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Abstract: In this paper, we propose an advanced adaptive cruise control to evaluate the collision
risk between adjacent vehicles and adjust the distance between them seeking to improve driving
safety. As a solution for preventing crashes, an autopilot vehicle has been considered. In the near
future, the technique to forecast dangerous situations and automatically adjust the speed to prevent
a collision can be implemented to a real vehicle. We have attempted to realize the technique to
predict the future positions of adjacent vehicles. Several previous studies have investigated similar
approaches; however, these studies ignored the individual characteristics of drivers and changes in
driving conditions, even though the prediction performance largely depends on these characteristics.
The proposed method allows estimating the operation characteristics of each driver and applying
the estimated results to obtain the trajectory prediction. Then, the collision risk is evaluated based
on such prediction. A novel advanced adaptive cruise control, proposed in this paper, adjusts its
speed and distance from adjacent vehicles accordingly to minimize the collision risk in advance.
In evaluation using real traffic data, the proposed method detected lane changes with 99.2% and
achieved trajectory prediction error of 0.065 m, on average. In addition, it was demonstrated that
almost 35% of the collision risk can be decreased by applying the proposed method compared to that
of human drivers.

Keywords: autonomous driving; adaptive cruise control; operation characteristic estimation;
trajectory prediction

1. Introduction

According to the conducted survey, human errors have caused over 90% of car crashes [1].
To solve this problem, autonomous driving has been introduced as a solution that could substitute or
help human drivers. However, the coexistence of human drivers and autonomous vehicles needs to be
considered as a critical issue, as it is impossible to substitute human drivers at once completely.
In the real-world, where people and automated machines coexist, understanding the operation
characteristics of human drivers and predicting their future behavior are considerably important
tasks to establish safe autonomous driving. Furthermore, at some point it will realize to forecast
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dangerous situations and automatically generate maneuvers to prevent a collision. Currently, there are
aggressive drivers conducting a risky lane change even when sufficient speed and distance are not
guaranteed. It was reported that car crashes mainly occur because of lane changing [2]. In this case,
if an autonomous vehicle suddenly decelerates to maintain the distance from a lane-changing vehicle,
and it may lead to a crash with a following vehicle as shown in Figure 1. To prevent rear collisions
caused by the cut-in situation, anticipation of future maneuvers of the surrounding vehicles positively
necessary. Furthermore, automated control performed to avoid collisions based on the anticipation
can significantly ensure driving safety.

Figure 1. Rear collision caused by the interrupting vehicle: if the autonomous vehicle suddenly
decelerates to avoid collisions with interrupting vehicles, it may lead to a crash with the following vehicle.

Two core techniques can be implemented to establish safe autonomous driving: First, trajectory
prediction of surrounding vehicles is required. If future positions of adjacent vehicles can be
predicted based on the registration of real-time movements, the autonomous vehicle will be able
to generate safe paths to avoid possible collisions. Various methods have been proposed to predict
the vehicle movements [3–7], and the models can be classified to macroscopic and microscopic
models. Macroscopic model treats a numerous number of vehicles as flowing in a stream [6].
Although macroscopic model is effective to analyze the traffic flow, such as congestion or traffic
volume, it is not appropriate for the collision avoidance system. On the other hand, microscopic
model simulates the behavior of an individual vehicle, and it can be applied to predict future actions
of adjacent vehicles [3–5,7]. However, they require the data on specific parameters to achieve the
appropriate performance. In the aforementioned study, the values were statistically determined using
the training data. However, the constant values cannot handle the individual difference as drivers
generally have different operation characteristics. For instance, drivers demonstrate the different
reaction time, which is one of the key operation characteristics depending on various factors such
as age, driving experience, and gender [8]. Higgs et al. reported the limitation of the Wiedemann
car-following model, which is one of the microscopic models, caused by the individual differences of
drivers [7]. Previously suggested methods, including the ones suggested in our previous work, do not
consider the individual difference in characteristics [9], leading to the loss of the trajectory prediction
accuracy. In addition, the methods with the predetermined values proposed in the previous studies
cannot handle the changes in driving conditions. If the traffic situation or environment is different
from that implied within the training data, it also leads to deterioration of the overall performance.
In [10], it is shown that the values of the parameters in the General Motors (GM) model vary over the
training data.

To mitigate this problem, the real-time estimation of the operation characteristics is required as
the second core technique. The proposed approach implies estimating the operation characteristics
of a driver and applying the result to the trajectory prediction. You et al. proposed a method based
on the extended Kalman filter to estimate the operation characteristics [11]. This method employs
twelve parameters to model the individual characteristics of a driver. Filev et al. considered a driver
behavior as the second order system [12]. This study estimated two parameters to represent the
operation characteristics. Although the above two methods focused on estimation of the operation
characteristics, they do not discuss the trajectory prediction. Note that Zhu et al. proposed a method
to predict a trajectory using the deep learning framework [13]. Based on real experiments, it was
proven that the method achieves higher prediction accuracy compared to the previously proposed
ones. However, the data-driven approach has the limitation that the performance largely depends on
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the chosen training dataset. If the real conditions differ significantly from that of the training dataset,
the performance of the approach may deteriorate.

