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Featured Application: This article introduces a crack size extraction and image stitching
technology based on image processing that can safely and efficiently obtain the crack information
of concrete structures. This work can provide assistance for those who are engaged in the crack
detection of concrete bridges.

Abstract: Crack assessment is an essential process in bridge detection. In general, most non-contact
crack detection techniques are not suitable for widespread use. The reason for this is that they all
need to position the ruler at the inspection site in advance or calibrate the camera unit pixel size at a
certain distance in a very intricate process. However, the object distance method in this paper can
complete the calculation using only the crack image and the working distance, which are provided
by an acquisition system equipped with a camera and laser range finder. First, the object distance
method and the scale method are compared by calculating the crack width, and the results show that
the object distance method is the more accurate method. Then, a double edge pixel statistical method
is proposed to calculate the crack length, which solves the problem of redundant and missing pixels.
In addition, the conventional mosaic algorithm is improved to realize an image mosaic for the more
efficient splicing of crack images. Finally, a series of laboratory tests were conducted to verify the
proposed approach. The experiments showed that the precision of crack length extraction can reach
92%, and the improved algorithm stitching precision can reach 98%.

Keywords: concrete crack; edge detection; image identification; minimum width extraction; double
edge pixel statistics; image mosaic algorithm

1. Introduction

Concrete is one of the most widely used engineering materials. Owing to its low cost, good
durability, ease of shaping and other characteristics, concrete plays a role in widespread applications in
construction engineering, traffic engineering, water conservancy engineering, and other infrastructure
construction efforts. However, with the coming maintenance period of the engineering structures
built in the early years, concrete structures inevitably suffer damage and destruction [1,2] under the
long-term actions of freezing–thawing cycles and loading. This degradation first manifests as structural
cracks whose size and direction are important factors to evaluate structural reliability. After a crack
occurs in a structure, moisture enters the concrete beam through the crack, causing the steel to rust.
The expansion of water into ice saggravate the development of cracks when the external temperature
is low. The direction of the crack allows structural engineers and relevant management personnel to
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evaluate the structural condition of the crack and predict its development. Therefore, the safe operation
of engineering structures is often evaluated based on cracks.

At present, cracks on concrete structures are mainly inspected by the manual visual observation
of the surface. For example, in bridge crack detection, a large machine such as a test vehicle is usually
used to position the inspector underneath the bridge, and the cracks are identified by the naked eye
and measured by an optical microscope. It is precisely because of this measurement characteristic
that the detection accuracy of cracks largely depends on the proficiency of the detection personnel.
For many structures, the inspector cannot go to the testing location. Therefore, this manual detection
method is inefficient, costly, and has security risks. With the rapid development of signal processing
theory and modern computer technology, machine vision [3–8] has played an increasingly important
role in crack detection. Image processing technology can be used to safely and efficiently extract crack
information. Crack information extraction mainly includes the identification of the crack size [9–12]
and the final stitching [13–17] of the crack image.

Abdel-Qader et al. [18] compared four edge detection algorithms, the fast Haar transform
(FHT), the fast Fourier transform, and the Sobel and Canny algorithms, and their results showed
that the FHT had the best performance in crack detection. Zou et al. [19] developed CrackTree, a
fully automatic method for detecting crack curves from a pavement image, and proposed a new
geodetic shadow-removal algorithm for eliminating road shadows and enhancing the contrast of cracks.
Li et al. [20] proposed the FoSA, or F* (pronounced F star) seed growing approach, for pavement crack
line detection, which is based on crack seed growing strategies and solved the problem of automatic
selection of the start and end points of the F* program. This method has a strong anti-speckle-noise
capability for extracting crack lines from pavement images. PraSanna et al. [21] designed a spatial
demodulation robust multi-feature classifier for the crack detection of bridges, which is a detection
method based on machine learning and the integration of multiple features. Experiments have shown
that the classification accuracy of this method is high. Talab et al. [22] used multiple filters to process
crack images and proposed a new image processing method to detect cracks. Shi [23] investigated
CrackForest, a road crack detection framework based on a random structure forest. They used a new
crack descriptor to more effectively identify cracks in a noisy environment. Kim et al. [24] presented a
crack identification process using a hybrid image processing strategy with an unmanned aerial vehicle
(UAV) that utilized two sets of optimal parameters, Pw (optimal parameters minimizing estimation
errors in crack width) and Pl (optimal parameters minimizing estimation errors in crack length), to
accurately detect the crack width and minimize the loss of length. Jeon et al. [25] introduced the
applications of a UAV in crack identification with a deep learning algorithm. The algorithm was adopted
to effectively classify and locate images, and the identified cracks were automatically visualized on an
inspection map using location matching.

