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Abstract: Super-resolution (SR) technology is essential for improving image quality in magnetic
resonance imaging (MRI). The main challenge of MRI SR is to reconstruct high-frequency (HR)
details from a low-resolution (LR) image. To address this challenge, we develop a gradient-guided
convolutional neural network for improving the reconstruction accuracy of high-frequency image
details from the LR image. A gradient prior is fully explored to supply the information of
high-frequency details during the super-resolution process, thereby leading to a more accurate
reconstructed image. Experimental results of image super-resolution on public MRI databases
demonstrate that the gradient-guided convolutional neural network achieves better performance
over the published state-of-art approaches.

Keywords: magnetic resonance imaging; super-resolution; gradient information; convolutional
neural network

1. Introduction

For accuracy of surgical analysis and clinical diagnosis, high-resolution images are a critical
need for visualization of the brain structure of brain function. One of the most compelling methods
of visualizing brain structure is magnetic resonance image (MRI). However, high-resolution MR
images are hard to access in practice. Normally, routine brain MR images are obtained at thicker
section-thicknesses and with lower quality to reduce the scanning costs and sampling time, which
discourage further medical analysis. For decades, super-resolution techniques have been studied
for improving the resolution of LR MRI images, aiming to recover important information about the
anatomical structure to facilitate clinical diagnosis [1–10].

The earlier methods such as interpolation-based methods suffer from over smoothing artifacts,
and usually tend to blur the image textures and edges [1]. To tackle these issues, iterative
reconstruction-based techniques attempt to recover the high-frequency image details by introducing
image priors as regularization items [2,5,7,9,10], which enforce some predefined constraints on the
reconstructed image. However, those reconstruction-based methods are time consuming due to the
repetition of image reconstruction to generate a sequence of intermediate results.

Recently, machine learning techniques have attracted considerable attention in MRI SR.
Learning-based SR methods believe that super-resolution of MRI data can be reconstructed in a
supervised context, and try to estimate the mapping function from the LR space to the HR space from
extra labeled examples [11–13].

Most recently, important advances have been attained in computer vision by using deep neural
networks (CNN) [14]. Deep neural networks have become popular in biomedical tasks, such as
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image classification [15,16] and image reconstruction [11,13]. Learning with large training datasets,
CNN-based super-resolution approaches have achieved significant advances over the traditional
learning-based methods for natural image super-resolution [17–21]. Inspired by the substantial success
of CNNs in natural image SR, several CNN-based variants were developed to improve the performance
of MRI super-resolution [12,22–26]. One of the appealing features of CNN-based approaches is that,
once being well-trained, CNN-based super-resolution methods perform super-resolution much more
quickly than traditional reconstruction-based approaches.

To ensure data consistency, mean squared error (MSE) between the reconstructed image and its
ground-truth image is adapted as the loss function in CNN-based approaches. The pixel-wise MSE
fails to enhance high-frequency image details (edges, corners or textures) and leads to blurry images.
Figure 1 presents MRI image super-resolution result of different methods. Figure 1b,c shows the CNN
super-resolution models that are minimized using MSE. Both methods tend to blur the image details.

(a) Ground-truth (b) SCSR[13] (c) ResNet (d) DGGRN

Figure 1. The results of different super-resolution methods on real data in NAMIC with an upscaling
factor of 4: (a) the ground-truth; (b) the result of SCSR [13], which tends to blur the high-frequency
details; (c) the result of the residual network (ResNet); and (d) the result of our method, which is
guided by gradient information during image reconstruction. More realistic results are obtained via
the gradient-guided methods (zoom in for better view).

For MRI images, high-frequency image details such as edge structures of the sulcus gyrus and the
cortex, substantially impact the detection of suspicious structures, the classification of malformations, and
diagnosis. Thus, many studies have considered high-frequency factors in MRI super-resolution [8,27–30].
For example, the interpolation approach improves the accuracy of edge reconstruction by introducing
contrast guidance [29]. Facilitated by multi-contrast MRI, the missing MR image details are partly
recovered by helpful information of the reference MRI data [13,31].

However, the above methods either enforce the optimization via additional regularized terms or
introduce supplementary information as part of the input, while leaving the forward super-resolution
process to blindly reconstruct a high-resolution image. A flexible model to embed useful image priors
into CNN for MRI image super-resolution is still missing. We argue that the image gradient feature,
knowing the position (region) that corresponds to an edge, texture or smoothness, is beneficial for
recovering high-frequency image details. By incorporated gradient guidance in the feed forward
network, the network can recover more image high-frequency details.