Considering the above limitations of previous studies, we propose a novel method to anticipate
maneuvers of adjacent vehicles and to prevent a collision with them. Adaptive cruise control (ACC),
which adjusts the speed and distance from the preceding vehicle, is already commercialized in recent
years. Treiber et al. proposed the intelligent driver model (IDM) for the ACC system [14]. This method
calculates the acceleration of the ACC vehicle based on the preferences of host driver, which are the
desired speed, the desired time gap, and the desired deceleration with respect to the preceding vehicle.
However, Kesting et al. reported that the IDM shows unrealistic behavior when the cut-in vehicle
exists [15]. Davis proposed a method to consider not only the preceding vehicle but also the cut-in
vehicle near an on-ramp [16]. However, this method assumes only mandatory lane changes performed
near an on-ramp or off-ramp. Therefore, it is limited to handle discretionary lane changes on freeways.
Milanés et al. proposed the ACC and cooperative ACC (CACC), which uses a vehicle-to-vehicle (V2V)
communications system [17]. They achieved smooth and stable car-following behavior by applying
the CACC. Lu et al. proposed the smart driver model (SDM) to improve the traffic flow stability [18].
By simulation, it was demonstrated that the SDM is able to stabilize the traffic flow under cut-in
condition compared to previous models. However, the authors of [17] and [18] assume that all adjacent
vehicles, including the host vehicle, implement the ACC and there is no manual driving vehicle.
Therefore, the effectiveness of the two methods cannot be guaranteed under the condition where
human drivers and autonomous vehicles coexist. In the simulation conducted by [18], the sudden
deceleration was confirmed when a cut-in occurred. As human drivers cannot respond the sudden
deceleration unlike the ACC vehicles, rear collision may occur. According to the previous study, ACC
can occasionally lead to a rear collision, as it only focuses on the preceding vehicle [19]. By contrast, the
method proposed in the present paper predicts the trajectories of the surrounding vehicles, including
not only lane-changing vehicles, but also the following ones, behind the autonomous vehicle in
question. In addition, the proposed method estimates the operation characteristics of other drivers
and applies these estimates to the trajectory prediction. Then, the method assesses the collision risk
according to the predicted trajectories and automatically controls its speed to maintain a safe distance
from both the lane-changing and the following vehicles to minimize a risk indicator. Through the
dynamic characteristic potential field method, which determines the distribution of potential fields
depending on the relative distance and speed [20], the risk index is evaluated in this paper. This index
has no restricting specific condition, as observed in the time-to-collision (TTC) when the collision
risk is evaluated. Then, the proposed method finds an optimal position between the preceding and
following vehicles to minimize the risk index.

The contribution of this paper is as follows. The proposed method performs the real-time
estimation of operation characteristics of each driver while previous studies determine the constant
values of model parameters from the training data. Our approach concludes the improvement of
trajectory prediction accuracy and driving safety. A driver is aware of the distance and relative speed
with respect to the preceding vehicle; consequently, the driver determines its acceleration as a response.
The proposed method uses the GM model to analyze the behavior of the following driver, as it is widely
employed among available car-following models [10]. The model has three parameters to represent
the operation characteristics. Several studies reported the optimized values of the parameters using
real traffic datasets [21–23]. However, the values vary across the papers, as all of the data was recorded
at different locations. Therefore, the constant values of the parameters cannot be adjusted according
to the changes in the driving conditions. To address this limitation, the proposed approach aims to
estimate the real-time values of the parameters using the Levenberg–Marquardt algorithm [24,25].
This approach considers the changes in the driving conditions, unlike the previous methods based
on the predetermined values. Moreover, the proposed method estimates the reaction time of the
following driver in real time. The previous methods used the fixed reaction time of 1 s, although
the performance of the trajectory prediction largely depends on the reaction time [13]. In this paper,
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the three parameters of the GM model and the reaction time are defined as the operation characteristic
variables. The proposed method performs the optimization of the four considered variables and
applies the result to the trajectory prediction at each time step. Owing to this approach, the trajectory
prediction can be robust with respect to the individual difference between the operation characteristics
of drivers and the changes in driving conditions. Consequently, the anticipation of the future risk,
with a high level of precision, and the collision avoidance can be realized. This is a state-of-the-art
approach, and it is expected to be applied to an advanced safety system.

This paper is organized as follows. Section 2 describes the problem definition and a schematic of
the proposed method. Section 3 explains the details of the proposed method. Section 4 presents the
experiments and results. Section 5 describes the discussions including areas of future work. Finally,
Section 6 describes the conclusions of this paper.

2. Overview

2.1. Problem Definition

This paper assumes the driving condition in which human drivers and autonomous vehicles
coexist. Figure 2 represents the driving scene assumed in this paper. There are human drivers around
the autonomous vehicle, which is equipped with embedded measurement devices, such as a GPS
tracker and laser scanners used to acquire the data on movements of surrounding vehicles. The sensing
range is assumed to be within 120 m. The relative speed and distance of adjacent vehicles can be
acquired. The proposed method is implemented in the autonomous vehicle.

(a) (b)

Figure 2. Problem definition: the green vehicle represents the autonomous vehicle, and the blue ones
are the adjacent vehicles, which are the targets of the proposed method. The yellow vehicles are not
considered in the proposed method. (a) The autonomous vehicle has measurement devices used to
acquire the data on the distance and speed of the adjacent vehicles. (b) The autonomous vehicle is
defined as ego, and the maximum number of considered adjacent vehicles is eight.

This paper assumes a situation when one of adjacent vehicles cuts in the front space of the
autonomous vehicle, therefore reproducing one of the main factors of a crash. The future position
of the cut-in vehicle for a time horizon of 2 s is predicted, and the collision risk is derived from the
prediction result. The collision risks with respect to not only the cut-in vehicle, but also to the following
vehicle, should be considered. If the autonomous vehicle immediately decelerates to maintain a
distance from the cut-in vehicle, the rear collision can occur. Therefore, the risk assessment towards
the two vehicles is strongly required.

