubbles and move in a circular trajectory in the direction towards the
surface of the water. In this way, the shoal of prey is surrounded by a circular path of bubbles that
stimulates it to swim towards the surface [82].

More information about the nature-inspired background of the WOA can be obtained from [22].
As in the case of every other swarm intelligence metaheuristic, the WOA’s search process is

conducted by simultaneously performing global (exploration) and local (exploitation) search phase.
The process of exploitation models the humpback whales’ prey encircling and spiral bubble-net attack
strategy, while the exploration emulates a search for a prey in a pseudo-random manner.

Since the WOA belongs to the category of population-based optimization methods, a group of
artificial agents conduct the search process independently, while at the same time they also establish
a form of indirect communications, that enhance the search process. According to the basic WOA
terminology, the current best (global best) candidate solution (solution with the greatest fitness value)
represents the target prey, while every other solution represents a whale. In order to be consistent with
the metaheuristics’ terminology and to avoid confusion, terms like whale and prey will be omitted,
instead the terms candidate solution and current best solution will be utilized in the rest of the paper.
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4.1.1. Exploitation Process

During the phase of exploitation, each candidate solution performs a search in its neighborhood
and it is directed towards the position of the current global best solution.

After every solution in the population, a fitness is calculated, and positions of all solutions in the
population are updated with respect to the position of the global best solution (individual that has the
greatest fitness value) [22]:

~D = |~C · ~X∗(t)− ~X(t)| (24)

~X(t + 1) = ~X∗(t)− ~A · ~D, (25)

where ~X(t) and ~X∗(t) denote candidate and current best solutions in iteration t, respectively, ~A and ~C
represent coefficient vectors, while the symbol · is element-wise multiplication operator.

The following expressions are used for calculating coefficient vectors ~A and ~C [22]:

~A = 2~a ·~r−~a (26)

~C = 2 ·~r. (27)

In Equations (26) and (27),~r represents a uniformly distributed pseudo-random vector in the
interval [0, 1], while~a is a vector that is in the basic WOA implementation that is linearly decreased
from 2 to 0 during the algorithm’s execution.

Based on the Equations (24)–(27), the candidate solution ~X in each iteration can be directed
towards any position within the neighborhood of the current best solution ~X∗ by adjusting the values
of coefficient vectors ~A and ~C by using the pseudo-random vector~r.

The shrinking encircling mechanism and spiral-shaped path mathematical models are used for
the purpose of emulating the bubble-net attack strategy.

By linearly decreasing vector α from 2 to 0, in every iteration of algorithm’s run, the shrinking
encircling mechanism is modeled. In the original WOA version, the following expression is used [22]:

~a = 2− t
2

maxIter
, (28)

where t and maxIter denote the current and maximum number of iterations in one run, respectively.
Also, in the very first WOA paper [22], the authors recommended that the value of ~A should be

adjusted within the interval [−1, 1]. In this way, an updated position of the current solution can be set
anywhere between its current position and the position of the global best solution from the population.

The second mechanism that guides the process of exploitation (a spiral-shaped path) is executed
in two steps: First, the distance between the global best solution (~X∗(t)) and current solution (~X(t))
in iteration t is calculated, and then, a new (updated) position of candidate solution (~X(t + 1)) is
determined by using a spiral equation [22]:

~X(t + 1) = ~D′ · ebl · cos(2πl) + ~X∗(t), (29)

where ~D′, as distance between the i-th candidate solution and the global best solution, can be expressed
as ~D′ = |~X∗(t)− ~X(t)|, and b represents a constant that defines a shape of logarithmic spiral, while l
denotes pseudo-random number within the range of −1 and 1.

The fact that the humpback whales move around the prey along a spiral-shaped path
and shrinking circle simultaneously, is simulated by choosing between shrinking encircling and
spiral-shaped path mechanisms in each iteration with equal probability p:

~X(t + 1) =

{
~X∗(t)− ~A · ~D , if p < 0.5
~D′ · ebl · cos(2πl) + ~X∗(t) , if p ≥ 0.5

. (30)
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In each iteration, probability p is drawn from a random distribution between 0 and 1.

4.1.2. Exploration Process

The exploration phase is conducted by updating each candidate solution in the population with
respect to the position of a randomly chosen solution, instead of the global best solutions, as it is the
case in the process of exploitation.

For this exploration phase, a value of coefficient vector ~A is used. If a vector ~A with random
values that are greater than or equal to 1 is generated (|A| ≥ 1), updated positions of candidate
solutions are directed towards randomly chosen solution and the global search is performed.

The following expression models WOA’s exploration phase [22]:

~X(t + 1) = ~Xrnd(t)− ~A · ~D, (31)

where ~D, as the distance between the i-th candidate solution and the random solution rnd from the
population at iteration t, can be expressed as ~D = |~C · ~Xrnd(t)− ~X(t)|.

4.2. Deficiences of the Original WOA Approach and Related Literature

We performed practical simulations with the original WOA implementation and
concluded that some possibilities for improvement exist. We tested WOA on a standard
unconstrained (bound-constrained) benchmark set and observed two deficiencies: inappropriate
exploitation–exploration balance adjustment and the premature convergence.

The process of exploration in the original WOA is performed only in case when both conditions
p < 0.5 and |A ≥ 1| are satisfied. Moreover, the exploration directs the search process towards
existing random solutions from the population and then performs search in its neighborhood (refer to
Equation (31). Novel random solutions from the search domain are not considered.

In all other cases, the search process of the original WOA conducts intensification by generating
new solutions in the direction of the current best solution vector ~X∗. If the conditions p < 0.5 and
|A < 1| are satisfied, the search process is performed by utilizing Equations (24)–(27), and when the
condition p >= 0.5 holds, the Equation (29) is used.

The WOA’s behavior described above exhibits the inappropriate exploitation–exploration balance
adjustment that has influence on the algorithm’s behavior, especially in the early iterations of its
execution. In the early phases of algorithm’s execution, the exploration power in some runs is not
enough for the WOA to find the right part of the search space, where an optimum solution is located.
This as a consequence generates worse mean values. Moreover, the exploration is oriented towards
existing random solutions from the population. Completely new solutions are not generated at all.

According to our conducted simulations, the exploitation–exploration trade-off, that is set towards
(in favor of) exploitation may lead to the scenario of premature convergence, when the search process
gets trapped in some of the suboptimal regions of the search domain. Premature convergence takes
place when two inner control parameters ~A and ~C are unable to generate better solutions in consecutive
iterations, and as a consequence, the diversity of population is lost. Moreover, due to the premature
convergence, convergence speed of the WOA is not satisfying in some runs.

For example, in some algorithm runs, due to randomization, the initial population is generated
far from the optimal domain of the search space. By utilizing exploration, which examines the
neighborhood for such solutions, the search process is unable to converge to the optimal region.
In such cases, solutions can not be improved in consecutive generations, and the whole population
loses diversity.

Some research that proposed improved/hybridized versions of the WOA, which overcome some
of its deficiencies, already exists in the literature. For example, Mafarja and Mirjalili presented two
hybridized WAO metaheurisitcs, where the simulated annealing (SA) was incorporated into the WOA
to improve and to confirm the global best solution found by the WOA search process [23]. In the
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LWOA (Levy fight trajectory-based whale optimization algorithm) metaheuristics, after the solutions
are updated by the WOA, another update is performed by utilizing the Levy fight trajectory [24].
In [83], enhanced WOA (EWOA) for tackling skeletal structure problems was proposed. The EWOA in
each iteration updates only selected variables of the chosen candidate solution.

