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Abstract: Variant approaches used to release scents in most recent olfactory displays rely on time for
decision making. The applicability of such an approach is questionable in scenarios like video games
or virtual reality applications, where the specific content is dynamic in nature and thus not known
in advance. All of these are required to enhance the experience and involvement of the user while
watching or participating virtually in 4D cinemas or fun parks, associated with short films. Recently,
associating the release of scents to the visual content of the scenario has been studied. This research
enhances one such work by considering the auditory content along with the visual content. Minecraft,
a computer game, was used to collect the necessary dataset with 1200 audio segments. The Inception
v3 model was used to classified the sound and image dataset. Further ground truth classification on
this dataset resulted in four classes: grass, fire, thunder, and zombie. Higher accuracies of 91% and
94% were achieved using the transfer learning approach for the sound and image models, respectively.
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1. Introduction

The auditory and visual information of computer games is easy to obtain through software means
by capturing screenshots and recording audio. It is as easy to recognize the events and the characters
in the game as it is to hear the character and the soundtrack in the game. However, the olfactory
information related to the game cannot be obtained through the media, either television or any other
device, due to the challenges of comparing it digitally with visual and auditory information [1,2].

Olfactory displays have recently been used with virtual reality applications where it imitates
reality and allows user interaction with an imaginative world by specific interaction devices [3].
However, the association between virtual content and scents is application specific and cannot be used
in other applications. Studies have shown that the information obtained through the sense of smell is
lesser than that obtained through the senses of hearing and sight [4]. At the same time, the olfactory
information enhances the senses and immersion in reality more than the other senses. Nonetheless, the
sense of smell is still the least used to enrich user experience in the virtual world. The literature review
covers many studies that have developed olfactory displays that release scents based on a specific time.

Most of the current approaches either have no direct association with the virtual content (releasing
scents based on preset timers) or are specific to an application. This makes them inappropriate for
gaming and virtual reality applications as it is not possible to predict the user’s actions and release the
appropriate scents. Recent research [5] associated virtual artifacts with scents, thus allowing olfactory
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displays to be used in highly dynamic applications. The work presented in this article builds on [5] by
enabling the release of scents based on visual and audio information.

The proposed system uses image recognition classified from [5] and pairs it (Logical OR operator)
with a new audio classifier. Transfer learning with Inception v3, which takes the log-Mel spectrogram
of a short audio sample as input, is used to recognize the sound. While it is easy for humans to associate
sounds with a specific scenario [6], it is challenging for machines, as it requires a significant amount of
audio data and can easily be disturbed by undesired noise. In this research, noise was considered as
unclassified sounds played at the same time as classified (labeled) sounds, and has a direct negative
impact on the accuracy of the recognition.

This study contributes to the areas of gaming and virtual reality as it adds the option of scents to
be released based on audio as well as recognized images. This is an important addition as sometimes,
some virtual elements are auditory, but with limited or no visual information. For example, it might be
raining in the game, but the user cannot see it as it is outside their field of view or due to low lighting
conditions. As long as the user can hear the rain, the scent will still be released.

The rest of this paper is organized as follows. Section 2 reviews the related work of olfactory
displays and sound recognition techniques. Section 3 describes the methodology of the proposed
system. Section 4 presents the data analysis and discusses the experimental results. Finally, the study
concludes in Section 5.

2. Literature Review

The literature review is divided into two sections. The first section discusses how recent studies
have used convolutional neural networks (CNNs) for sound recognition and justifies the use of CNN
in the current research. The second section presents the latest developments in olfactory displays.

2.1. Sound Recognition

In recent years, studies have shown that the CNN model outperforms traditional methods in
different taxonomic tasks including sound recognition. For sound recognition, the most common
auditory features such as raw waveform, log-Mel spectrogram, or Mel frequency cepstral coefficient
(MFCC) are used to train the deep CNN.

A novel end-to-end system to classify raw sound with two conventional layers was proposed
in [7]. The experimental results showed that the combination of the proposed model and log-Mel-CNN
exceeded the state-of-the-art log-Mel-CNN model with 6.5% improvement in the classification accuracy.
However, the model is inappropriate to learn the complex structure of audio due to the presence of
only two conventional layers.