Though these methods have certain advantages in various fields, some problems remain. First,
when acquiring images, experimenters need to calibrate the camera’s unit pixel size [26,27] in a very
cumbersome way, such as the scale method [28] of positioning rulers at the crack position, which is
not applicable to all bridge types. Relatively speaking, the object distance method does not require
cumbersome calibration, the operation is simple, and it is suitable for almost all bridge types. However,
there is no uniform standard for the calculation of crack size. Second, most current methods for
calculating crack length refine the crack into a single pixel skeleton along the direction of the crack and
then calculate it by counting the number of pixels. However, these methods heavily rely on the choice
of threshold for image binarization. When the threshold value is large, the ends of the cracks and
some small cracks are often ignored, which can result in missing pixels, making the calculated value
smaller than the actual length. When the threshold value is selected to be small, the crack is wide, and
a large amount of noise is present, the problem of pixel redundancy occurs, resulting in a calculated
result that is larger than the actual value. Third, most image stitching algorithms [29,30] tend to apply
point-to-point matching when feature points are matched. There is no correlation between feature
points, which often causes mismatching. Then, the mismatched points should be eliminated, which
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results in low computational efficiency. To the authors’ knowledge, the associated researchers did not
check the stitching accuracy after they finished image stitching.

In this paper, a crack information extraction method is proposed for length calculation and image
mosaic, and a data acquisition system with a camera and a laser range finder was built to provide the
crack image and working distance needed for data processing. Some main aspects of the work are
as follows:

• The object distance method and the scale method were compared for the aim of estimating the
crack width, and the results showed that the object distance method was more efficient than the
ruler method.

• The method of “double edge skeleton method” was adopted after analyzing the disadvantages of
common crack length calculation methods. First, the edge information of the crack was preserved
as much as possible by setting the appropriate threshold. Then, the number of pixels in the edge of
the crack was calculated by region. Third, redundant pixels with wide cracks and large amounts
of noise were removed, and the missing pixels of narrow cracks were added. This method greatly
improved the calculation accuracy.

• The scale-invariant feature transform (SIFT) algorithm was used and improved to correlate and
compare feature points in the image mosaic. The improved algorithm could achieve the priority
matching of feature points, thereby improving the splicing efficiency. After the image mosaic was
created, the accuracy was verified by comparing the mosaic image with the actual structure.

2. Materials and Methods

2.1. Identification of Crack Width

2.1.1. Image Binarization

Crack width is obtained as the distance between the edge pixels nearest to the center skeleton
pixel, as shown in Figure 1. In order to obtain crack size, the crack edge must be detected. In the broad
sense, the sudden change of an object is called the edge. In image processing, the edge is often detected
by abrupt changes in the grey value. Edge detection must meet two conditions: it must effectively
suppress noise and locate the edge as accurately as possible. Image binarization [31,32] is one of the
most commonly used image processing methods. In the binarization process, a specified threshold
is set for the pixel value of the greyscale image. When the greyscale pixel value is lower than the
corresponding threshold, the binarization result is zero (black). In contrast, the binarization result is
one (white) when the pixel value is higher than the threshold [24]. Therefore, image binarization is the
primary task of calculating crack width. For the acquired image, after the correction and the obtaining
of the grayscale image, binarization can be performed.

The Canny edge detection algorithm is the most widely used edge detection algorithm.
The algorithm adds non-maximum suppression and double threshold improvement based on the first
order differentiator. Non-maximum suppression can eliminate the nonlocal maximum in the first order
differentiator, and the double threshold can reduce the missed detection rate of the edge. However,
the Canny operator requires manual threshold setting. A threshold setting that is too high can result
in edge loss, and one that is too low cannot detect the true edge, thus reducing detection efficiency.
However, the Otsu method [33] can avoid this situation. In this paper, the combination of the Otsu
method and Canny operator [34,35] was used for edge detection. The results are shown in Figure 2.
It can be seen that this method could accurately identify the edges.
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Figure 1. Illustration of the crack width.

Figure 2. The processing result of the Canny operator combined with the Otsu method.