In this paper, the autonomous vehicle is defined as ego, and eight adjacent vehicles are defined,
as shown in Figure 2b. The ego vehicle is indicated using green color, and the eight adjacent vehicles
are depicted using blue color. The yellow vehicles represent non-target vehicles out of the coverage of
the proposed method. The maximum number of considered adjacent vehicles is eight. In the figure,
LF represents the following vehicle on the left lane, LA is the alongside vehicle on the left lane, and LP
denotes the preceding vehicle on the left lane. FO is the following vehicle on the same lane of the ego
vehicle; and PR represents the preceding vehicle of the ego vehicle. In the same way, RF represents the
following vehicle on the right lane; RA is the alongside vehicle on the right lane, and RP denotes the
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preceding vehicle on the right lane. The ego vehicle is always monitoring the adjacent vehicles while
estimating their driving intentions and predicting their trajectories.

2.2. Overview of the Proposed Method

An advanced ACC (AACC) system is proposed based on the operation characteristic estimation
and trajectory prediction to solve the limitations described in Section 1. Figure 3 shows the schematic
of the proposed method. The AACC consists of two parts: a predictor and a planner. The predictor is
generated according to the number of adjacent vehicles. If there are N adjacent vehicles around the
ego vehicle, N units are generated, and then each unit predicts the trajectory of one adjacent vehicle.
The inputs of the predictor are the data on the position and speed of the ego and the adjacent vehicles.
These information can be acquired using GPS and a controller area network (CAN) bus. Laser scanners
are installed to measure the position and speed of the adjacent vehicles. The predictor consists of three
subparts: driving intention estimation, operation characteristic estimation, and trajectory prediction.
The outputs of the predictor are the trajectories of N adjacent vehicles.

Figure 3. Schematic of the proposed method: the green vehicle represents the ego vehicle, and the
blue ones are the adjacent vehicles, which are the targets of operation characteristic estimation and
trajectory prediction. The ego vehicle is equipped with measurement devices used to acquire the data
on the distance and speed of the adjacent vehicles. The proposed method is implemented within the
ego vehicle.

First, this paper defines four driving intentions, “keeping”, “changing”, “arrival”, and
“adjustment”. The proposed method handle the intention estimation as a multiclass problem. Each
intention indicates a class, and it is estimated by the support vector machine (SVM). The lateral
movement of the adjacent vehicles is used as a feature. Details of this method are provided in
Section 3.1. The output of this part is the driving intention of each driver.

Second, the operation characteristics of the adjacent drivers are estimated at each time step.
Using the measured information, four operation characteristic variables are estimated: three parameters
of the GM model and the reaction time. The proposed method applies the Levenberg–Marquardt
algorithm to determine the real-time values of the considered variables. The details of this part are
explained in Section 3.2.

Third, the method applies the estimated driving intention and operation characteristic variables
to perform the trajectory prediction. In general, different schemes are conducted according to different
intentions. When drivers intend to keep the current lane such as keeping and adjustment, they aim
to maintain the safe distance from the preceding vehicle of the same lane. However, when drivers
intend to change a lane such as changing and arrival, they must consider the vehicles in the adjacent
lane. The proposed method is based on this assumption. Two prediction methods are applied to
each direction. For the longitudinal direction, the GM model is used to calculate acceleration based
on the estimated values of operation characteristic variables. For the lateral direction, the proposed
method uses the sinusoidal model based on the estimated intention. Section 3.3 describes details of the
trajectory prediction method.
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Based on the outputs of the predictor, the planner calculates the acceleration of the ego vehicle
to maintain the safe distance from adjacent vehicles. The planner consists of two subparts: collision
risk assessment and risk minimization. The dynamic potential field method is applied to evaluate
the collision risk [20]. As the risk index, the repulsive potential energy generated from the adjacent
vehicle is defined. The large amount of the energy is produced when two vehicles are near each other
and move rapidly. In contrast, the small repulsive potential energy is produced when the ego vehicle
maintains a sufficient distance from the adjacent vehicle and adjusts its speed appropriately. The value
of repulsive energy reflects the collision risk. Section 3.4 explains details of this approach.

Finally, the proposed method finds an optimal position to minimize the risk index. In this phase,
the collision risks with respect to both the cut-in vehicle and following vehicle of the ego vehicle
are considered. Moreover, inconsistent or excessive acceleration (deceleration) need to be strictly
controlled, as such actions can cause the rear collision. The output of this part is the control value for
the ego vehicle. Section 3.5 presents details of this part.

3. Proposed Method

3.1. Driving Intention Estimation

It can be assumed that all drivers simply have two intentions: lane-keeping and lane-changing.
When a driver is satisfied with a current driving condition, he/she may keep a current lane and only
focus on maintaining a safe distance from the preceding and following vehicles. However, if the driver
is in a state of dissatisfaction with the current driving condition, he or she may try to change a lane.
For the trajectory prediction, this paper defines the driving intentions more specifically as shown
in Figure 4.

When a driver has an intention of keeping, the driver control the speed for maintaining a safe
distance from the preceding vehicles. By contrast, changing expresses an intention to start changing
a lane until crossing the lane marking. The intention of arrival represents a step until the vehicle
reaches the center of the target lane, after it is over the lane marking. When a driver has an intention of
adjustment, drivers start to adjust the speed with respect to vehicles on the target lane.

Figure 4. Definition of driving intentions: driving intentions may correspond to four classes: keeping,
changing, arrival, and adjustment.