Our main contributions to MR image super-resolution are summarized as follows:

1. We design a gradient-guided residual network for solving the single contrast MRI image
super-resolution problem. The proposed network exploits the mutual relation of the
super-resolution and the image gradient priors. Thus, the network employs image gradient
information for image super-resolution intentionally.

2. With a suitable model, image gradient is exploited for MR image super-resolution to supply the clues
regarding the high-frequency details. Under the guidance of gradient, the forward super-resolution
process reconstructs HR image explicitly, thereby leading a more accurate HR image.



Appl. Sci. 2019, 9, 4874 3 of 13

3. The experimental results of three public databases show that the gradient-guided CNN
outperforms the conventional feed-forward architecture CNNs in MRI image super-resolution.
The proposed approach provides a flexible model of employing image prior for CNN-based
super-resolution.

2. Related Works

Let x denote the HR image and y denote the observed LR image. y can be formulated as

y = DHx + ε (1)

where D, H and ε refer to the downsampling process, the blurring kernels and the additive noise,
respectively. To estimate the MRI super-resolution image x̂, The MRI super-resolution image x̂ can be
obtained by:

x̂ = arg min
x
‖y− DHx‖2

2 + λR(x) (2)

where the data fidelity item is defined by the L2 norm ‖ · ‖2
2. R(x) is the regularization item. The

main difficulty with single-image SR is that it is an ill-posed problem. Since to the high-frequency
information is missing, one low-resolution image y can be down-sampled from many high-resolution
images x.

2.1. CNN-Based MRI Super-Resolution

A CNN-based SR approach aims to learn an end-to-end mapping F between the low-resolution
image y and high-resolution image x. The F is decomposed into a sequence of convolutional layers,
which are combined of rectified linear unit (ReLU) layers. The lth convolutional layer convolves the
image by filters fl × fl . The output of the lth layer is a set of feature maps, which is formulated as:

Fl(yl) = max(0, Wl ∗ yl−1 + Bl) (3)

where Wl denotes the convolutional weight vectors and Bl is the biases of the lth layer. ∗ represents
the convolutional operations. yl−1 denotes the input data, which is the output of the previous l − 1th
layer. yl is the output of the convolution. y0 is the input LR images y.

In summary, CNN-based approaches attempt to learn a mapping function x̂ = F(y; Θ) that is
parameterized by Θ, where Θ contains all parameters of Wl and Bl . To estimate Θ, the mean squared
error (MSE) between the reconstruction image and the ground-truth image is often applied as a loss
function, which is defined as L = ‖x− F(y; Θ)‖2

2.
Suppose a T2-weighted (T2w) low-resolution MRI image is denoted as yT2, the CNN-based MRI

super-resolution aims to learn an end-to-end mapping x̂T2 = F(yT2, Θ) from label data. The objective
of network is to generate a corresponding T2w high-resolution image x̂T2 that is similar quality to the
ground-truth xT2 MRI image.

The residual network structure [32] was wildly adopted in CNN-based approaches for image
super-resolution [18,21]. As illustrated in Figure 2a, the conventional residual block (Resblock) has
two convolutional layers and a shortcut connection, and the result of Resblock is the addition of the
input and output.
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(a) Residual block (b) gradient-guided residual block

Figure 2. Illustration of the diffidence between the residual block and the proposed gradient-guided
residual block: (a) a conventional residual block; and (b) the proposed gradient-guided residual block.
In (b), the output of the convolutional layer is modulated by the output of the gradient subnet.

2.2. High-Frequency Details Recovery

Most CNN-based models adopt MSE as the loss function. Because MSE treats every pixel equally, it
tends to produce over-smoothed results. Thus, the key objective of image SR is to recover the missing
high-frequency details.