2.1.2. Calculation Principle of the Two Methods

There are two methods for estimating crack size. One is the scale method, which is calculated
according to the principle of proportional conversion. This method requires a square of a known
size to be attached to the inspection site, and the size of the crack is converted by the square size.
The calculation principle is shown in Figure 3. The other is object distance method, which is calculated
according to the optical triangle similarity theory. This method only needs to know the working
distance and camera focal length during image acquisition, as shown in Figure 4. The object distance
method and the scale method were compared in this paper to achieve a more accurate estimation of
the crack width. The width information calculated by the two methods was then converted to metric
units using the following equation:

Wr =
WPC
WPS

× l, (1)

Wr = DP ×WPC = a×
D− f

f
× p, (2)

where Wr is the real crack width in metric units (mm), WPC is the obtained crack width in pixels, WPS
is the dimension of the scale in pixel, l is the dimension of the scale, DP is the pixel resolution of the
imaging system, a is the pixel size, D is the distance in mm from the object plane to the camera chip, and
L f is the focal length of the camera in mm. The calculation principle diagram of the pixel resolution DP

is shown in Figure 4.
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Figure 3. Calculation principle of the scale method.

Figure 4. Calculation principle of object distance.

The comparison process of the two methods accuracy is shown in Figure 5.

Figure 5. Flowchart of comparing the accuracy of the two methods.
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2.2. Identification of Crack Length

2.2.1. Morphological Screening of Crack Images

Crack length estimation [36] is challenging due to irregularities in crack development. Traditional
manual measurements have large errors, and thus, image processing technology has obvious advantages
in length estimation. Crack length is generally calculated by counting the number of pixels. As seen
from the previous section, although the Canny edge detection algorithm combined with the Otsu
method eliminates most of the noise, there is still a small amount of isolated noise that is difficult to
eliminate. Therefore, in order to estimate the crack length, it is necessary to eliminate the noise as
much as possible. This can be done by iterating through all the pixels, looking for all connected fields,
as shown in Figure 6, and marking them with their circumscribed rectangles. One can then assume
that the size of the circumscribed rectangle of the p th connected field is Mp ×Np and Sp is the area of
the connected field (i.e., the number of pixels). When the pixel is black, xi, j = 0, and when the pixel is
white, xi, j = 1. The area Sp is defined as:

Sp =

Mp∑
i=1

Np∑
j=1

xi, j, (3)

One can then set a threshold A for the area of the connected domain [37], according to experience.
If Sp < A, the connected domain is removed; otherwise it is reserved. The image after noise removal is
shown in Figure 7.

Figure 6. Image after labelling connected fields.

Figure 7. Image after noise removal.

2.2.2. Crack Length Estimation Based on Double Edge Pixel Statistics

The central skeleton method [38] is currently the most commonly used method. This method
refines the crack into a single-pixel skeleton, and estimates the crack length by counting the number
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of skeleton pixels. However, the pixel missing and redundancy problems caused by this method are
often difficult to compensate (see Figure 8). In order to solve the problem of missing and redundant
central skeleton pixels, this paper proposes double edge skeleton method. By counting the number of
pixels by region, the missing pixels can be complemented while eliminating the effects of redundant
pixels, as shown in Figure 9.

Figure 8. Central skeleton method.

Figure 9. Double edge skeleton method.

According to Equation (4), it is assumed that the total area of all connected domains is ST; then,
the crack length is defined as:

L =

ST −
n∑

i=1
SRi +

m∑
j=1

SDj

2
×DP, (4)

where L is the total crack length in mm; n and m are the area numbers of the redundancy and deficiency
parts, respectively; SRi and SDj are the areas of the ith redundant region and the jth deficient region,
respectively; and DP is the pixel resolution of the imaging system.

2.3. Crack Mosaicing Algorithm Based on SIFT Feature Point Correlation

2.3.1. Method of Mosaicing

In the process of acquiring images, a crack may be scattered in multiple images due to various
conditions, which increases the difficulty of obtaining crack information. Therefore, it is necessary to
splice multiple crack images into a complete crack image to obtain more comprehensive information
about the crack. In the process of image stitching, it is necessary to adjust the size and angle of the
original second image and then stitch it with the original first image. The precondition for stitching
two adjacent images is that they must share an overlapping area. The larger the proportion of the
overlapping area is, the higher the stitching precision. The main task of splicing is to determine
the overlap degree of adjacent images in the directions of the height and width and then remove
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the overlapping area to obtain a complete panoramic image [39]. The splicing process is shown in
Figure 10.

Figure 10. Flow chart outline of image mosaic.