The proposed method defines each intention as a class and treats the estimation of driving
intentions as a multiclass problem using the SVM. Two features representing the lateral movement
of the target vehicle are extracted: the distance from the centerline and the lateral speed. In addition,
one feature is extracted to describe the driving condition around the target vehicle. Details on how
to extract the features are described in our previous work [26]. The feature vector at time t can be
represented as follows.

x(k)t =
[
d(k)

t ḋ(k)
t p(k)

t

]T
, (1)

d(k)
t =

[
d(k)t−(W−1) ... d(k)t−1 d(k)t

]
, (2)

ḋ(k)
t =

[
ḋ(k)t−(W−1) ... ḋ(k)t−1 ḋ(k)t

]
, (3)



Appl. Sci. 2019, 9, 4875 7 of 18

p(k)
t =

[
p(k)t−(W−1) ... p(k)t−1 p(k)t

]
, (4)

where k is the index that denotes the lane marking. Both left and right lane-changing can be adapted.
Depending on the lane-changing side, all features are extracted by the specified side. Moreover,
a moving window is set, as the lane-changing is a continuous process. W denotes the size of
moving window in Equations (2)–(4), and it is a parameter to determine the sequence memory
for the continuous process. For instance, the distance from the centerline, d(k)

t , is a sequence that
consists of the W data until the time t.

The SVM kernel converts features from a low-dimensional space into a high-dimensional
space to handle the complexity of driving intentions, which may lie in a high-dimensional feature
space. The proposed method uses the radial basis function known to provide the best performance.
A one-versus-one strategy is implemented in the proposed method for the multiclass classification.
Finally, the intention at the current time step of each adjacent driver is the output in this part.

3.2. Operation Characteristic Estimation

The proposed method considers a driver’s behavior as the stimulus–response system; consequently,
the acceleration or deceleration is derived from the distance and relative speed with respect to the
preceding vehicle of that vehicle. Among the various methods to model the lane-keeping movement,
the proposed method employs the GM model, as numerous studies have been conducted to calibrate
the GM model as representing human-like car-following behavior. Thanks to previous works, the GM
model is considered as one of the best models, and the effectiveness was demonstrated by field
experiments [3,27]. At any time step, t, let the longitudinal position of the corresponding vehicle be
represented by xt

i . Here, i is an index of adjacent vehicles, and i + 1 represents the preceding vehicle of
the vehicle i.

ât
i =

[
αl,m(vt

i)
m

(xt−∆T
i+1 − xt−∆T

i )l

]
(vt−∆T

i+1 − vt−∆T
i ), (5)

where xt
i+1 indicates the position of the vehicle i + 1, and vt

i+1 denotes its speed at time step t.
Similarly, xt

i represents the position of the vehicle i in the operation characteristic estimation, and vt
i

corresponds to its speed at time step t. α, l, and m are the model parameters to determine the operation
characteristics, and ∆T is the reaction time. These four variables are considered as the operation
characteristic variables in this paper.

The proposed method performs the optimization of the three model parameters using the
Levenberg–Marquardt algorithm [24,25]. Although there are many iterative optimization algorithms,
such as the gradient descent or the Newton method, the Levenberg–Marquardt algorithm is generally
used to solve nonlinear problems. Employing this algorithm, the proposed method estimates the
optimized values at the current time based on information on the acceleration at the previous step.
To perform optimization of the three model parameters, the reaction time is used at the previous step.
If optimization fails, or the derived acceleration value is too large or small, the value of the previous
step is used as a fallback value.

After optimization of the three model parameters (α, l, and m), the estimation of the reaction time
is performed. According to the previous study, the reaction time is distributed in the range between
0.92 and 1.94 s [8]. Including the room for distribution, the proposed method identifies the optimal
value of the reaction time in the range from 0.5 to 2.5 s with increments of 0.1 s. The value can be
derived as follows,

∆T = arg min
∆T

|at−1
i − ât−1

i (∆T)|, (6)

where at−1
i represents the ground truth of acceleration and ât−1

i denotes the derived value obtained
using the proposed method.



Appl. Sci. 2019, 9, 4875 8 of 18

Estimation of the operation characteristic variables is performed following the above process,
and the optimal values are derived at each time step. However, the operation characteristics may
not drastically change in a short time period. Therefore, the proposed method defines a sliding
window of a constant size. Consequently, the values within the window are modified according to a
moving average.

3.3. Trajectory Prediction

The future maneuver of adjacent vehicle is predicted according to the estimated driving intention
of the vehicle. When keeping is estimated as the current intention, the lateral position is determined
at the center of the current lane. On the other hand, the lateral position is set to the center of the
adjacent lane when adjustment is estimated. If the estimated intention is changing or arrival, the lateral
position of the target vehicle is predicted through the sinusoidal model [28]. Although numbers of lane
change models have been proposed, the common models are isokinetic migration model, arc model,
trapezoidal acceleration model, and sinusoidal model [29]. The isokinetic migration model is simple
and easy to calculate; however, the generated maneuver would be unrealistic. The arc and trapezoidal
acceleration models have the poor flexibility since they require to determine planning parameters.
On the other hand, the sinusoidal model determines the lateral acceleration according to the duration
of lane-changing, and the duration can be calculated without any particular parameters. The proposed
method derives the duration using the lateral speed at the moment, when the lane-changing is detected,
and the lane width. This model generates a trajectory, such as a sine curve, as shown in Figure 5.
The acceleration in the lateral direction can be derived as follows,

atc
i,lat =

2πH
t2
lat

sin
2π

tlat
tc, (7)

where at
i,lat indicates the lateral acceleration of the vehicle i, tc is the time from the beginning of lane

departure, H is the lane width, and tlat is the lane-changing duration. tlat is calculated using the lateral
speed at the moment which the intention is estimated as changing. Therefore, the calculation of lateral
acceleration does not require any particular parameters.