Transfer approach called SoundNet used to transfer knowledge from visual recognition network
was presented in [8]. The aim was to train a CNN that classified raw audio waveforms from unlabeled
videos. The experimental result showed that SoundNet achieved an acoustic classification accuracy
of 97%. However, if the CNN is trained on a large scale dataset (around two million samples), it can
achieve a similar accuracy.

A very deep conventional network with 34 weight layers that processes the raw audio waveform
directly was proposed in [9]. The model applied batch normalization on each output layer while
residual learning skipped some fully connected layers and down sampling accurately in the initial
layer. All of these contributed to avoiding difficulty in the trained model as well as providing low
computational cost. The result showed that the CNN deep architecture outperformed CNN with the
log-Mel spectrogram with a 71.8% accuracy.

Another study proposed CNN architecture with three conventional layers to classify sound signals
using the log-Mel spectrogram as features to learn the model [10]. Furthermore, different types of
audio data augmentation techniques such as time stretching (fast or slow audio), pitch shifting (higher
or lower pitch of audio), dynamic range compression (compresses audio sample), and background
noise (mix sample sounds with another sound that contains background from different acoustics) were
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used to overcome the problem of a lack of data. However, the performance improved in terms of
the classification accuracy only in some types of augmentation, while it remained non-progressive in
others. This CNN architecture classified short audio by using a log-Mel spectrogram with the same
features as that used in [6]. Moreover, the training procedure with two phases non-fully trained and
fully trained, improved the accuracy by reaching 86.2% as well as outperformed the accuracy of the
Gaussian mixture modeling-Mel frequency cepstral coefficient (GMM-MFCC) by 6.4%.

A fully connected CNN model for partly labeled audio based on a trained large scale dataset
(audio set) using the log-Mel spectrogram as input was introduced in [11]. Moreover, a CNN model
was used as the framework to transfer and learn audio representation (spectrogram) using different
methods where the accuracy of the proposed model reached up to 85%.

In order to overcome the difficulty of distinguishing sounds that come from various sources as
well as the missing labels of these sounds, the authors in [12] proposed a deep CNN called AENet. The
model processes large temporal input with the data augmentation technique called equalized mixture
data augmentation (EMDA), which mixes sounds that belong to the same class and modified frequency
of the audio sample by boosting and attenuating in a particular band. Moreover, it applied transfer of
learning to extract audio features from AENet and combine them with visual features. The authors
claimed that combining AENet features with visual features significantly improved its performance
than that by combining MFCC with visual features.

A small number of systems have used spatial features extracted from binaural recordings. In order
to obtain the advantages from feature engineering approaches (i-vector) and feature learning methods
(CNN), the authors in [13] proposed a multichannel i-vector by computing MFCC for both channels in
the audio sample. In addition, they built a CNN model similar to VGG-net (invented by the Visual
Geometry Group) architecture that takes spectrogram features as the input. Moreover, combining two
models was performed using the score vision technique, which creates the probability scores of each
method and then fuses these scores. The performance of this hybrid approach achieved state-of-the-art
and obtained first rank in the DCASE-2016 (Detection and Classification of Acoustic Scenes and Events
2016) challenge. However, this approach requires a large set of trainable parameters, which is not
possible with our small dataset.

The authors in [14] proposed a CNN that consisted of eight convolutional layers and two fully
connected layers using two spectrogram representations, the log-Mel spectrogram and gammatone
spectrogram, as input. Traditional data augmentation methods were used to generate a new audio
sample such as time stretch and pitch shift, in addition to applying the Mixup method on the training
data by mixing two samples randomly selected within or without the same class. It was claimed that
Mixup improved performance by 1.5% on the ESC-10 [15] dataset, 2.4% on the ESC-50 [15] dataset,
and 2.6% on the UrbanSound8k dataset [16].

Most CNN models need a huge dataset in order to recognize the sound correctly. This makes
them difficult to apply on limited datasets. Therefore, we will apply the transfer learning method to
recognize sound samples in this research.

2.2. Olfactory Displays

Olfactory displays are devices designed to release scents into the environment. They are classified
into two types: “wearable”, which are placed either on-body or on-head, and “environmental”, which
are placed in the physical environment [17].