The improved WOA (IWOA), that adopts a differential evolution (DE) mutation operator and
utilizes adaptive strategy for balancing between exploitation and exploration was proposed in [25]
and proved to be more efficient an approach than the original WOA. Another improved WOA version
that is based on different searching paths and perceptual disturbance was proposed and tested on 23
standard unconstrained benchmarks and obtained better result quality than the original version [84].

4.3. Proposed Hybrid Whale Optimization Algorithm

Taking into account that the two most important mechanisms of any swarm algorithm are
exploitation (intensification) and exploration (diversification), and that the efficiency of a swarm
algorithm in both terms, convergence speed and solutions quality, heavily depends on the adjusted
balance between these two processes, we tried to improve the original WOA implementation by
addressing the exploitation–exploration trade-off adjustments.

In general, any swarm algorithm may be enhanced by using minor and/or major improvement
strategies. Minor improvements include modifications of some component(s) of the search equation(s),
as well as tweaking behavior of the algorithm’s control parameters (in many cases, researches introduce
dynamic parameter behavior). Major improvements usually refer to hybridization with some other
metaheuristics or heuristics. Hybrid algorithms combine the best features of two or more approaches,
by replacing the weakness of one approach with advantages (strengths) of some other approach.
By examining available literature sources, it can be seen that hybrid algorithms can be very efficient
in tackling different types of problems [85–87]. Moreover, hybrids between different categories of
artificial intelligence (AI) algorithms also exist. For example, artificial neural networks (ANNs) can be
efficiently combined with swarm intelligence [27].

Based on our previous research with hybrid swarm intelligence algorithms [4,31,40,48,59], we
devised and implemented a hybridized WOA approach that overcomes deficiencies of the original
version. Modifications of the basic WOA can be summarized as follows:

• first, we adapted the exploration mechanism from the ABC metaheuristics;
• second, we introduced an additional dynamic control parameter that controls a new exploration

mechanism, and
• third, our proposed approach incorporates the search equation of the firefly algorithm (FA).

Taking into account all listed modifications, we named the proposed approach WOA ABC
exploration firefly search (WOA-AEFS). In the following subsections, each of the listed modifications
will be explained and the pseudo-code will be provided.

By the end of this section, the following notation will be used: each candidate solution i from the
population is represented as a vector ~Xi, where each solution is comprised of M decision variables
~Xi = x1

i , x2
i , ...xM

i . The value of each decision variable j of the i-th solution (xj
i) is within the scope

[lbj, ubj], where lbj and ubj denote the lower and upper bound of the search space in j-th dimension,
respectively. The notation f it(~Xi) represents the fitness of the i-th solution, while the objective function
value of the same solution is denoted as f (~Xi).

4.3.1. ABC Exploration Meachanism and Additional Control Parameter

As it was already stated in Section 4.2, in the original WOA implementation, the exploration
process is conducted only in scenarios where both conditions p < 0.5 and |A ≥ 1| are satisfied. Also,
according to Equation (31), the exploration is oriented towards existing solutions from the population
and new solutions are not generated.
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As a consequence of this, in some algorithm runs, where solutions that are distant from the
optimum domain of the search space are generated, exploration around the neighborhood of such
existing solutions is not enough for the search process to converge to the optimum region. At the other
side, the exploration mechanism of the ABC algorithm generates completely random solutions, in the
same way as it is performed in the algorithm’s initialization phase. This fact, as well as our previous
research experience with hybrids between ABC and other metaheuristics [40,50,68,88] inspired us to
try to improve WOA’s exploration process by adapting the ABC exploration mechanism that is being
triggered at the end of every iteration.

For each solution ~Xi from the population, we included additional variable triali. In each iteration,
when a solution ~Xi, can not be improved, its triali value is increased by one. When a trial value of a
particular solution reaches a predetermined threshold value called limit, this solution is dumped from
the population and it is replaced with another, randomly generated solution within the boundaries of
the search space by applying the following expression:

xj
i = θ · (ubj − lbj) + lbj, (32)

where xj
i is the j-th decision variable of the i-th solution, and θ is a uniformly distributed number in

the range [0, 1].
This exploration mechanism, especially in early iterations of algorithm’s execution, significantly

improves convergence speed and maintains population diversity. Moreover, in cases when a search is
trapped in some of the suboptimal regions, such a mechanism is able to efficiently direct the search
process towards other search domain regions.

However, in later iterations, when a search process has converged to the optimum region and
when a fine-tuned search is required, the ABC’s exploration mechanism could waste potentially
good solutions, that have been stuck for a few iterations. In order to avoid such scenarios, we
included additional control parameter, the exploration influence rate (eir), where the value is expressed
in percents.

At the beginning of the run, the value of eir is set to 100, which means that the whole population
(100% of population) is under the influence of ABC’s exploration. However, during one run, the value
of eir is gradually decreased, until it finally reaches the threshold value of 5. For example, if the value
of eir is 50, that means that the 50% worst candidate solutions are exposed to the risk of being discarded
from the population if their trial value has reached a predetermined limit threshold. For this purpose,
before the ABC’s exploration is applied, the whole population is sorted according to fitness value
criteria in descending order.

According to performed empirical experiments, we found that the near optimal value of the
dynamic eir parameter can be calculated as:

eir = 100 · (1− t
maxIter

). (33)

4.3.2. FA’s Search Equation

The FA is a well-known swarm optimizer that was devised by Yang in 2009 for tackling
unconstrained optimization challenges [46]. By examining the literature, it can be seen that the
FA is able to tackle many real-life NP hard problems [28,50,52,89,90].

Guided by the goal of further enhancing the performance of the original WOA by improving
the convergence speed, we implemented the firefly search strategy in our hybridized WOA-AEFS
approach. According to our previously conducted research [40], FA’s search equation can substantially
improve the convergence speed.
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In each iteration, if the condition p1 ≥ 0.5 is satisfied, the exploitation process is conducted using
standard WOA’s spiral-shaped search equation (Equation (29)) or FA’s search equation with equal
probability p1.

The FA’s search strategy is applied for each parameter j of solution i by using the
following equation:

xj
i(t + 1) = xj

i + β0 · e−γ·r2
i,k (xj

k − xj
i) + α · (rand− 0.5), (34)

where β0 represents attractiveness at r=0, the variation of attractiveness is denoted as γ, α is FA’s
randomization parameter, rand is pseudo-random number between 0 and 1, and k represents a random
solution from the population. The distance between solutions i and k, denoted as ri,k is calculated
using Cartesian distance:

ri,k = ||~Xi − ~Xk|| =

√√√√ M

∑
j=1

(xi,j − xk,j)2, (35)

where M is the number of decision variables (solutions’ components).
As in the original FA, in our implementation we used a dynamic value for parameter alpha that

depends on the current iteration t and the maximum number of iterations (maxIter) [46]:

α(t) = (1− (1− ((10−4/9)1/maxIter))) · α(t− 1). (36)

For more information about the FA’s control parameters, please refer to [46].

4.3.3. Population Initialization and WOA-AEFS Pseudo-Code

As in every other swarm approach, generation of the initial population is performed at the
beginning of every run. In WOA-AEFS, in the initialization phase, a population of N solutions
~Xi(i = 1, 2, 3, ...N), where each solution is comprised of M decision variables ~Xi = x1

i , x2
i , ...xM

i , is
created. The population is represented as matrix of size NxM:

P =


x1

1 x2
1 x3

1 · · · xj
1 · · · xM

1
x1

2 x2
2 x3

2 · · · xj
2 · · · xM

2

x1
3 x2

3 x3
3 · · · xj

3 · · · xM
3

· · · · · · · · · · · · · · · · · · · · ·
x1

N x2
N x3

N · · · xj
N · · · xM

N

 .