Image pre-processing primarily corrects the distortion of the original image and suppresses the
noise points to prepare for the next step of image registration. Distortion correction can eliminate
obvious geometric distortion in the original image, and noise point suppression can avoid the occurrence
of some mismatches to the greatest extent. Image registration [40] is mainly used to extract the matching
information in the original image and to perform the spatial alignment and greyscale fusion of multiple
images taken in the same scene at different moments with different light intensities, different sensors
and different angles. Among the constituent steps, feature matching is the basis of image registration.
Feature matching refers to the finding of similar parts of two images to be registered based on feature
points or greyscale to find the image similar to the search image.

A commonly used feature matching method is the SIFT [41–45] method. The essence of the SIFT
algorithm is to find feature points in different scale spaces and calculate the direction of the feature
points. These feature points are some very prominent points that do not change due to factors such as
the lighting, image size, and noise. However, in the process of matching key points, the SIFT algorithm
often produces mismatching, and the mismatching points need to be eliminated later. Therefore, based
on the SIFT algorithm, this paper incorporated the feature point correlation comparison and priority
matching algorithm.

The first step is coarse adjustment, which plays a role in positioning. First, traverse all the
feature points on the left and then find the corresponding points of the feature points in the right
image. Each feature point may have many corresponding points in the right image. Since the feature
point association comparison process is complicated, three feature points are taken as an example.
Take any of the three feature points in the left figure and record them as P1,l, P2,l, P3,l (see Figure 11a).
These three feature points form three sets in the points corresponding to Figure 11b, recorded as
P11, P12 . . .P1i . . .P1m; P21, P22 . . .P2 j . . .P2n; and P31, P32 . . .P3k . . .P3r. There are m× n× r combinations
that include a point from each of these three sets. Suppose that the distance between any two points P1

and P2 is P1P2. The distances of the three feature points in the left image and the distances of the three
points in all combinations of the right image are associated. The relationship between the distances
of the three points in the left figure and the distances of the three points corresponding to the right
picture is denoted by ξ, as shown in Equation (5). Let l = 1 and find the i, j, k that minimize ξ; if
the result is not unique, let l = l + 1 until the result is unique. At this time, P1i, P2 j and P3k are the
points corresponding to the three feature points in the left figure. The right image is scaled by the
proportionality factor α, rotated appropriately, and then moves in the direction of the left figure so that
the three points coincide, thus completing the coarse adjustment.

ξ =
∣∣∣∣∣∣P1,lP2,l − αP1iP2 j

∣∣∣+ ∣∣∣P2,lP3,l − αP2 jP3k
∣∣∣+ ∣∣∣P1,lP3,l − αP1iP3k

∣∣∣∣∣∣, (5)

where α is the proportionality factor which can be obtained using the Gaussian Pyramid.
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Figure 11. Schematic diagram of feature point correlation matching: (a) left figure and (b) right figure.

The second step is to fine tune the alignment. After the first step of feature point positioning, the
image mosaic has basically been completed. However, due to the difference in the number of matching
points, although the feature points have been correlated, some stitching errors will inevitably occur.
An insufficient or excessive number of matching points may also adversely affect stitching accuracy.
The second step is performed to avoid these conditions, and the process is as follows. Adjust the
coefficient distRatio that controls the number of matching points in the Match.m file to obtain different
numbers of matching points. As the number of matching points changes, the stitching result is adjusted
accordingly. By adjusting this factor, the stitched image can be fine-tuned.

Taking Figure 12 as an example, Figure 12a,b, which are to be stitched, are undistorted images.
After processing by the SIFT algorithm, Figure 12a yields 6501 detected key points, and Figure 12b
yields 5450 detected key points. Then, by assigning two values to distRatio, the numbers of matching
points obtained are 2139 and 1936 respectively. The matching results are shown in Figure 13. It can be
seen that although there are more matching points in Figure 13a, there is a phenomenon of matching
confusion, but Figure 13b does not show this effect. The results of the stitching are shown in Figure 14.
Obviously, Figure 14b has a better stitching effect.

Figure 12. Image to be spliced: (a) left figure and (b) right figure.
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Figure 13. Feature point matching: (a) left figure and (b) right figure.

Figure 14. Stitching results: (a) left figure and (b) right figure.