A wearable and fashionable olfactory necklace called Essence was designed in [18]. The Essence
is able to release scents automatically based on data from the virtual context such as the location
and current time of the users as well as on physiological data such as brain activity and heart rate.
Moreover, the necklace can be activated manually, and the intensity of scents can be controlled through
the stretch necklace thread. The results of the user experience show that the device is small enough
and comfortable to be worn in most daily life activities. However, the device was unable to release
multilabel scents at a time, and released one scent for one case based on the chosen user.
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A smelling screen is an olfactory display embedded in a Liquid-Crystal Display (LCD) screen to
generate and distribute odor along the screen based on the image shown [19]. The proposed device
consists of four fans located at the corners of the screen to generate airflow that collides multiple times.
Then, the airflow blows toward the user through tubing from the airflow collision point, which is
considered as the odor source. However, the time between releasing the scents and its recognition by
the user is not synchronized due to the delay of the scent reaching the olfactory organ.

An olfactory display named inScent [20] can be worn as a necklace that enables the user to receive
scented notifications. The device was built to hold eight aromas where the scent is exchangeable
through a small cartridge. Scents are triggered either manually by the users, or remotely by the
instructor via an Android application based on the correlated scenario like scent that reflects the
emotional link of the message sender and generates scents by using heating and a small fan to blow
airflow toward the user. However, heating a wearable device may cause discomfort to the wearer.

Another study [21] proposed a thermal/heating approach to distribute scents from generation of
the olfactory aromas. The device unit was built to hold eight aroma dispensers; each one containing a
capillary tube, speed control fan, gas sensor to measure the release rate, and temperature to control the
heating elements. The user controls the intensity of the aroma and fan speed as well as selects the
aroma to be released by a software application. However, the heating approach might destroy the
chemical components, which may limit the range of odors.

The authors in [5] presented a placed-in environment olfactory display that released six scents
based on the visible content displayed by using an Inception v3 model for image recognition. However,
visual elements were only associated with scents.

Overall, wearable devices can cause discomfort to users, thus hindering immersion into the
virtual world. In contrast, environmental olfactory displays do not share this issue, but tend to have
synchronization issues.

3. Methodology

3.1. System Overview

The proposed system consists of a Windows application that records the sounds and transforms
raw sound into a log-Mel spectrogram while simultaneously taking screenshots from a game called
Minecraft [22]. Conceptually, the proposed approach can be applied to any application as long as
the classifiers have been trained to associate scents with its visual and auditory virtual phenomenon.
The approach was applied on Minecraft as a proof of concept. The image classifier [5] and the sound
classifier operate separately and identify which scents are to be released. Their results are then merged
(union) and passed to the application that will inform the olfactory display. Only classes with an
accuracy of 90% or more will be released. The olfactory display used in [5] was also used in this
research. It is worth noting that this research focused on adding the capability of releasing scents based
on an audio-visual virtual phenomenon and not on the development of an olfactory display. Figure 1
illustrates the system overview.

3.2. Dataset

The dataset consisted of 1200 audio segments that were distributed equally between four classes:
grass, fire, thunder, and zombie. We selected these sounds based on the sound popularity in the
Minecraft game as well as the availability of scents. The duration of all audio samples was four seconds
with a 44.1 kHz sampling frequency and single audio channel (mono). Due to the similarity of the
sound and to avoid overfitting, two deformation methods were used directly on the segments to
generate a new sample. First, time stretching (TS) was applied to fast and slow audio samples using
the Librosa function [23] (librosa.effects.time_stretch). In order to change the stretch, we used two
speed factors of 0.5 and 2. Second, pitch shifting (PS) was applied to the high and low pitch of samples
through the use of the Librosa function [23] (librosa.effects.pitch_shift) to change the pitch randomly.
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All audio segments were then converted into a log-Mel spectrogram and used as input representation
to train the network. We extracted log-Mel features from raw wave sounds by applying a short-time
Fourier transform (STFT) over 40 ms windows with 50% overlap and Hamming windowing. We took
the absolute value of each bin to square it and applied a 60-band Mel-scale filter bank. Finally, we
computed the logarithmic conversion of the Mel energies using the Librosa library [23]. The log-Mel
spectrogram was used to train the network without the need to combine features. Figure 2 illustrates a
sample of the log-Mel spectrogram.
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3.3. Transfer Learning