Every parameter (decision variable) j of each solution from the population is generated by using
the Equation (32) in the initialization phase.

Taking into account everything stated in Section 4.3, the basic steps of execution of our proposed
WOA-AEFS approach can be summarized in Algorithm 1.
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Algorithm 1 Pseudo-code of the WOA ABC exploration firefly search (WOA-AEFS)

Initialization. Generate random initial population P by applying Equation (32) and for all solutions

set the value of trial to 0.
Control parameters initialization. Initialize values for ABC exploration control parameters eir and

limit and FA’s search control parameter α.
Fitness calculation. Calculate fitness of each candidate solution and determine the global best

solution ~X∗
while (t < maxIter) do

for each candidate solution do

Update ~A, ~C,~a, l, p, p1
if p < 0.5 then

if |A|<1 then

Update current candidate solution ~X by using Equation (25) and store new value in ~Xnew
else if |A ≥ 1| then

Choose random solution ~Xrnd form the population
Update current candidate solution ~X by using Equation (31) and store new solution in ~Xnew

end if
else if p ≥ 0.5 then

if p1 < 0.5 then

Update current candidate solution ~X by using FA’s search equation (Equation (34)) and

store new solution in ~Xnew
else if p1 ≥ 0.5 then

Update current candidate solution ~X by using WOA’s spiral-shaped search (Equation (29))

and store new solution in ~Xnew
end if

end if
Choose between old ~X and new ~Xnew solutions by using greedy selection mechanism
if new solution is chosen, replace ~X with ~Xnew and set its trial value to 0.
If old solution is chosen, increment trial value of ~X.

end for
If any solution goes beyond feasible region of the search space, modify it
Evaluate all solutions in the population by calculating fitness
Sort all solutions by fitness criteria in descending order
Replace all solutions that belong to ei f % worst solutions in the population and for which

trial ≥ limit holds with random solution by using Equation (32).
Update position of the global best solution ~X∗ if necessary
t = t + 1
Recalculate values for eir and α parameters by using Equations (33) and (36), respectively.

end while
return The best solution (~X∗) from the population

5. Practical Simulations, Analysis, and Discussion

This section is divided into two parts. In the first part, we present simulation results for
standard bound-constrained (unconstrained) benchmarks of our proposed WOA-AEFS algorithm. Real
performance and improvements over the basic WOA version can be evaluated only by conducting tests
on a wider set of problems, specifically designed for benchmark purposes. If an improved/hybridized
algorithm is tested only for one specifically problem, real enhancement over basic implementation
could not be established.
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The second part of the experimental section shows simulation results for two different instances
of cloud resource scheduling problems with both artificial and real data sets. In this part, WOA-AEFS’s
performance metrics for challenging real world NP hard problems are evaluated.

In both parts of the practical section, WOA-AEFS control parameters’ adjustments are given along
with comparative analysis with the basic WOA and other state-of-the-art algorithms from the literature.
Moreover, a detailed discussion about the convergence speed and behavior of our proposed approach
in terms of a solution’s quality is presented.

5.1. Tests with Standard Benchmark Functions

In this subsection we first show benchmark function characteristics and the mathematical
formulation along with control parameter adjustments of the proposed WOA-AEFS. Later, we present
a comparative analysis with the basic WOA, as well as with other outstanding algorithms that were
tested on the same benchmark instances.

5.1.1. Benchmark Problems Definitions

To test the robustness, solutions’ quality and convergence of the WOA-AEFS, we utilized a set of
23 classical unconstrained benchmarks. The original WOA has also been tested on the same benchmark
instances, as it was presented in [22].

For the sake of easier readability, and according to the practice from modern computer science
literature [91], we divided benchmark sets into two groups: unimodal and multimodal. From the
group of multimodal benchmarks, a special group of fixed-dimension multimodal functions can be
extrapolated. The basic difference between multimodal and fixed-dimension multimodal functions is
the ability to define a desired number of decision variables. When using fixed-dimension multimodal
benchmarks in experiments, the number of decision variables can not be tuned.

For each function (unimodal and multimodal), a unique identifier (ID) is given. In Table 1
characteristics of unimodal benchmarks that were utilized in simulations, are shown. Mathematical
formulation of these functions can be found in [22].

Table 1. Characteristics of unimodal benchmark functions

ID Name of the Benchmark Separability Convexity Scalability

F1 Sphere Separable Convex Scalable
F2 Schwefel’s Problem 2.22 Non-separable Convex Scalable
F3 Schwefel’s Problem 1.2 Separable Convex Scalable
F4 Schwefel’s Problem 2.21 Separable Convex Scalable
F5 Generalized Rosenbrock’s Function Non-separable Non-convex Scalable
F6 Step 2 Function Separable Convex Scalable
F7 Quartic Function with Noise Separable Non-convex Scalable

Characteristics of multimodal benchmarks, that were employed in experiments, are given in
Table 2. Functions in the Table 2 with IDs F8–F13 are classical multimodal benchmarks, while the
functions with IDs from the range F14–F23 belong to the group of fixed-dimension multimodal tests.

Table 2. Characteristics of multimodal benchmark functions.

ID Name of the Benchmark Separability Convexity Scalability

F8 Generalized Schwefel’s Problem 2.26 Separable Convex Scalable
F9 Generalized Rastrigin’s Function Non-separable Convex Scalable

F10 Ackley’s Function Non-separable Non-convex Scalable
F11 Generalized Griewank Function Non-separable Non-convex Scalable
F12 Generalized Penalized Functions Non-separable Non-convex Scalable
F13 Generalized Penalized Functions Non-separable Non-convex Scalable
F14 Shekel’s Foxholes Function Non-separable Non-convex Scalable
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Table 2. Cont.

ID Name of the Benchmark Separability Convexity Scalability

F15 Kowalik’s Function Non-separable Non-convex Scalable
F16 Six-Hump Camel-Back Function Non-separable Non-convex Non-scalable
F17 Branin Function Non-separable Non-convex Non-scalable
F18 Goldstein-Price Function Non-separable Non-convex Non-scalable
F19 Hartman’s Family (Hartman 3 Function) Non-separable Non-convex Non-scalable
F20 Hartman’s Family (Hartman 6 Function) Non-separable Non-convex Non-scalable
F21 Shekel’s Family (Shekel 5 Function) Non-separable Non-convex Scalable
F22 Shekel’s Family (Shekel 7 Function) Non-separable Non-convex Scalable
F23 Shekel’s Family (Shekel 10 Function) Non-separable Non-convex Scalable

In simulations with benchmarks F1–F13 we utilized 30 dimensions (D = 30), as in [22]. For more
information regarding the dimension size of fixed-dimension multimodal tests (F14–F23), please refer
to [22].

5.1.2. The WOA-AEFS Control Parameter Adjustments

In order to objectively evaluate performance improvements of the WOA-AEFS, that is proposed in
this paper, against the original WOA, in all tests we utilized a population with 30 individuals (N = 30)
that have been improving over 500 iterations (maxIter = 500) in each run. These settings generate a
total number of 15,000 objective function evaluations (30× 500 = 15, 000). The same values were used
in [22].

Since the WOA-AEFS utilizes general algorithm parameters (N and maxIter), as well as WAO,
ABC, and FA specific parameters, we divided the control parameters into four groups: general
parameters, WOA parameters, ABC exploration and FA search parameters. Parameters adjustments,
as well as the behavior of dynamic parameters are summarized in Table 3.