Figure 5. Sinusoidal model for lane-changing trajectory: the proposed method uses the sinusoidal
model to predict the lateral movement, when the target vehicle performs a lane change. In the figure,
H is the final lateral displacement and tlat is the lane-changing duration.

The longitudinal position of adjacent vehicle is predicted based on the GM model, and the
acceleration value using the estimated values of operation characteristic variables is calculated. Then,
the position and speed of the vehicle i are updated as follows.

v̂t+1
i,lon = vt

i,lon + ât
i,lon∆t, (8)

x̂t+1
i,lon = xt

i,lon + v̂t
i,lon∆t, (9)

where x̂t
i,lon denotes the longitudinal acceleration derived by Equation (5). Based on the estimated

driving intention, the proposed method identifies the preceding vehicle for the target vehicle to follow.
When the estimated intention is keeping, the driver follows the preceding vehicle of the current lane.
Then, if the driver has the intention of changing, arrival, or adjustment, he/she may aim to follow
the preceding vehicle of the adjacent lane. The proposed approach reflects such tendency of drivers,
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and the preceding vehicle is selected as shown in Figure 6. It is assumed that the driver keeps the
current acceleration until the trajectory prediction is over when there is no preceding vehicle.

(a) (b)

Figure 6. Vehicle selection for longitudinal prediction: when the trajectory prediction is performed for
the target vehicle surrounded by a red rectangle, the preceding vehicle to follow is chosen. (a) If the
target driver has the intention of keeping, the driver aims to follow the preceding vehicle of the current
lane surrounded by a blue circle. (b) By contrast, if the driver has the intention of changing, arrival, or
adjustment, the preceding vehicle of the adjacent lane is selected.

The trajectory for the time horizon of two seconds is predicted since the reaction times of drivers
is commonly reported within two seconds [8]. Consequently, the sequence of future positions of the
adjacent vehicles for two seconds in advance is generated.

3.4. Collision Risk Assessment

The collision risk is assessed based on the predicted future positions. As described in Section 2.2,
the dynamic potential energy is defined as the risk index. The repulsive potential energy from the
vehicle i is derived by

f (∆Vi, θi) =
1

2π I0(η(∆Vi))
exp

(
η(∆Vi) cos θi

)
, (10)

h(Gi) =
1

2πσi
exp

(
−

G2
i

2σ2

)
, (11)

Ri = f (∆Vi, θi)h(Gi), (12)

where

θi =

{
π (i = PR)

0 (i = FO)
. (13)

Here, ∆Vi represents the relative speed between the ego and vehicle i, and Gi is the distance
from the vehicle i. The von Mises distribution is applied in Equation (10), and I0(η) represents a
modified Bessel function of order 0. If the parameter η is zero, the uniform filed is generated. When
the parameter η is not zero, the drifted distribution toward the angle θi is generated. The value of η

determines the drifted amount of distribution, and it is derived from the relative speed ∆Vi.
Figure 7 shows the distribution of the generated potential field according to the relative speed

between the ego vehicle and the vehicle i. The colors of the potential field indicate the energy level.
The red color depicts the high energy level, and the blue represents the low level. When the ego
and the vehicle i show the same speed, the uniform distribution is generated as shown in Figure 7a.
If the vehicle i moves slower than the ego vehicle, the distribution with bias toward the ego vehicle is
generated as shown in Figure 7b. Consequently, the large potential energy implies the ego vehicle,
and it represents the high risk of colliding with the vehicle ahead. On the other hand, if the vehicle i is
faster than the ego vehicle, the potential field is drifted to the forward direction as shown in Figure 7c.
Although the ego vehicle drives close to the vehicle i, the collision risk is assessed as low because of
the relative speed. In this case, the small amount of the repulsive potential energy indicates the low
collision risk. Equation (11) defines the repulsive potential energy generated from the vehicle i, and the
value is inversely proportional to the distance between the two vehicles. This equation represents that
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the potential energy is lower when the ego vehicle is farther away. In contrast, if the two vehicles are
close, the large amount of energy affects to the ego vehicle.

(a) (b) (c)

Figure 7. The distribution of potential field: (a) The ego and the vehicle i drive with the same speed,
(b) the ego is faster than the vehicle i, and (c) the ego is slower than the vehicle i. As shown, the potential
field is distributed depending on the relative speed between the two vehicles.

The collision risks towards both the preceding and following vehicles are assessed. When the
cut-in occurs in the front space of the ego vehicle, the collision risk with respect to the cut-in vehicle is
assessed instead of considering the preceding vehicle of the current lane. Figure 8 represents the way
how the assessment space of the collision risk is determined by the existence of cut-in vehicles. Finally,
the collision risk at position (x, y) is calculated by

R(x, y) = ∑
i=PR,FO

Ri. (14)

(a) (b)

Figure 8. Definition of the assessment space: (a) When there is no lane-changing vehicles around
the ego, the assessment space is defined between the preceding and following vehicles in the same
lane. (b) If the adjacent vehicle is predicted to change a lane to the front space of the ego vehicle,
the assessment space is determined between the predicted position of the lane-changing vehicle and
that of the following vehicle.