Training the deep convolutional network from initialization requires a huge dataset to learn
discernable features. The limited availability of data makes automatic image recognition impossible.
In such cases, transfer learning makes CNN able to recognize images successfully by transferring
knowledge from a model trained on a huge dataset into the target model, which is used for the
new task.
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Recently, many CNN architectures with a deep layer have been developed. In this research,
Inception v3 [24] was adopted as a pre-trained model because of its ability to reduce computational
complexity by using different sizes of convolutional filters (e.g., 1 × 1, 3 × 3, and 5 × 5) in the same
layer and then sending them to the next layer to detect new features. In [25,26], one of these filters had
to be chosen to be used first, followed by the max pooling layer, then this operation was repeated with
the hope of detecting new features. However, this operation is computationally intensive due to the
many operations that occur in each neuron. Despite the complexity of the architecture in Inception v3,
it achieved extraordinary performance in terms of accuracy. Inception v3 was trained on an ImageNet
dataset [27] that contained 1.2 million images with more than 1000 labels. Inception v3 extracted the
features of ImageNet by using a CNN with fully connected layers and a SoftMax layer to classify
images based on the ImageNet labels. The transfer learning used all convolutional layers and pooling
layers in Inception v3 to extract the input features of the log-Mel spectrogram. Then, it removed the
top layer (SoftMax) that classified the original dataset and trained the new layer with our task. Finally,
the new model classified the images based on the labels of the new dataset. The process of transfer
learning is illustrated in Figure 3.
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4. System Evaluation and Results

The work was evaluated in two stages. First, the capability of the model to identify the various
audio classes was tested using a separate dataset of log-Mel spectrograms. Second, the integrated
approach, consisting of both the image (re-used from [5]) and the proposed audio classifiers were
tested for their consistency. The model was retrained using TensorFlow [28] on an Intel core i7-4720HQ
processor with 16.0 GB memory. The dataset was trained with the slandered learning rate of 0.01, the
iteration was set as 20,000, and the batch size of each iteration was equal to 100.

The retrained model was evaluated with 30 log-Mel spectrograms for each class. The classification
result was obtained from the confusion matrix, as shown in Figure 4. As we can infer, the ocean was
the least accurately recognized class by the system. The reason behind this is that the ocean in the
game contains other creatures and their sounds overwhelm the sound of the ocean. On the other hand,
the model predicts thunder sounds successfully because the sound of thunder is very loud and clear.

The model was evaluated before integrating the application by computing the accuracy, precision,
recall, and f1 score for each category from a confusion matrix with 0.5 as the threshold value by using
Equations (1)–(4). The prediction of the lowest value was not accepted because the application cannot
release the aroma if the prediction is lower than 90%. The performance measurements in Table 1 were
computed by using the following equations:

Accuracy =
True Positives + False Negatives

Total Number o f Samples
(1)

Precision =
True Positives

True Positives + False Positives
(2)
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Recall =
True Positives

True Positives + False Negatives
(3)

F1 Score = 2×
Precision×Recall
Precision + Recall

(4)
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Table 1. Performance Measure for retrained Sound Model before Integrated into Application.

Category Accuracy Precision Recall F1 score

Fire 0.95 0.8 0.9 0.8
Ocean 0.93 0.8 0.8 0.8
Thunder 0.99 1 0.9 0.9
Zombie 0.95 0.9 0.9 0.9
Average 0.95 0.8 0.8 0.8

As can be seen from Table 1, the accuracy of the thunder outperformed other categories at 99%
because it has a high sound that overshadows any other sounds around it, while ocean had less
accuracy among the other categories with 93%. Overall, the average accuracy of the model was 95%;
this was satisfied in this application due to the limited sounds in the game. The other statistical
measures of precision, recall, and F1 score reached 0.9 in most cases, which was satisfied.

4.1. Performance Sound and Image Classifier in the Application

Evaluation performance of the integrated sound classifier with the Windows application was
conducted, with audio samples recorded every ten seconds and converted into log-Mel spectrograms.
At the same time (10 s), the application took screenshots and passed them to the image classifier.
We compared the two classifiers to measure accuracy, precision, recall, and F1 score for the fire, zombie,
and ocean categories using a confusion matrix with 0.5 as the threshold value. The predications that
scored less than the threshold value were rejected. The following Figure 5 shows a sample of the
accuracy of both classifiers within the application at the same time.
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The confusion matrixes for sound and image classifier performance within the application are
shown in Figures 6 and 7, respectively. As can be seen, the ocean was the most misclassified category
because the ocean in Minecraft contains other audio sources such as zombies and other creatures,
which overlap the sound of the ocean. Additionally, two sounds from fire were classified as the ocean
because the lava sound (a type of fire in the game) is similar to the sound of the ocean. In contrast, the
ocean in the image classifier were classified correctly. Zombie was the most misclassified class in the
image classifier with five images in the fire class because in the game, the zombie burns if exposed to
the sun. However, in the sound classifier, zombie was classified with all classes correctly except fire,
which was misclassified with two images due to the overlap of fire sounds with zombie sounds when
the zombie was burning.