Table 3. WOA ABC exploration firefly search (WOA-AEFS) control parameters’ adjustments

Parameter Name Value

WOA-AEFS general parameters
Population size (N) 30
Number of iterations per run (maxIter) 500

WOA search parameters
Initial value of parameter a 2.0
Dynamic behavior of parameter a according to Equation (28)

ABC exploration parameters
Parameter limit 17 (according to Equation (37))
Initial value of exploration influence parameter eir 100
Dynamic behavior of parameter eir according to Equation (33)

FA search parameters
Initial value for randomization parameter α 0.5
Dynamic behavior of parameter α according to Equation (36)
Attractivnes at r=0 β0 0.2
Absorption coefficient γ 1.0

It should be noted that we took values for specific FA’s search parameters as in [46]. According
to the discussion presented in this paper, as well as regarding our previous experience with the FA
metaheuristics [40,47,50,52], the best exploitation ability of the FA can be established by utilizing this
set of parameters [46]. If other values would be taken, the performance of the FA search exploitation
process would decrease significantly.
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Similarly, as in the case of the FA, the best performance of the ABC exploration could be established
if the value of limit parameter depends on the N and maxIter settings [10,39,41,92]. The value of the
limit in our proposed approach is determined by using the following expression:

limit = round(
maxIter

N
), (37)

where the function round() rounds its arguments to the closest integer value.

5.1.3. Comparative Analysis and Discussion

In all simulations we executed WOA-AEFS in 100 independent runs. In each run we initialized
a random population of a size N by using the Equation (32). For the purpose of experiments, we
implemented our own pseudo-random number generator, and for each run we used a different seed.
The WOA-AEFS algorithm is implemented using Java SE Development Kit 11 technology and the
IntelliJ environment.

We first compared WOA-AEFS performance with original WOA metaheuristics. Both algorithms
were tested for same benchmark instances (F1–F23) and under the same experimental conditions.
Results for the WOA were taken from [22]. We note that we have also implemented basic WOA in
Java and obtained the same results as reported in [22]. The WOA showed in [22] was implemented in
MATLAB software.

We used the same performance metrics as in [22]—best values averaged over 100 independent
runs (mean indicator) and the standard deviation (std). In [22], values are averaged over 30 runs.
By performing a simulation with more runs, we wanted to obtain more accurate and precise results.

In order to evaluate improvements over the basic WOA implementation, we first give side-by-side
comparison between the WOA-AEFS and the original WOA in Table 4. For the sake of easier
visualization of performance indicators, better results for every test instance and for each performance
metric (mean and std) are marked bold.

When improving an algorithm (metaheuristics), there should always be trade-offs. For example,
for one benchmark instance, the results improve, while for some other, the results get worse.
However, it is important that on average (by taking into account all benchmark instances),
an improved/hybridized version overcomes the original one.

Results presented in Table 4 provide valid proof of the enhancements over the original WOA,
that are obtained by hybridizing WOA with ABC and FA algorithms. On average, the WOA-AEFS
significantly outperforms WOA. Benchmark instances and indicators where original WOA establishes
better performance than the WOA-AEFS only include the following: mean value for the F7 test, std
metric for the F16 benchmark, and mean and std indicators for the F19 test. Experiments where both
approaches accomplished the same results encompass mean indicator values for the F9, F15, F16, and
F18 benchmark instances and std value for the F9 test.

In all other cases, WOA-AEFS completely outperformed basic WOA metaheuristics. In the Table 4,
we included an additional row, where we counted for each column the number of times a particular
algorithm obtained better results. In 18 out of 23 benchmark instances, the WOA-AEFS for both
indicators (mean and std) achieved better convergence speed and result quality compared with the
original WOA.

In the original WOA approach, due to the dynamic behavior of parameter~a (adaptive mechanism),
the search process tends to accelerate with the iterations progress [22]. This mechanism performs
well in cases, when in early iterations, the algorithm has found the promising region of the search
space. However, if this was not the case, the algorithm can become stuck in some of the suboptimal
regions, and the whole population (again due to the adaptive mechanism) converges to this suboptimal
domain and loses diversity. As already mentioned in Section 4.2, this behavior is known as premature
convergence. Premature convergence is particularly emphasized in the F8 and F21 simulations, as was
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also noted in [22]. The main cause of premature convergence is an inadequate exploitation–exploration
trade-off especially in early iterations of algorithms’ execution.

Table 4. Comparative analysis—WOA-AEFS vs. WOA for unconstrained benchmarks.

ID WOA WOA-AEFS
Mean Standard Deviation (std) Mean Standard Deviation (std)

F1 1.41 × 10−30 4.9 × 10−30 2.55 × 10−31 8.75 × 10−32

F2 1.06 × 10−21 2.39 × 10−21 3.97 × 10−23 2.99 × 10−23

F3 5.39 × 10−7 2.93 × 10−6 6.72 × 10−10 5.04 × 10−10

F4 0.072581 0.39747 0 0
F5 27.865580 0.763626 3.29 0.012500
F6 3.116266 0.532429 1.5 × 10−19 7.59 × 10−20

F7 0.001425 0.001149 0.001452 0.000851
F8 −5080.76 695.7968 −13239.3 48.3
F9 0 0 0 0

F10 7.4043 9.897572 0.013 0.0051
F11 0.000289 0.001586 0 0
F12 0.339676 0.214864 9.29 × 10−15 2.02 × 10−15

F13 1.889015 0.266088 7.56 × 10−14 2.09 × 10−14

F14 2.111973 2.498594 0.998023 1.99 × 10−16

F15 0.000572 0.000324 0.000322 0.000324
F16 −1.03163 4.2 × 10−7 −1.03163 2.87 × 10−6

F17 0.397914 2.7 × 10−5 0.397887 1.83 × 10−10

F18 3 4.22 × 10−15 3 2.35 × 10−15

F19 −3.85616 0.002706 −3.85529 0.003812
F20 −2.98105 0.376653 −3.31952 0.025821
F21 −7.04918 3.629551 −10.1532 3.02 × 10−12

F22 −8.181780 3.829202 −8.925003 3.352013
F23 −9.34238 2.414737 −10.5364 3.5 × 10−13

Better 2 2 18 18

By using the ABC exploration mechanism, our proposed WOA-AEFS algorithm avoids the
premature convergence, as was empirically proved. In cases of F8 and F21 benchmarks, the WOA-AEFS
successfully managed to avoid trapping in local optimum regions. However, by using the ABC
exploration, some good solutions could be wasted and our WOA-AEFS compensates this by utilizing
dynamic parameter eir and the very efficient FA’s search equation (please refer to Section 4.3). Moreover,
WOA-AEFS still employs adaptive shrinking mechanism (parameter~a) of the original WOA and the
search process is accelerating with the increase of iterations.

Convergence speed graphs of WOA and WOA-AEFS for F8 and F21 benchmark instances are
given in Figure 1.

Figure 1. Convergence speed graphs: F8 benchmark (a) –F21 benchmark (b).
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From the Figure 1, some interesting conclusions about the algorithms’ behavior can be drawn.
First, it should be noted that the both algorithms accelerate with the increase of iteration number
due to the shrinking behavior mechanism. Secondly, it can be concluded that the WOA-AEFS after
approximately 300 and 400 iterations obtains the value that the basic WOA generates after 500 iterations,
when observing F8 and F21 benchmarks, respectively. Also, it can be noticed that the basic WOA
in the F21 simulation gets stuck somewhere between the 80th and 120th, and between the 200th
and 220th iterations. At the other side, the WOA-AEFS shows non-volatile convergence during the
whole execution.