3.5. Risk Minimization

When there is no cut-in vehicle, the ego vehicle considers the collision risks to both the preceding
and following vehicles. On the other hand, if the lane-changing is detected, the ego vehicle references
the cut-in vehicle based on the predicted lane-changing maneuver. The proposed method finds the
optimal position between the two vehicles to minimize the collision risk as shown in Figure 9. To avoid
a collision with the cut-in vehicle, if the ego vehicle conducts inconsistent or excessive acceleration
(deceleration), it can conversely cause a crash, as it is unexpected for the following driver. Thus, the
acceleration (deceleration) is limited within ±0.5 m/s2. The optimal position to minimize the risk
index is derived by

(x∗, y∗) = arg min
x,y

R(x, y), (15)

where
x f < x < xp. (16)

In Equation (16), x f indicates the position of the following vehicle and xp represents that of the
preceding vehicle. Finally, the control value is derived, as the ego vehicle arrives at the position (x∗, y∗)
two seconds in advance.
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Figure 9. Risk minimization: if there is no cut-in vehicle, the advanced adaptive cruise control (AACC)
assesses the collision risks with respect to the preceding and following vehicles. Otherwise, the AACC
assesses the collision risk generated from the cut-in vehicle based on the predicted lane-changing
maneuver when the cut-in occurs.

4. Evaluation

4.1. Dataset

For evaluation of the proposed method, real traffic data were used for the analysis [30]. The traffic
flow on a highway in Germany was recorded by a drone. The data were gathered at six locations,
and the time series data for the sets of 110 and 500 vehicles were included. The position, speed,
acceleration, size, and other parameters of each vehicle were described. A 4K camera was implemented
within the drone, and the measurement accuracy was approximately 10 cm. The measurement rate was
25 Hz. The highway at location 1 has two lanes per direction, and the other locations have three lanes
per direction. To validate the robustness of the proposed method with respect to driving conditions,
the performance was evaluated using the data from all locations. For the evaluation, 5917 lane-keeping
vehicles and 1010 lane-changing vehicles were considered.

4.2. Performance of the Driving Intention Estimation

The estimation accuracy of driving intention was measured. The cases were counted as a
failure when the proposed system anticipated the lane-keeping, when in fact the vehicle conducted a
lane-changing. On the other hand, the cases were counted as a false alarm when the proposed method
judged that the adjacent vehicle would perform a lane change, when in fact the lane-changing did not
occur. Although it is equally important to decrease the number of false alarms, the failure is the most
dangerous case. Consequently, a recall with 100% accuracy must be achieved for the safety system.
The evaluation was conducted using the F1 score, which is derived by

F1 = 2× precision× recall
precision + recall

. (17)

The precision represents the false-alarm rate, and the recall evaluates the failure rate.
Through evaluation using the entire testing data, the F1 score of 99.2% was achieved with the proposed
method. False alarms occurred in 95 cases among 5917 lane-keeping events. Otherwise, no failures
occurred among 1010 lane-changing events. It was confirmed that the proposed method satisfies the
requirement without failures and achieves the great accuracy with the F1 score of 99.2%.

Figure 10 illustrates an example of the driving intention estimation. In the figure, τj indicates the
time of detecting the lane-changing of adjacent vehicle, and τc represents the time of crossing the lane
marking by the vehicle. It is confirmed that the lane-changing was successfully detected in advance
before crossing the lane marking.
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Figure 10. Example of the driving intention estimation: In the figure, τj indicates the time of detecting
the lane-changing of adjacent vehicle, and τc represents the time of crossing the lane marking by the
vehicle. It is confirmed that the lane-changing was successfully detected in advance before crossing the
lane marking.

The system should detect a lane change as soon as possible, at the moment the lane changing
maneuver starts. The detection speed τd can be defined as follows,

τd = τc − τj. (18)

A large value of τd implies that the ego vehicle acquires a sufficient time to react, improving
driving safety. If the detection is delayed, the ego vehicle cannot be ready to react to the interruption
of adjacent vehicles. Consequently, the accuracy and the detection speed of the driving intention
estimation are critical factors determining the performance of the proposed system. However, there is
a trade-off between accuracy and detection speed [31]. To overcome the limitation, our research group
has tried to make a breakthrough, and one of considered approaches is described in our previous
work [32]. Details on this point are explained in Section 5.

4.3. Results of the Operation Characteristic Estimation

Figure 11 shows the result for a driver of the adjacent lane from the ego vehicle. The X-axis depicts
the time, and the Y-axis represents the estimated values of operation characteristic variables. The blue
line indicates α, the green one is l, and the black line shows m. These parameters do not have units.
It is confirmed that stable values were estimated for all parameters. In addition, the red line indicates
the reaction time (in seconds). In the figure, although the reaction time is slightly unstable, the value is
distributed around 1.5 s. This value is in the range between 0.92 and 1.94 s, as reported in the previous
study [8]. As mentioned in Section 3.2, the operation characteristics may not drastically change in a
short time period including the reaction time. Therefore, the moving average window was set with the
constant size of 1 s. However, the value was manually determined, and the large value may be more
appropriately from this result. The specified parameter setting needs to be investigated as a part of the
future work.

The estimated value at each time is applied to the trajectory prediction; then, the acceleration
towards adjacent vehicles can be calculated based on the real-time estimation. As there is no ground
truth for the operation characteristic variables, it is impossible to evaluate the performance of the
proposed method in this case. The effectiveness of the real-time estimation is discussed in Section 4.4.
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Figure 11. Examples of the operation characteristic estimation using the proposed method: the blue
line indicates α, the green one is l, and the black line shows m. These parameters do not have units.
In addition, the red line indicates the reaction time (in seconds). It is confirmed that the reaction time is
distributed around 1.5 s.

4.4. Performance of Trajectory Prediction

The error between the ground truth and the predicted position of the adjacent vehicles was
considered as the evaluation criterion of trajectory prediction. Considering that the proposed method
predicts the future positions until 2 s with increments of 0.04 s, the root-mean-squared error (RSME) of
all predicted positions was considered as the criterion. Let n be the index of the predicted position,
and then the RMSE can be calculated as follows,

RMSE =

√
1
N

ΣN
n=1[(xn − x̂n)2 + (yn − ŷn)2], (19)

where xn and yn denote the position at the incremental step n, which is used as the ground truth. x̂n

and ŷn represent the predicted position obtained using the proposed method. However, the error of
lateral positions was excluded from the evaluation scope. N is the number of predicted positions.
The future positions are predicted until two seconds with increments of 0.04 s; therefore, N is equal
to 50.