The accuracy performance for both classifiers are illustrated in Tables 2 and 3. It can be seen
that the accuracy of the sound classifier decreased after being integrated into the application. It is
believed this is occurs in circumstances when players move very fast from one scene to another, which
makes the sounds overlap and become difficult to recognize. Overall, the average accuracy of the
audio classifier (91%) was less than the accuracy of the image classifier (94%). This is because, unlike
images, the game produces multiple sounds at the same time (e.g., the sound of the ocean and a pack
of zombies), which cannot be predicted. Nevertheless, in some cases such as fire and zombie, the
accuracy outperformed fire and zombie in the image classifier. Thus, the smells are released based on
the classifier that represents the highest accuracy. Furthermore, the recall result of the image classifier
was 0.9, which outperformed the result of the sound classifier. Finally, the average results of precision



Appl. Sci. 2019, 9, 4866 9 of 12

and F1 score were 0.8 for both classifiers, which were satisfactory in this application. It is worth noting
that the two classifiers are complementary and do not complete each other. Additionally, the audio
classifier could identify additional virtual phenomenon (e.g., thunder), even if it is not in the field of
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Table 2. Performance Measure for Sound Model within Application.

Category Accuracy Precision Recall F1 score

Fire 0.92 0.8 0.9 0.8
Ocean 0.91 0.9 0.8 0.8
Zombie 0.92 0.8 0.9 0.8
Average 0.91 0.8 0.8 0.8
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Table 3. Performance Measure for Image Model within Application.

Category Accuracy Precision Recall F1 score

Fire 0.91 0.8 0.9 0.8
Ocean 1 1 1 1
Zombie 0.91 0.8 0.8 0.8
Average 0.94 0.8 0.9 0.8

4.2. User Experience

In order to test the impact on the user’s experience, we conducted an experiment with five
participants. The device was placed under the monitor, at the front of the users. Initially, the device
was set to release new scents every three seconds. The synchronization between the game event and
the release was acceptable, however, the scent persisted in the air for far longer. However, even after six
minutes of game play (average), users could still differentiate the released aromas. Thus, they reported
that the atmosphere was uncomfortable. In order to improve the user experience, we modified the
release code to prevent an aroma being released more than once per minute. This improved the user
experience, but still lacked a way to clean the previously released scent, which was proven to be a
major drawback as the new aromas mixed with the old ones. Preventing the release of a new scent for
10 s (used in this research) resulted in a better overall user experience, but at the cost of a lot of missed
releases, revealing a trade-off. While out of scope of this research, it is the belief of the authors that a
new algorithm to decide when to release a new scent, based on the last release as well as the different
persistence rates of various aromas, will have a positive impact on the user experience.

5. Conclusions

This study proposed an approach that combined audio and visual contents to automatically
trigger scents through an olfactory device using deep learning techniques. The log-Mel spectrogram
sound identification model was built based on a pre-trained Inception v3 model. Moreover, a Windows
application was designed to record audio and convert it to a log-Mel spectrogram as well as take a
screenshot of the same scene at the same time. In addition, the application controls the release of
scents that are identified based on the highest accuracy. The accuracy of the integrated sound model
with the application reached 91%, however, the accuracy was lower due to various sound recording
situations. For example, sounds may overlap and become difficult to recognize. While the accuracy
of the image outperformed that of the sound, sometimes it was misclassified. The sound and image
models complement each other: in case one misrecognizes the scene, the higher accuracy will prevail,
or the absence of either of them from a scene. The proposed approach can be applied to different
virtual environments as long as scents can be associated with visual and auditory content. Further
work is required to associate scents automatically with more sounds and images. Additionally, the
approach can be tested with other games or virtual reality applications.
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