As a general conclusion, by conducting empirical experiments and by performing theoretical
analysis, it can be concluded that the WOA-AEFS considerably improves basic WOA version
by addressing its deficiencies of inadequately established balance between the exploitation and
exploration and by avoiding the premature convergence behavior. However, as stated above, there
always must be some kind of a compromise. The basic WOA utilizes fewer number of controls
parameters. In order to control the ABC exploration and the FA’s search process, the WOA-AEFS
employs three more control parameters, two dynamic (eir and α) and one static (limit).

In addition to the comparative analysis with the basic WOA, we also wanted to see how the
WOA-AEFS relates to other state-of-the-art metaheurisitcs, which results in the same benchmark
instances could be found in the modern computer science literature. With this objective, we performed
another comparative analysis between the WOA-AEFS and the particle swarm optimization (PSO) [93],
gravitational search algorithm (GSA) [94], differential evolution (DE) [95] and fast evolutionary
programming (FEP) [96]. Results for all approaches are taken from [22,97].

As in the first comparative analysis, we used the same performance metrics as in [22]—the best
values averaged over 100 independent runs (mean indicator) and the standard deviation (std). All
algorithms are tested under the same experimental conditions (N = 30 and maxIter = 500).

Comparative analysis between the WOA-AEFS and the above mentioned approaches is given
in Table 5. We note that we also added basic WOA in comparative analysis because we wanted
to evaluate its performance against other state-of-the-art algorithms. Similarly as in the previous
comparative analysis, we formatted the best results for each category of tests with bold style. We have
also included an additional row, where we counted for each column the number of times a particular
algorithm obtained the best results.

Based on the comparative analysis with other state-of-the-art algorithms that is shown in Table 5,
it can be stated that the WOA-AEFS on average performed better than all other approaches included in
analysis. For example, for the standard deviation indicator, the WOA-AEFS obtained the best results
even for 10 benchmarks, while in the case of the mean indicator, the WOA-AEFS performed the best for
six benchmarks. The second best algorithm is DE, while the GSA is ranked as the third best algorithm
included in the analysis.
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Table 5. Comparative analysis—WOA-AEFS vs. other state-of-the-art algorithms for unconstrained benchmarks. Particle swarm optimization (PSO), gravitational
search algorithm (GSA), differential evolution (DE), fast evolutionary programming (FEP) and the basic whale optimization algorithm (WOA).

ID PSO GSA DE FEP WOA WOA-AEFS
mean std mean std mean std mean std mean std mean std

F1 0.000136 0.000202 2.53 × 10−16 9.67 × 10−17 8.2 × 10−14 5.90 × 10−14 0.00057 0.00013 1.41 × 10−30 4.9 × 10−30 2.55 × 10−31 8.75 × 10−32

F2 0.042144 0.045421 0.055655 0.194074 1.5× 10−9 9.9× 10−10 0.008100 0.000770 1.06× 10−21 2.39 × 10−21 3.97 × 10−23 2.99 × 10−23

F3 70.125620 22.119240 896.5347 318.9559 6.8 × 10−11 7.4 × 10−11 0.016 0.014 5.39 × 10−7 2.93 × 10−6 6.72 × 10−10 5.04 × 10−10

F4 1.086481 0.317039 7.35487 1.741452 0 0 0.3 0.5 0.072581 0.39747 0 0
F5 96.71832 60.11559 67.54309 62.22534 0 0 5.06 5.87 27.865580 0.763626 3.29 0.012500
F6 0.000102 8.28 × 10−5 2.5 × 10−16 1.74 × 10−16 0 0 0 0 3.116266 0.532429 1.5 × 10−19 7.59 × 10−20

F7 0.122854 0.044957 0.089441 0.04339 0.00463 0.0012 0.1415 0.3522 0.001425 0.001149 0.001452 0.000851
F8 −4841.29 1152.814 −2821.07 493.0375 −11080.1 574.7 −12,554.5 52.6 −5080.76 695.7968 −13239.3 48.3
F9 46.70423 11.62938 25.96841 7.470068 69.2 38.8 0.046 0.012 0 0 0 0

F10 0.276015 0.50901 0.062087 0.23628 9.7 × 10−8 4.2 × 10−8 0.018 0.0021 7.4043 9.897572 0.013 0.0051
F11 0.009215 0.007724 27.70154 5.040343 0 0 0.016 0.022 0.000289 0.001586 0 0
F12 0.006917 0.026301 1.799617 0.95114 7.9 × 10−15 8 × 10−15 9.2 × 10−6 3.6 × 10−6 0.339676 0.214864 9.29 × 10−15 2.02 × 10−15

F13 0.006675 0.008907 8.899084 7.126241 5.1 × 10−14 4.8 × 10−14 0.00016 0.000073 1.889015 0.266088 7.56 × 10−14 2.09 × 10−14

F14 3.627168 2.560828 5.89838 3.831299 0.998004 3.3× 10−16 1.22 0.56 2.111973 2.498594 0.998023 1.99 × 10−16

F15 0.000577 0.000222 0.003673 0.001647 4.5 × 10−14 0.00033 0.0005 0.00032 0.000572 0.000324 0.000322 0.000324
F16 −1.03163 6.25 × 10−16 −1.03163 4.88 × 10−16 −1.03163 3.1 × 10−13 −1.03 4.9 × 10−7 −1.03163 4.2 × 10−7 −1.03163 2.87 × 10−6

F17 0.397887 0 0.397887 0 0.397887 9.9 × 10−9 0.398 1.5 × 10−7 0.397914 2.7 × 10−5 0.397887 1.83 × 10−10

F18 3 1.33 × 10−15 3 4.17 × 10−15 3 2 × 10−15 3.02 0.11 3 4.22 × 10−15 3 2.35 × 10−15

F19 −3.86278 2.58 × 10−15 −3.86278 2.29 × 10−15 N/A N/A −3.86 0.000014 −3.85616 0.002706 −3.85529 0.003812
F20 −3.26634 0.060516 −3.31778 0.023081 N/A N/A -3.27 0.059 −2.98105 0.376653 −3.31952 0.025821
F21 −6.8651 3.019644 −5.95512 3.737079 −10.1532 0.0000025 -5.52 1.59 −7.04918 3.629551 −10.1532 3.02 × 10−12

F22 −8.45653 3.087094 −9.68447 2.014088 −10.4029 3.9 × 10−7 −5.53 2.12 −8.181780 3.829202 −8.925003 3.352013
F23 −9.95291 1.782786 −10.5364 2.6 × 10−15 −10.5364 1.9 × 10−7 −6.57 3.14 −9.34238 2.414737 −10.5364 3.5 × 10−13

Best 0 0 0 4 4 1 0 1 1 0 6 10
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5.2. Cloud Computing Resource Scheduling Simulations

In this section we show the empirical results that our proposed WOA-AEFS algorithm obtained
when tackling the resource scheduling problem in cloud computing environments. In order to more
accurately measure the performance of our proposed approach, we employed two types of simulations:
first with a real data set, and second with an artificial data set.

In simulations with a real data set, we used the single-objective model that was described
in Section 3.1, while for the purpose of simulations with an artificial data set, we utilized the
multi-objective model that was in detail presented in Section 3.2.

Both simulations were conducted in a CloudSim 3.0.3 environment, which is a self-contained
framework that provides an extensible toolkit for cloud environments simulations [98]. For more
information about CloudSim, please refer to [98].