Figure 12 shows an example of the predicted future positions of the adjacent vehicles obtained
using the proposed method. The green vehicle indicates the ego vehicle, whereas the blue ones
represent the adjacent vehicles for which the ego vehicle is monitoring intentions and behavior.
The blue rectangles show the predicted lane-keeping trajectories, and the red ones represent the
lane-changing trajectory. The figure shows the future positions at five prediction terms: 0.4 s, 0.8 s,
1.2 s, 1.6 s, and 2 s. From this figure, it can be seen that the cut-in vehicle is detected, and the trajectory
of that vehicle is successfully predicted. Consequently, it is possible to ensure sufficient response time
for the ego vehicle based on the predicted future positions of the adjacent vehicles.

Figure 12. Example of trajectory prediction: the blue rectangles show the predicted lane-keeping
trajectories, and the red ones represent the lane-changing trajectory. It is confirmed that the cut-in
vehicle is detected, and the trajectory of that vehicle is successfully predicted.
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To evaluate the effectiveness of the real-time estimation of operation characteristics, the prediction
accuracy was compared to those of the previous methods that employ constant values of the operation
characteristic variables, as shown in Table 1. As the previous methods cannot predict the lane-changing
trajectory, only lane-keeping events were used for the performance comparison. It is clearly evident
that the proposed method with the adjustment of operation characteristics significantly improves the
prediction accuracy. In Table 1, the minimum error for each location is shown in bold. Compared to the
results obtained using the previous methods, the proposed method considerably reduced the errors by
almost the half of the number of errors reported for the previous method in [21]. The average error of
the proposed method was 0.065 m, whereas that of [21] was 0.139 m.

Table 1. Comparison of the performance of the proposed method with those of the previous methods.

Location ID Heyes [21] Ozaki [22] Aron [23] Proposed

1 0.159 m 0.215 m 0.211 m 0.065 m
2 0.130 m 0.178 m 0.181 m 0.062 m
3 0.093 m 0.150 m 0.133 m 0.055 m
4 0.115 m 0.165 m 0.148 m 0.062 m
5 0.180 m 0.216 m 0.218 m 0.079 m
6 0.155 m 0.202 m 0.195 m 0.070 m

Average 0.139 m 0.189 m 0.183 m 0.065 m
Standard deviation 0.032 m 0.028 m 0.034 m 0.008 m

Considering the results of the three previous methods, it can be seen that the performance is
largely affected by the values of the parameters. Among the previous methods, the values of the
operation characteristic variables in [21] showed the best accuracy. However, it was confirmed that
the average errors varied depending on the location. Therefore, it is concluded that the constant
values cannot be adjusted according to the change in the driving conditions, which may lead to a
deterioration of the performance. By contrast, the proposed method showed the robust performance in
various driving conditions owing to the real time estimation of the parameter values. It was confirmed
that the change in the location did not significantly impact the performance of the proposed method.
The standard deviation of the proposed method was 0.008 m, whereas that of the method proposed
by [21] was 0.032 m. Furthermore, the proposed method achieved the best accuracy at all locations
compared to the previous methods. It means that the real-time estimation of operation characteristics
can account for the individual difference in driver behavior and the change in driving conditions
appropriately. Based on this comparison, it was demonstrated that the real-time optimization of
the operation characteristic variables is significantly effective in improving the robustness of the
trajectory prediction.

4.5. Performance of Collision Risk Minimization

Table 2 represents the average of the collision risk for the entire dataset. It can be confirmed from
the table that the proposed system is significantly effective to decrease the collision risk compared to
human drivers. Based on the predicted trajectory, the ego vehicle appropriately adjusted the distance
and speed with respect to the adjacent vehicles. As a result, it considerably improved the driving safety
with respect to that of human drivers. Figure 13 illustrates the speed of the ego vehicle under a cut-in
situation. A human driver rapidly reduced the speed after the cut-in vehicle crossed the lane marking.
Fortunately, a crash did not occur in this case; however, the unexpected deceleration was confirmed
at ~7 s. Meanwhile, it was shown that the proposed system maintained the speed without the rapid
deceleration since the lane-changing was anticipated in advance. It means that the rear collision can
be prevented compared to human drivers. In addition, the two state-of-the-art ACC strategies were
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implemented to compare the performance with the proposed method. The ACC system in [17] derives
the acceleration of the ego vehicle by

aACC = k1(xp − xe − thwve) + k2(vp − ve), (20)

where xp and xe represent the current position of the preceding vehicle and that of the ego vehicle,
respectively; vp and ve represent the current speed of the preceding vehicle and that of the ego vehicle,
respectively; thw is the current time-gap between the two vehicles; K1 and k2 are the gains. Based on
the setting in [17], the values of the two gains were determined as follows: k1 = 0.23 and k2 = 0.07.
The SDM in [18] calculates the acceleration of the ego vehicle by

aSDM = amax

[
1−

( ve

v0

)δ
]
−

amax
[
1−

( ve
v0

)δ]
+

v2
e−v2

p
2(xp−xe)

exp
( xp−xe

s0+veT − 1
) , (21)

where amax represents the maximum acceleration, v0 is the maximum speed, δ is the acceleration
exponent, and s0 is the standstill distance between stopped vehicles; T represents the desired time gap.
The values of parameters were determined as follows, amax = 1.4, v0 = 30, δ = 4, s0 = 1.5, and T = 1.6,
according to [18]. The AACC achieved the best performance to decrease the collision risk compared
to the two previous methods. As the AACC considers not only the preceding vehicle, but also the
following vehicle, the collision risk with respect to the following vehicle can be improved. Based on
these results, it is demonstrated that the AACC allows improving the driving safety and outperforms
both human drivers and the previous ACC systems.