To address the over-smoothing issue, the gradient prior is widely applied in reconstruction- [4,27,30]
and CNN-based MRI SR methods [33–35]. Image gradient provides the exact positions and magnitudes
of high-frequency image parts, which are important for improving the accuracy of super-resolution
performance. Two approaches are commonly used to embed the image gradient prior into CNNs:

1. The image gradient is employed as a regularization item in the loss function. In a correctly
restored image, the edges and texture (related to the image gradients) should be accurate.
The regularization term, which is induced by additional sources of information, helps recover
high-frequency details. L = LMSE + LG, where LG is defined as

LG = ‖G(x̂)− G(x)‖2
2 (4)

in which G(·) denotes the gradient detector, and G(x) is the gradient magnitude of image x.
2. The alternative approach to incorporating image gradient in the SR process is to concatenate

the gradient maps with the input LR image y as a joint input [y, G(y)] of the network. Thus, the
mapping function is

x̂ = F(y, G(y); Θ) (5)

the above approaches implicitly assume that the input or loss function is where the gradient
information should be incorporated. However, the positions of high-frequency details are not explicitly
explored in the process of image reconstruction. In traditional CNN-based SR, the intermediate layers
just attempt to restore the image blindly.

To encourage the network to focus on the image high-frequency details, we design a
gradient-guided Resblock, which is illustrated in Figure 2b. The gradient-guided Resblock is based on
Resblock, while the result of the intermediate layer is modulated using gradient information.

3. Proposed Methods

We develop a gradient-guided residual network (DGGRN) that is based on two intuitions:
(1) CNN-based SR methods [12,13] have achieved significant performance advances in MRI
super-resolution; and (2) gradient features of the LR image facilitate the recovery of high-frequency
details in an HR image [4,28,30,34,36]. Figure 3 illustrates the main architecture of DGGRN.
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Figure 3. Main architecture of DGGRN. DGGRN consists of two subnets. The gradient subnet exploits
gradient information and produces the clues regarding high-frequency image details based on gradient
map, whereas the SR subnet aims at reconstructing the high-resolution image.

DGGRN consists of two subnets. One is for gradient information modeling and the other is for
super-resolution. The input of DGGRN is a LR T2w image, which is denoted as yT2, and the output is
a high-resolution image, which is denoted as x̂T2.

3.1. Gradient Modeling (GM) Subnet

From the gradient magnitude map of LR T2w image gT2, the GM subnet aims at selectively
determining the locations high-frequency image details and facilitating the discrimination between
smooth areas and non-smooth areas that are full of fine textures by the SR subnet. To fully exploit
the gradient information for image super-resolution, the GM subnet is designed as a shallow densely
connected convolutional network, so that it can be optimized end-to-end with the SR subnet.

As shown in Figure 3, the gradient detector calculates the gradient map of LR T2w image in the y-
and x-directions to obtain its magnitude, and then the gradient map is normalized to [0, 1] before being
fed into the gradient modeling subnet. Specifically, we choose Sobel detector as the gradient detector.

gT2 =
1

1 + exp(−G(xT2))
(6)

After normalization, gT2 is fed into the GM subnet to produce gradient guidance, which is a set of
feature maps GT2:

GT2 = FGM(gT2; ΘGM) (7)

where FGM is the learned mapping function with parameters ΘGM. As expected, the GM subnet acts
similar to a feature selector that can identify and locate high-frequency image details. We use the
sigmoid function as the final convolutional layer’s activation function (shown in Figure 3 with a red
box). Thus, the output of the GM subnet is a set of feature maps ranges [0, 1], which provides helpful
information regarding the image areas to which the information of pixels belongs. This output will be
broadcast to the SR subnet to guide the SR process.

3.2. Super-Resolution Subnet

The SR subnet reconstructs the HR image conditioned on the output of GM subnet GT2. The input
of the SR subnet includes two parts, the LR T2w image yT2 and the output of GM subnet GT2.

3.2.1. Gradient-Guided Resblock

The SR subnet consists of several gradient-guided residual blocks. We propose an effective block,
namely, gradient-guided Resblock, that modulates the convolutional results according to GT2. As
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illustrated in Figure 2a, compared with Resblock, the convolutional result of gradient-guided Resblock
is modulated by the output of the gradient modeling.

Suppose Z is the output of the convolutional operation. The result of gradient-guided Resblock is
the dot production of Z and the gradient condition GT2:

Z
′
= Z⊗ GT2 (8)

where ⊗ denotes the element-wise multiplication. By this approach, the learned parameters of the GM
subnet influence the outputs by multiplying them spatially with each intermediate feature maps in an
SR subnet.