Moreover, we have executed both simulations on the computing platform with Intel CoreTM
i7-4770K processor at 4 GHz with 32GB of RAM memory, Windows 10 Professional x64 operating
system and Java Development Kit 11 (JDK 11) and IntelliJ integrated development environment (IDE).
Since the basic CloudSim 3.0.3 is not CUDATM technology enabled, we have executed algorithms on
the central processing unit (CPU).

A potential solution is encoded in both simulations as a set of tasks, where for each task,
an available VM (resource) is mapped. Thus, the length of a solution is the total number of submitted
tasks to the cloud system.

In the following two subsections we show our empirical results, along with comparative analysis
and discussion, for both conducted simulations.

5.2.1. Simulations with Real Data Set

By utilizing real-world task data generated from a large-scale supercomputing facilities, we evaluate
performance of a resource scheduling metaheuristic. In this subsection we present results that the
WOA-AEFS obtained when a dataset from a real computing environment was used. The same resource
scheduling model and the same dataset was utilized in [75].

The tasks utilized in the conducted simulations were generated from NASA Ames iPSC/860
log [99] in Feitelson’s Parallel Workloads Archive (PWA). The NASA iPSC is located in the Numerical
Aerodynamic Simulation (NAS) Systems Division at NASA Ames Research Center. It comprises the data
of a sanitized account record for the 128-node iPSC/860 for three months (October 1993–December 1993).
The log contains data about 42264 tasks and 128 resources (CPUs). The data was retrieved from the the
workload trace log file NASA-iPSC-1993-3.swf from the URI: https://www.cse.huji.ac.il/labs/parallel/
workload/l_nasa_ipsc/. From this log we retreived the task ID, length of each task expressed in MIPS
and the requested processing elements (PEs).

For the purpose of simulations, we generated cloud infrastructure by using the CloudSim
framework. In all simulations we utilized 10 homogeneous VMs, that are located on two physical
hosts within one data center. The data center was created with default CloudSim characteristics.

The characteristics of hosts and VMs used in experiments are summarized in
Tables 6 and 7, respectively.

Table 6. CloudSim hosts configurations for simulations with a real dataset.

Host Identifier Parameter Value

Host1

RAM 3 (units: GB)
CPU type Intel Core 2 Extreme X6800

Number of cores (PEs) 2
CPU ability 27,079 (units: MIPS)

storage capacity 1 (units: TB)
bandwidth 10 (units: Gbps)

VMs scheduling policy space-shared

https://www.cse.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/
https://www.cse.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/
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Table 6. Cont.

Host Identifier Parameter Value

Host2

RAM 3 (units: GB)
CPU type Intel Core i7 Extreme Edition 3960X

Number of cores (PEs) 6
CPU ability 177,730 (units: MIPS)

storage capacity 1 (units: TB)
bandwidth 10 (units: Gbps)

VMs scheduling policy space-shared

Table 7. CloudSim VMs configurations for simulations with a real data set.

Parameter Value

number of VMs 10
CPU processing power 9726 (units: MIPS)

RAM memory 512 (units: MB)
bandwidth capacity 1000 (units: Mbps)

storage capacity 10 (units: GB)
task scheduling policy time-shared

VMM (Hypervisor) Xen
Operating System Linux
number of CPUs 1

CPU type Pentium 4 Extreme Edition

In order to evaluate the robustness and scalability of the proposed WOA-AEFS in terms of the
number of tasks, we performed experiments with a small task set (from 100 to 600 tasks) and with a
large task set (with 1000 and 2000 tasks).

We adjusted the basic WOA-AEFS parameters as follows: size of population to 30 (N = 30)
and maximum number of iterations in one run to 1000 (maxIter = 1000). Parameter limit was set
to 33 (round(1000/30)), while the dynamic parameters~a, eir, and α were adjusted during the course
of one run by expressions (28), (33) and (36), respectively. The other WOA-AEFS parameters were
adjusted as shown in Table 3.

The same CloudSim environment, as well as the parameters for population size and maximum
iterations were utilized in [75]. In this way, we wanted to perform a more objective comparative
analysis between our proposed WOA-AEFS and other approaches that were presented in [75].

We executed tests for eight instances, with 100, 200, 300, 400, 500, 600, 1000, and 2000 number of
tasks. For each experiment instance, the WOA-AEFS was executed in 100 independent runs, and we
calculated the averages of the makespan (MS) objective and the DI (Equation (11)). Details of the
resource scheduling model that was employed can be retrieved from Section 3.1. We note that we have
also adapted the basic WOA and performed experiments against this model, because we wanted to
see comparison between the basic and hybridized version.

We first wanted to compare the performance of WOA-AEFS with the basic WOA. Comparative
analysis between WOA-AEFS and the original WOA for both sets, small number of tasks (from 100 to
600) and large number of tasks (1000 and 2000) is shown in Figure 2.

From the presented diagram, it is clear that the WOA-AEFS outperformed WOA in all test
instances, except in the simulation with 400 tasks. In this case, the original WOA obtained slightly
better MS value (around 1%). The most significant performance difference can be noticed in simulations
with 600 tasks, where WOA-AEFS outperformed original WOA by more than 25%.
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Figure 2. Comparative analysis—WOA-AEFS vs. WOA using NASA iPSC real trace for small and
large number of tasks.

Convergence speed graph obtained for WOA-AEFS and WOA in test instance with 200 tasks is
given in Figure 3.

Figure 3. Convergence speed graph WOA-AEFS vs. WOA using NASA iPSC real trace for 200 tasks.

In order to further assess the robustness of WOA-AEFS, we performed comparative analysis with
the moth search differential evolution (MSDE) and PSO algorithms, that are presented in [75]. We
excluded from comparative analysis heuristics due to the fact that heuristics like round robin (RR)
generate high MS value. In [75], results for the original moth search (MS) are also presented. However,
we have also excluded this algorithm from comparative analysis, since the MSDE significantly
outperforms the basic MS algorithm. However, in order to see how basic WAO compares to other
state-of-the-art approaches, it was included in comparison.

We note that the results of the basic WOA were also shown in [75]. However, we did not take
results from this paper, instead we performed simulations with our own WOA implementation.

Results with smaller numbers of tasks (from 100 to 600) and with large task sets (1000 and 2000)
are shown in Figures 4 and 5, respectively.
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Figure 4. Comparative analysis—WOA-AEFS vs. other state-of-the-art algorithms using NASA iPSC
real trace for small numbers of tasks.

Figure 5. Comparative analysis—WOA-AEFS vs. other state-of-the-art algorithms using NASA iPSC
real trace for large numbers of tasks.

Based on the result visualizations from the diagrams presented in Figures 4 and 5, it can be
concluded that on average, WOA-AEFS establishes a better MS value than the other state-of-the-art
approaches included in comparative analysis. As stated above, only WOA in the test instance with 400
tasks obtained slightly better performance than WOA-AEFS (around 1%). From the diagrams, it can
also be noticed that the WOA-AEFS shows the same performance as the MSDE in simulation with
500 tasks. In simulations with a larger number of tasks (1000 and 2000), in both cases WOA-AEFS
outperforms all other approaches.

In order to generate a more precise analysis of obtained results, improvements of the MS objective,
expressed in percentage, of the WOA-AEFS over other state-of-the-art algorithms are given in Table 8.

Table 8. Improvements of the WOA-AEFS over other state-of-the-art algorithms in simulations with
NASA iPSC real trace data set.