Table 2. Comparison of collision risk.

Human drivers ACC [17] SDM [18] AACC

Collision risk [J] 1.21 0.89 0.90 0.79

Figure 13. Comparison of the speed profile: the blue line represent the speed profile of a human driver,
while the red line is that of the proposed system. Compared to the rapid deceleration performed by the
human driver after the cut-in vehicle crossed the line marking, the proposed system maintained the
speed without the rapid deceleration since the lane-changing was anticipated in advance.

5. Discussion

Based on the results discussed in Section 4.5, it was concluded that the proposed method was
able to improve the driving safety compared to human drivers. Generally, drivers pay more attention
to keep a safe distance and speed with respect to the preceding vehicle, rather than the following
one. Therefore, this tendency may lead to a collision with the following vehicle, if the driver rapidly
decreases the speed. By contrast, the proposed approach enables maintaining the safety with respect
to both the preceding and following vehicles. Furthermore, the proposed method allows preventing
the future collision risk owing to the trajectory prediction of adjacent vehicles around the ego vehicle.
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The proposed approach maximizes the strength of automatic control to thoroughly monitor the
surrounding conditions; consequently, it serves to guarantee the safety of driving.

As mentioned in Section 4.2, the performance of the proposed method in terms of the driving
safety largely depends on the speed of the lane-change detection. If it is possible to anticipate a lane
change much faster, sufficient response time to allow the ego vehicle adjusting the speed without rapid
acceleration or deceleration is ensured. In our previous work [32], the aggressiveness of the driving
mode was estimated in terms of lane-changing, and the estimation result was applied to the detection
of lane changes. Consequently, our research group achieved the improvement of detection speed
without the loss of detection accuracy. In this paper, despite the fact that the approach to estimate the
aggressiveness of lane-changing is not discussed, it is assumed that there is the relationship between the
aggressiveness of lane-changing and the operation characteristics in car-following. If that relationship
is thoroughly analyzed, it contributes to drastically improving the performance of the proposed system.
Furthermore, the machine learning technique was applied to estimate the aggressiveness of driving
mode in the previous method. However, the proposed machine learning technique has the limitation
with respect to changes in the driving conditions. A new approach to consider the aggressiveness of
drivers and handle the change of driving conditions is required, and it is one of planned topics for our
future works.

The real-time estimation of operation characteristics of each driver is considered as the main
factor to improve the performance of trajectory prediction. The effectiveness of the proposed approach
was confirmed based on the results of the comparison presented in Section 4.4. However, the unstable
estimation was conducted in some cases. Based on the assumption that the operation characteristics
do not drastically change in a short time period, the proposed method defines the moving window of
the constant size for the operation characteristic estimation and obtains a moving average within the
window. However, the unstable estimation results indicate that the moving window cannot cope with
some cases, as the size of moving window was manually tuned. This point is also considered to be
investigated in the future research work.

We have planned to implement the proposed method on a real vehicle and have installed the
sensor system for measurement. The vehicle consists of a position sensor and six laser scanners [26].
The RT3003 is used as the position sensor and has update rate of 100 Hz. The laser scanner is an ibeo
LUX that has an update rate of 32 Hz. The proposed method should satisfy the computation limit
derived from the sensor system. Considering the capability of the equipment used, the computation of
the proposed method should be finished within 30 ms. The whole calculation time of the proposed
method was tested, and the specification of the testing machine is described as follows; Intel Core
i7-8700, 3.20 GHz CPU. The maximum calculation time of the proposed method was 11 ms using the
entire testing dataset. This means that the proposed method is able to satisfy the system requirement.

The proposed method has two limitations. The first limitation is caused by the assumption
that the operation characteristics may not drastically change in a short time period. If the operation
characteristics are drastically changed, the precision of trajectory prediction may degrade. The second
limitation is that the proposed method cannot handle abnormal behaviors of adjacent vehicles.
The proposed method assumes that a driver is in a normal state. If the drivers is in abnormal states,
such as sleepiness or inattention, it may lead to deterioration of the overall performance. Therefore,
the proposed system is for SAE level 3 automation. Although the driving is fully automated under
normal conditions, the driver should be ready to substitute the operation. For level 4 or 5 automation,
the development to detect abnormal drivers and anticipate their behaviors is required, and that point
is our future work.

6. Conclusions

This paper proposed a novel advanced adaptive cruise control to improve driving safety through
the anticipation of future maneuver of adjacent vehicles and collision risks with them. In particular, we
focused on the cut-in situation, in which the surrounding vehicle intrudes into the front space of the
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ego vehicle. The proposed system predicted maneuvers of adjacent vehicles based on the estimation of
their intentions. For better prediction, the real-time estimation of operation characteristics of each
driver was performed, and it allowed achieving the drastic improvement of the prediction accuracy.
The ego vehicle adjusted its speed to minimize the collision risk based on the predicted maneuvers.
It was demonstrated that the AACC improved the driving safety compared with human drivers
and the state-of-the-art previous ACC systems. As future work, we plan to develop a new filtering
method for the stable estimation of operation characteristics. In addition, the relationship between the
aggressiveness of a lane-changing mode and the operation characteristics in car-following should
be investigated.
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