2.3.2. Effect Detection of Mosaicing

To evaluate the stitching effect, this paper evaluated the accuracy by comparing the ratio of the
distance on the stitched image to the actual distance. In the stitched image, the point p2 of the stitching
is selected (see Figure 15a), points p1 and p3 are selected on the left and right sides, respectively, and
the pixel distance between the three points is measured. The ratio between the three distances is then
calculated, as shown in Equation (6). These three points on the beam are found, and a steel ruler is
used to measure the actual distance between the three points (see Figure 15b). Then, the ratio of the
three points in the same way can be calculate, as shown in Equation (7).

l12
l13

= k1
l23
l13

= k2
l12
l23

= k3

, (6)


L12
L13

= K1
L23
L13

= K2
L12
L23

= K3

, (7)
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Figure 15. Comparison between two distances: (a) distance of the stitched image and (b) actual distance
on the beam.

The two sets of ratios to obtain the stitching error of each part can be compared. The average
stitching error ω is defined as: 

ω1 =
∣∣∣∣K1−k1

K1

∣∣∣∣× 100%

ω2 =
∣∣∣∣K2−k2

K2

∣∣∣∣× 100%

ω3 =
∣∣∣∣K3−k3

K3

∣∣∣∣× 100%

ω = ω1+ω2+ω3
3

, (8)

3. Experimental Validation

3.1. Crack Image Acquisition System and Test Model

Laboratory testing was conducted in this study to effectively obtain the size information of the
crack. The experimental model is two concrete test beams with dimensions of 150 × 300 × 2200 mm in
the Wind Tunnel Laboratory in the Northeast Forestry University. By controlling the loading force, the
two beams can be loaded to contain cracks almost entirely in the width. The test used an acA1300-30
µm Basler industrial black and white charge-coupled device (CCD) camera (see Figure 16). The camera
does not require an external power supply and uses only a data cable connected to the computer’s
USB3.0 interface, which enables convenient operation. The camera sensor chip size is 4.9 × 3.6 mm with
1.3 million pixels, the horizontal/vertical resolution is 1296 × 966 px, and the horizontal/vertical pixel
size is 3.75 × 3.75 µm. To enact the procedure, one must adjust the tripod to level the camera and rotate
the camera to hold the camera’s optical axis perpendicular to the plane of the test beam to capture an
image. Then, one must use an HCIYET HT-310 Hongcheng laser range finder to measure the distance
between the camera and the subject. The crack image acquisition system is shown in Figure 17.

Figure 16. The acA1300-30 µm Basler industrial camera.
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Figure 17. The image acquisition system.

3.2. Results

3.2.1. Crack Width

In this paper, six cracks of different brightness, shape and width were selected for characterization.
Six measuring points were selected for each crack, so a total of 36 sets of crack width data were obtained.
The crack width was calculated by the scale method and the object distance method, and the accuracy
of the two methods was compared. The crack width estimation results are shown in Table 1:

Table 1. Comparison of the obtained crack widths.

Region Crack Width Calculation (mm)

Microscope Scale Method (Error (%)) Object Distance Method (Error (%))

I

0.25 0.280 (12) 0.282 (13)
0.37 0.330 (11) 0.332 (10)
0.24 0.262 (9.2) 0.263 (9.6)
0.44 0.431 (2.1) 0.434 (1.4)
0.36 0.388 (7.8) 0.390 (8.3)
0.44 0.422 (4.1) 0.425 (3.4)

II

0.39 0.383 (1.8) 0.386 (1.0)
0.39 0.396 (1.5) 0.399 (2.3)
0.51 0.525 (2.9) 0.529 (3.7)
0.43 0.413 (4.0) 0.416 (3.3)
0.53 0.521 (1.7) 0.525 (0.94)
0.56 0.544 (2.9) 0.548 (2.2)

III

0.47 0.438 (6.8) 0.446 (5.1)
0.51 0.523 (2.6) 0.532 (4.3)
0.73 0.674 (7.7) 0.686 (6.0)
0.73 0.697 (4.5) 0.709 (2.9)
0.39 0.386 (1.0) 0.393 (0.77)
0.71 0.737 (3.8) 0.750 (5.6)

IV

0.17 0.200 (18) 0.142 (16)
0.16 0.199 (24) 0.142 (11)
0.17 0.214 (26) 0.152 (11)
0.24 0.261 (8.8) 0.251 (4.6)
0.23 0.220 (4.4) 0.212 (7.8)
0.23 0.224 (2.6) 0.216 (6.1)

VII

0.12 0.182 (52) 0.134 (12)
0.13 0.156 (20) 0.115 (12)
0.15 0.197 (31) 0.145 (3.3)
0.16 0.206 (29) 0.152 (5.0)
0.13 0.171 (32) 0.126 (3.1)
0.12 0.161 (34) 0.119 (0.83)