Number of Tasks PSO MSDE WOA

100 +8.60% +4.83% +7.63%
200 +13.23% +4.97% +16.16%
300 +29.08% +8.47% +10.18%
400 +7.71% +2.53% −0.70%
500 +2.99% +0.02% +6.96%
600 +9.19% +1.52% +11.08%

1000 +1.89% 0.92% 1.58%
2000 +8.10% +0.42% +3.08%
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Finally, we wanted to perform comparative analysis between WOA-AEFS and WOA, MSDE
and PSO by using the DI indicator (Equation (11)). For more information, please refer to Section 3.1.
Comparative analysis of the DI is shown in Table 9 (results for MSDE and PSO were taken from [75]).
The best results from each category of test instances are marked bold.

Table 9. Comparative analysis of the DI indicator in simulations with NASA iPSC real trace data set.

Number of Tasks PSO MSDE WOA WOA-AEFS

100 0.974118 0.972773 1.004538 0.935002
200 1.375412 1.138444 1.337259 1.373259
300 1.051463 0.905947 1.032713 0.983205
400 1.050034 0.878397 1.063955 0.883302
500 1.077579 0.942521 1.311571 0.941056
600 1.097044 0.983239 1.270371 0.976200

1000 1.013558 1.040253 1.093521 1.0387226
2000 0.974118 1.011911 0.991087 0.9835211

Better 2 2 0 3

Based on the analysis of DI indicator results shown in Table 9, it can be stated that, on average,
the WOA-AEFS obtained the best results. The PSO proved to be capable of establishing effective
load balancing between VMs in environments with large number of tasks (1000 and 2000), and in
these simulations this approach showed the best performance. In simulations with 300 and 400 tasks,
the MSDE outperformed WOA-AEFS, as well as other algorithms. Our proposed WOA-AEFS showed
superior quality of results in small test instances with 100, 200, 500, and 600 numbers of tasks.

As a general conclusion, in comparative analysis with both a small and large number of tasks,
the WOA-AEFS shows better performance than other outstanding metaheuristics. The second best is
the MSDE approach, while the original WOA and the PSO on average obtained similar results.

Considering the possibility of implementing metaheuristics-based resource scheduling techniques
in a real cloud environment, CPU time required for obtaining promising solution represent an
important indicator. Since in [75], details of the computation platform are not given, we could
not compare the required CPU time of the WOA-AEFS with the CPU time for the MSDE and PSO.
However, since we have implemented and tested both original WOA and the WOA-AEFS on the same
computing platform, in this case we were able to perform such comparison. The CPU time comparison
is presented in Table 10.

Table 10. Comparative analysis of the CPU time in simulations with NASA iPSC real trace data set.

Algorithm Number of Tasks

100 200 300 400 500 600 1000 2000
WOA 2730 4122 6541 8567 11,005 15,349 35,152 118,782

WOA-AEFS 2855 3983 6374 8750 10,730 15,765 36,110 109,351

From the presented results it can be stated that in average WOA-AEFS and the original WOA have
obtained a similar performance regarding the simulation time. This has important implications for the
cloud resource scheduling problem, as well as on the metaheuristics performance, since the complexity
of the WOA-AEFS over the original WOA does not have significant influence on the execution time.

5.2.2. Resource Scheduling Simulations with Artificial Data Set

In the second resource scheduling simulation, we used a multi-objective model with performance
and budget constraints. In this experiment, the objective was to minimize the MS along with the total
cost of CPU and memory resources. For more information about the model, please refer to Section 3.2.
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For this experiment, we used an artificial dataset. The simulation environment is generated in
the CloudSim 3.0.3 platform, as in experiments with the real data set. For each algorithm run, we
generated a random environment with 50 heterogeneous VMs implemented under hosts located in
data centers. We have considered varying the number of heterogeneous tasks (from 100 to 500) with
different lengths. Moreover, we have also considered various tasks arrival rates that were set to 10 and
40. The same simulation environment was utilized in [64].

The characteristics of tasks, VMs, hosts and data centers are shown in Tables 11 and 12.

Table 11. CloudSim VM, hosts and data centers configurations for simulations with artificial data set.

Entity ame Parameter Value

VM

Number of VMs 50
RAM 512 (units: MB)

CPU processing power 1860, 2660 (units: MIPS)
storage capacity 1 (units: GB)

bandwidth capacity 1000 (units: Mbps)
Task scheduling policy time-shared

VMM (Hypervisor) Xen
Operating System Linux
Number of CPUs 1

Host

RAM 2 (units: GB)
storage capacity 10 (units: GB)

bandwidth capacity 1 (units:Gbps)
VMs scheduling policy space-shared

Data center Number of data centers 10
Number of hosts 10

Table 12. CloudSim tasks characteristics for simulations with real data set.

Parameter Value

number of tasks 100–500
tasks length 400–1000 (units: MI)

file size 200–1000 (units: MB)
output size (memory) 20–40 (units: MB)

We have adjusted the basic WOA-AEFS parameters as in the experiments with the real dataset:
the size of population was set to 30 (N = 30) and the maximum number of iterations in one run was
adjusted to 1000 (maxIter = 1000). The parameter limit was set to 33 (round(1000/30)), while the
dynamic parameters~a, eir and α were adjusted during the course of one run by the expressions (28),
(33), and (36), respectively. The other WOA-AEFS parameters were adjusted as shown in Table 3.

Similarly as in [64], we have separately evaluated MS, cost, and deadline violation and performed
comparative analysis with Min-Min and first come first serve (FCFS) heuristics, as well as with cuckoo
search particle swarm optimization (CPSO) and performance budget ACO (PBACO) metaheuristics.
Moreover, to more precisely evaluate performance of our proposed WOA-AEFS, we have also included
original WOA in the comparative analysis.

Simulation results for Min-Min and FCFS heuristics and CPSO and PBACO metaheuristics were
taken from [64], while we have performed simulations for the basic WOA approach using our own
implementation in Java. In [64], implementation of state-of-the-art CPSO was shown.

For each simulation, WOA and WOA-AEFS are executed in 100 independent runs and average
results are reported. For each run, a new random cloud environment was generated.
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Makespan Analysis

First we show comparative analysis between the WOA-AEFS and other above mentioned
heuristics and metaheuristics for the MS value. The result diagrams along with the data table when
the tasks arrival rate was set to 10, is shown in Figure 6.

According to the presented results, on average WOA-AEFS obtained the best value for the MS
indicator compared to all other approaches included in analysis. It achieved better performance than
the CPSO metaheuristics, which proved to be the second best, and much better than the original WOA.
The WOA-AEFS established better results than CPSO algorithm in test instances with 100, 300, and
500 tasks. In benchmarks with 200 and 400 tasks, CPSO established slightly better MS value than our
proposed WOA-AEFS.

Moreover, based on the presented results, it can be concluded that the WOA-AEFS significantly
outperformed basic WOA in all test cases. The largest performance increase could be observed in the
benchmark with 100 tasks, where the WOA-AEFS outperformed WOA by around 19%. In tests with
200, 300, 400 and 500 tasks, WOA-AEFS improved the MS value of the original WOA by around 5%,
15%, 13%, and 9%, respectively.

Finally, it can be also concluded that the basic WOA performs similarly to PBACO metaheuristics.

Figure 6. Comparative analysis—WOA-AEFS vs. others using artificial dataset (makespan at arrival
rate of 10).

The result diagrams along with the data table when the tasks arrival rate was set to 40 is shown
in Figure 7.