3.2.2. Reconstruction Block

In our network, we upscale features by using the sub-pixel convolutional layer [19]. The upscaling
operation is performed in the latter part of the network, so that the most computations are performed
in the LR space. This can reduce the number of computations while preserving the model capacity [19].
We reconstruct the final HR image x̂T2:

x̂T2 = FSR(yT2, GT2; ΘSR) (9)

where FSR is the learned mapping with parameters ΘSR of the SR subnet.

4. Experiments and Results

4.1. Datasets

We performed experiments on three public databases.
BrainWeb dataset [37] (http://www.bic.mni.mcgill.ca/BrainWeb/) is a publicly available MRI

dataset that includes normal and multiple sclerosis simulated images. It contains a set of realistic MRI
data volumes produced by an MRI simulator. The voxel dimensions of the synthetic brain MRI is
1× 1× 1 mm3 and the data size is 181× 217× 181.

NAMIC dataset (http://hdl.handle.net/1926/1687) consists of real MRI data that were acquired
using a 3T GE at BWH Hospital in Boston, MA. The voxel dimensions are 1× 1× 1 mm3 and the data
size is 256× 256× 176.

IXI dataset (https://brain-development.org/ixi-dataset/) consists of real MRI data collected
from three hospitals in London. We evaluated on the MRI images from Guys hospital. The voxel
dimensions are 1× 1× 1 mm3 and the data size is 264× 255× 186.

All 3D MRI data were split into 2D image sequences along the transverse, sagittal, and coronal
planes. The obtained 2D data were all normalized to [0, 1].

4.2. Implementation Details

Our experiments were divided into two groups. In one group, experiments were conducted on
BrainWeb and NAMIC, where we built our training set and testing set as in [13] for fair comparison.
In the other group, the experiments were evaluated on the IXI dataset, where we built the training and
testing sets, and then trained DGGRN from the scratch.

Training set: LR images were generated according to the following steps:

1. The original image x were convolved by 3× 3 Gaussian kernel with standard deviation of 1.
2. The results of convolution were down-sampled with factors of 2, 3 and 4, respectively.

The same degradation was applied in [9,13]. It aims to simulate the generation of a LR MRI image
in the spatial domain.

For BrainWeb and NAMIC, we built the training sets with the same data as in [13]. For IXI dataset,
300 2D T2w images from 10 people were used for network training. By flipping and rotation, 16
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augmented images were generated from each training image for data augmentation. In addition to
these affine augmentations, we extended the training dataset via elastic deformation [38].

Test set: For testing, we randomly selected samples from persons excluding the training data.
Specifically, we selected 56 samples from persons in IXI. The test sets of BrainWeb and NAMIC were
produced as in [13].

Network structure: The SR subnet is composed of eight gradient-guided Resblocks. Each block
consists of two convolutional layers. The gradient modeling subnet consists of four convolutional
layers with dense connections. Following CNN-based SR studies [18,21], we set the convolutional
filter 64 to 3× 3. We used the method of Xavier to initialize the weights, and the biases were initialized
to zero.

Training details: Our network was implemented based on Tensorflow [39]. To minimize the
overhead and to fully utilize the GPU memory, the batch size was set to 64 and the training stopped
after 65 epochs when no improvement was observed. The LR T2w 12× 12 patches and their gradient
magnitude maps were fed into network as the inputs. According to the report of Pham et al. [11], the
Adam method [40] provides fast convergence and better reconstruction results than SGD. Thus, we
trained the network with the Adam optimization with β1 = 0.9 and β2 = 0.999. The initial learning
rate was 1× 10−4 which was decreased by 10% every 20 epochs.

Hardware: All experiments were conduct on a PC with a 2.1 GHz Intel Xeon E5-2620 CPU and
an NVIDIA Titan X GPU (12G Memory). All compared approaches were run on the same machine.

4.3. Comparison with State-of-the-Art Methods

The proposed approach was compared with three conventional methods: bicubic interpolation
low-rank and total-variation regularizations [9] and non-local up-sampling [2]. We compared our
results with the CNN-based MRI SR method: single contrast super-resolution CNN (SCSR) [13]
and residual-learning network (ReCNN) [11]. The SCSR was proposed for multi-contrast MRI
super-resolution, and we extracted the output of its single contrast subnet for comparison. Another
compared method is the most recent CNN-based method, namely ReCNN [11], which is designed
for 3D MRI super-resolution. To compare our method with ReCNN, we performed the experiments
according to the baseline network of [11] and trained the corresponding 2D CNN from the scratch.