In the experiments with tasks arrival rate of 40, the WOA-AEFS obtained better results than
state-of-the-art CPSO in four out of five test instances. Only in tests with 500 tasks, did CPSO
outperform WOA-AEFS by an insignificant 2%. The most significant performance difference between
these two algorithms can be observed in the test with 100 tasks, where the WOA-AEFS obtained better
results by around 19%.
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Figure 7. Comparative analysis—WOA-AEFS vs. others using artificial dataset (makespan at arrival
rate of 40.

As in simulations with a task arrival rate of 10, the WOA-AEFS proved to be the best metaheuristic,
while the CPSO took second place. In all test instances, WOA-AEFS completely outperformed the
basic WOA approach, which showed similar results to PBACO.

As expected in simulations with both task arrival rates of 10 and 40, heuristics algorithms
showed the worst performance. However, the Min-Min heuristics could compete with metaheuristic
approaches in some test instances. For example, the Min-Min heuristics obtained a better MS value
than the PBACO in tests with 100 and 200 tasks and arrival rates of 10 and 40. On the other hand,
Min-Min heuristics achieved, on average, two times better performance than FCFS heuristics.

Cost Objective Analysis

As in [64], cost objective evaluation was performed by considering sets of 200, 400, and 500 tasks
with deadlines varying from 10 to 100. Results of cost objective comparative analysis with 200, 400,
and 500 tasks with varying deadline constraints are shown in Figure 8–10, respectively.

In all presented graphs, vertical axis represents cost expressed in monetary units (mu), while the
horizontal axis is used for plotting deadlines.

When analyzing results presented in Figures 8–10, similarly as in analysis of the MS objective, it
can be concluded that on average our proposed WOA-AEFS establishes the best performance. The
second best approach is CPSO [64], that only in few test instances outperformed our WOA-AEFS.
Some of these instances include: 200 tasks with deadlines of 20, 40, 50, and 90, 400 tasks with deadlines
of 40, 50, 70, and 90 and 500 tasks with deadlines of 10, 70, and 100. It should be emphasized that in
these benchmarks, CPSO showed only slightly better results than our WOA-AEFS.

Also, similar to the previous analysis, the proposed WOA-AEFS in all simulation instances
achieved much better results that the original WOA, by establishing better solution quality along
with the convergence speed. Again, the basic WOA established similar performance metrics to
PBACO metaheuristics.
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Regarding the cost objective with varying deadline constraints, both heuristics included in
comparative analysis showed substantially worse results than all other approaches.

Figure 8. Comparative analysis—WOA-AEFS vs. others using artificial dataset (costs with 200 tasks
and varying deadlines.

Figure 9. Comparative analysis—WOA-AEFS vs. others using artificial dataset (costs with 400 tasks
and varying deadlines.



Appl. Sci. 2019, 9, 4893 33 of 40

Figure 10. Comparative analysis—WOA-AEFS vs. others using artificial dataset (costs with 500 tasks
and varying deadlines.

Deadline Violation Rate Analysis

Finally, in the last analysis in simulations with artificial dataset, the deadline violation rate has
been evaluated in order to validate the QoS of the proposed scheduling metaheuristics. Simulations
were conducted with 200, 400, and 500 tasks and varying deadlines (from 100 to 3000) as in [64].

Results of deadline violation comparative analysis with 200, 400, and 500 tasks with varying
deadline constraints are shown in Figures 11–13, respectively. In all presented graphs, violation rate
was plotted expressed in percents on the ordinate axis, while the deadlines were represented on
abscissa axis.

Figure 11. Comparative analysis—WOA-AEFS vs. others using artificial dataset (deadline violation
with 200 tasks and varying deadlines).
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Figure 12. Comparative analysis—WOA-AEFS vs. others using artificial dataset (deadline violation
with 400 tasks and varying deadlines).

Figure 13. Comparative analysis—WOA-AEFS vs. others using artificial dataset (deadline violation
with 500 tasks and varying deadlines).

The results shown in Figures 11–13 prove the superiority of our WOA-AEFS approach over other
metaheuristics and heuristics. Results are similar as in the previous two simulations.

On average, the WOA-AEFS is the best approach included in comparative analysis, followed
by the CPSO that obtained the second best performance in deadline violation tests. The WOA again
showed similar performance as PBACO, while all four metaheuristics included in comparative analysis
established much better results than Min-Min and FCFS heuristics.

Artificial Data Set Simulations Final Conclusion

According to the analysis of results obtained for the MS and cost objectives, as well as for deadline
violation rate, in simulations with artificial data set, our overall conclusion is that the proposed
WOA-AEFS algorithm, on average, obtained the best results and proved to be robust and efficient
optimization technique for tackling resource scheduling NP hard problem.
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The WOA-AEFS in all experiment instances outperformed basic WOA, PBACO and Min-Min and
FCFS heuristics. The second best approach, the CPSO only in some cases showed better performance
metrics than our WOA-AEFS.

6. Conclusion and Future Research

In this paper an implementation of the improved WOA swarm intelligence metaheuristics adapted
for tackling the resource scheduling challenge in cloud computing environments was proposed.
The original WAO approach was enhanced by using hybridization as a promising technique that is
widely adopted for improving swarm algorithms. By using hybridization, the best components of two
or more algorithms are combined.

The main objective of the research proposed in this paper was to improve the resource scheduling
problem in cloud computing environments by using swarm intelligence algorithms. The secondary
objective of the proposed research was to improve WOA by hybridization with other state-of-the-art
swarm algorithms to address the observed deficiencies of the original WOA implementation.

The proposed hybrid algorithm, WOA-AEFS addresses deficiencies of inappropriate balance
adjustments between exploitation and exploration and the premature convergence of the original
WOA version by adapting exploration mechanism from the ABC algorithm and by incorporating
exploitation search procedure from the FA metaheuristic.

In the presented research, a simulation in the standard environment with classic benchmark
instances was utilized as the research methodology. Resource scheduling simulations were conducted
in the CloudSim framework environment.

To establish and validate performance of the proposed WOA-AEFS approach, three types of
tests (simulations) have been performed. The devised approach was first tested on a standard set of
bound-constrained benchmarks and the obtained solution quality and the convergence speed were
compared with the results generated by the original WOA implementation and PSO, GSA, DE, and
FEP metaheuristics, that were all tested on the same benchmark instances.

The last two simulations were performed by using two cloud computing resource scheduling
models. In simulations with the first resource scheduling model (single-objective model with MS
objective), real data set obtained from NASA iPSC super computing environment was employed and
performance of the WOA-AEFS with the original WOA has been compared, as well as with the PSO
and the MSDE state-of-the-art metaheuristics.

The second resource scheduling model falls into the category of multi-objective optimization,
where the MS and budget costs objectives with task performance and task deadline constraints were
considered. In these tests, the WOA-AEFS generated solution quality has been compared with the
original WOA, CPSO, and PBACO metaheuristics, as well as with FCFS and Min-Min heuristics.

In all conducted simulations (bound-constrained benchmarks and cloud computing resource
scheduling), the WOA-AEFS showed substantially better performance than all approaches included in
the comparative analysis. In this way, a hybrid algorithm was devised that overcomes deficiencies of
the original WOA metaheuristic, and improvements in solving resource scheduling problem in cloud
computing has also been established.

Future research could implement and validate other swarm intelligence algorithms in original,
as well as in modified/hybridized versions to other challenges and problems in cloud computing,
such as load balancing, migration and VMs provisioning, energy consumption reduction, etc. It would
also be interesting to see how efficiently the proposed WOA-AEFS is able to tackle large-scale global
optimization challenges.
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