To evaluate the performance of DGGRN, we trained a residual network (ResNet) with the same
training data and eight Resblocks from scratch. Experiments were performed on BrainWeb and
NAMIC. PSNR and structural similarity (SSIM) were used as quantitative measures. Higher PSNR
values indicate the reconstructed version is more faithful to the ground-truth image, while higher
SSIM values indicate that more accurate image structures are preserved. MATLAB functions were
used for the evaluation.

The quantitative results of different methods are reported in Table 1. Compared with SCSR,
our method yields PSNR values that are higher by approximately 1.6 dB on BrainWeb, 0.6 dB on
NAMIC and 0.4 dB on IXI. DGGRN performs more competitively on the BrainWeb dataset. Our
method outperforms ReCNN, which is a CNN with residual learning, for all three test sets. SSIM
value corresponds to the perceptual quality of the structural similarity. The SSIM values of DGGRN
are higher than other methods on real data of NAMIC and IXI. Thus, it is not trivial to embed image
gradients into the CNN models.
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Table 1. The performance (PSNR/SSIM) of different methods for scale factors 2×, 3× and 4× on three
datasets. Bold indicates the best performance.

Dataset Upscaling Factor Bicubic LRTV NMU SCSR ResNet ReCNN Ours

BrainWeb

2
21.51 24.81 27.50 32.99 33.25 32.86 34.32
0.827 0.904 0.952 0.984 0.985 0.973 0.987

3 18.3 21.67 21.54 26.07 27.71 26.10 27.62
0.664 0.820 0.811 0.922 0.938 0.925 0.942

4
16.37 19.36 19.33 21.31 22.11 21.03 23.11
0.525 0.697 0.682 0.776 0.803 0.771 0.849

NAMIC

2
28.70 31.98 33.95 36.86 37.00 36.64 37.21
0.850 0.910 0.889 0.922 0.928 0.920 0.939

3 24.93 29.42 29.34 31.49 31.52 31.10 31.97
0.721 0.870 0.772 0.826 0.821 0.822 0.864

4
22.81 26.54 26.76 28.33 28.45 27.97 29.05
0.613 0.769 0.642 0.712 0.717 0.706 0.737

IXI

2
28.56 - - 37.86 38.08 37.31 38.28
0.915 - - 0.982 0.983 0.970 0.983

3 24.68 - - 31.68 31.79 31.45 32.06
0.853 - - 0.942 0.944 0.939 0.946

4
22.44 - - 28.15 28.42 27.97 28.77
0.723 - - 0.888 0.893 0.874 0.895

Figure 4 presents the reconstructed images of DGGRN and other methods with an upscaling factor
of 4 on the three test sets. The bicubic method tends to produce blurry images with unexpected artifacts.
SCSR and ResNet present more visually appealing results than bicubic method; however, they lose subtle
details in some local regions. DGGRN restores more accurate image high-frequency details of edges and
textures areas and recovers more informative structural details than the above methods.

(a) Ground-truth (b) Bicubic (c) SCSR (d) ResNet (e) Ours

Figure 4. Super-resolution results of BrainWeb, NAMIC and IXI with an upscaling factor of 4. The
results of DGGRN show superior detail recovery.
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5. Discussion

5.1. Benefits of Gradient-Guided Resblock

In the proposed network, the super-resolution subnet and the gradient modeling subnet are
trained jointly. In Figure 5, we present some feature maps of the last convolutional layer in the gradient
modeling subnet. The feature maps contain sufficient diversity for representing the high-frequency
details in T2w MRI, which supports the validity of the gradient-guided strategy. Facilitated by
these feature maps, the edge and texture areas can be reconstructed explicitly. In DGGRN, the SR
subnet consists of eight gradient-guided Resblocks. The ResNet and the proposed network share the
same initial parameters and hyperparameters, such as the learning rate and the number of epochs.
Table 1 summarizes experimental results on BrainWeb and NAMIC of ResNet(the third column to
last) and DGGRN (the last column). Compared with ResNet, in terms of PSNR, our network with
gradient-guided realizes average improvements of 1.0 dB on BrainWeb, 0.4 dB on NAMIC and 0.3 dB
on IXI.

Figure 5. Feature maps that are generated by the last convolutional layer of the gradient modeling
subnet when the training is finished. The feature maps identify the locations of edges or textures. Thus,
facilitated by the feature maps, the high-frequency areas can be recovered.

In Figure 4, three examples of real images with an upscaling factor of 4 are presented. Facilitated
by the gradient modeling subnet, the proposed method outperforms ResNet in recovering sharp edges
and tiny textures.

5.2. Performance and Training Epochs

We investigated the performance and epochs of DGGRN vs. ResNet. In our work, parameters
of DGGRN and ResNet were estimated by minimizing the loss function using Adam optimization.
Figure 6 depicts convergence curve of DGGRN vs. ResNet with upscaling fact 2 on three test sets. It
demonstrates that DGGRN converges to a plateau in 20 epochs, which represents the most appealing
results. It is worth noting that DGGRN achieves higher PSNR than ResNet on all three test sets during
all 65 epochs. In addition, these phenomena indicate that DGGRN converges rapidly with Adam
optimization in view of both performance and convergence speed.
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Figure 6. Convergence curve of DGGRN and ResNet with upscaling factor 2 on BrainWeb, NAMIC
and IXI test sets. DGGRN achieves higher PSNR values than ResNet for all epochs.

5.3. Parameters and Performance

Filter size: Small filter sizes such as 3× 3 are a popular choice in current CNN-based image
super-resolution. Due to limited computational resources, CNN-based SR prefers a deeper network
with small filter size rather than a wider network with large size [18,21]. Following the above studies,
we set the filter size to 3× 3.

Network size: One of the issues for training the deeper network is overfitting. We investigated
the performance and network size based on the baseline of DGGRN (the SR subnet with eight
gradient-guided Resblocks). The number of blocks was increased from 2 to 12 to evaluate the
performance vs. the number of gradient-guided Resblocks. Table 2 demonstrates the PSNRs of
ResNet and the proposed network with various network sizes. For DGGRN, the PSNR values are
improved progressively as the number of gradient-guided Resblocks rises from 2 to 12. On the other
hand, a sharp descent is observed when we try to stack more Resblocks in ResNet; the same observation
was reported by Zeng et al. [13]. This might be because the gradient modeling subnet performs similar
to a selector, which drops out selected inputs of the next layer to prevent overfitting.

Table 2. The compared PSNR values of ResNet and our method with various network sizes.

Block Number 2 4 6 8 10 12

ResNet 36.83 36.96 37.06 37.00 14.20 14.20
Ours 37.00 37.10 37.18 37.21 37.16 37.23

The number of filters: The SR performance can benefit from a reasonable number of filters within
networks. Thus, an appropriate number of filters K of each convolutional layer must be selected. We
trained DGGRN with different K to find the appropriate value of K. It took 33, 45 and 70 s for training
one epoch when K = 32, 64 and 128, respectively. Table 3 presents how the number of filters affects the
performance. DGGRNK denotes DGGRN with K filters. When K increases from 32 to 64, the average
PSNRs of the three datasets improve about 0.56 (dB). Compared with DGGRN64, DGGRN128 achieves
little improvement (0.06 dB) in PSNR. However, both the number of parameters and training time
are double those in DGGRN with 64 filters. Thus, we set K = 64 as a trade-off between reconstructed
image quality and the computational complexity.

Table 3. The PSNR values of our method with various number of filters.

K 32 64 128

BrainWeb 32.85 34.32 34.40
NAMIC 37.13 37.21 37.23

IXI 38.16 38.28 38.38
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6. Conclusions

A deep gradient-guided residual network is proposed in this paper for MRI super-resolution. The
gradient subnetwork operates as a feature selector that enhances high-frequency features once the
positions of the high-frequency details have been located. By broadcasting useful spatial information in
high-frequency regions to the SR subnet, high-frequency MRI image details can be recovered explicitly.
Thus, our method avoids reconstructing high-resolution images blindly. The joint recovery by the
gradient modeling and super-resolution subnets leads to more accurate detail recovery. Experiments
on synthetic and real brain MRI data have demonstrated that DGGRN reconstruct HR images with
more faithful high-frequency details than other methods. We will explore applications of the gradient
information in 3D brain MRI reconstruction in future work. Moreover, the gradient prior can be
generalized to other image priors. In the future, brain image segmentation and textures and other
features that describe the image can be further explored.
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