VIII

0.11 0.122 (11) 0.094 (15)
0.08 0.123 (54) 0.096 (20)
0.10 0.174 (74) 0.134 (34)
0.07 0.122 (74) 0.094 (34)
0.09 0.133 (48) 0.103 (14)
0.11 0.171 (55) 0.132 (20)
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According to the data in Table 1, the error comparison curves of the object distance method and
the scale method were obtained (for several cracks with the same width but different errors, the error
was averaged), as shown in Figure 18. The identification accuracy of the two methods increased with
increasing crack width. When the crack width was less than 0.2 mm, the accuracy of the object distance
method was obviously higher than that of the scale method. A detailed comparison of the errors is
shown in Table 2. The comparison results showed that when the crack width was greater than 0.20 mm,
the average error of both methods was within 8.2%. When the width was less than 0.20 mm, the error
of the scale method was larger and the average value was more than 30%. When the crack width was
between 0.10 and 0.20 mm, the average accuracy of the object distance method could reach 90%; when
the crack width was 0.10 mm or less, the accuracy of the object distance method could not meet the
measurement requirements. In summary, the object distance method had a high accuracy and could
accurately identify cracks with a width above 0.10 mm.

Figure 18. Error comparison curve between the object distance method and the scale method.

Table 2. The error comparison between the scale method and the object distance method.

Crack Width (mm)
Error of the Scale Method (%) Error of the Object Distance Method (%)

The Mean The Maximum The Mean The Maximum

(0, 0.10] 62 74 26 34
(0.10, 0.20] 30 55 9.9 20
(0.20, 0.30] 7.4 12 8.2 13
(0.30, 0.50] 4.4 11 4.0 10
(0.50, +∞) 3.7 7.7 3.7 6.0

3.2.2. Crack Length

In this paper, five cracks of different brightness, shape and width were selected for length
estimation. A cotton thread was laid along the crack for comparison with the calculated results.
The calculation errors are shown in Table 3. The proposed method could accurately estimate the length
of the crack with a maximum error of 8.3%.

Table 3. Crack length and error.

Crack Number Real Length (mm) Calculated Length
(mm) Error (%)

C-1 105 109.28 4.1
C-2 109 110.87 1.7
C-3 105 112.58 7.2
C-4 95 97.68 2.8
C-5 146 158.09 8.3
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3.2.3. Crack Mosaicing

This experiment aimed to achieve the research goal by stitching several groups of crack images.
Due to the length limit of this article, only five cracks with different brightness, shape and width are
selected for illustration (see Figure 19). The stitching results are shown in Figure 20, where the number
represents the crack width at that particular pixel.

Figure 19. Images to be stitched (a) Splicing of fine cracks at the ends; (b) Splicing of cracks under
good light conditions; (c) Splicing of cracks under poor lighting conditions; (d) Splicing of cracks under
strong noise interference conditions; (e) Splicing of complete cracks under multiple photos.
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Figure 20. Image stitching results. (a) Splicing of fine cracks at the ends; (b) Splicing of cracks under
good light conditions; (c) Splicing of cracks under poor lighting conditions; (d) Splicing of cracks under
strong noise interference conditions; (e) Splicing of complete cracks under multiple photos.

3.2.4. Accuracy Validation

To evaluate the stitching effect, the stitching accuracy of the above five images was verified, and
the results are shown in Table 4. It can be seen that the crack splicing accuracy could reach 98%.
Therefore, the algorithm can accurately splice the cracks of disperse brightness, shape and width and
retain complete crack information.
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Table 4. Accuracy validation of image stitching.

Crack Number Pixel Distance Real Distance (mm) Mean Error (%)

(a)
270.57 62.5

1.1325.45 74.0
596.38 136.5

(b)
403.51 58.5

0.51495.37 71.5
1098.94 160.0

(c)
230.61 42.5

1.1432.55 81.0
579.61 107.0

(d)
342.40 52.0

2.0318.07 47.5
647.61 99.5

(e)

1365.14 94.5

1.1
769.21 54.5
607.78 41.5
696.70 47.5
1293.65 87.5

3.3. Discussion and Future Work

It can be seen from the calculation results of the crack width that the calculation accuracy of the
two methods increased as the crack width increased. However, as the crack width decreased, the
trends of the accuracies of the two methods differed. The accuracy of the optical similarity method
represented by the object distance method was much higher than that of the scale conversion method
represented by the scale method, possibly because the calibration plate inevitably had a certain error,
and the square border of the calibration plate itself occupied a certain width. When the crack width was
small, the error caused by this width could not be ignored. However, there was no such problem with
optical similarity rules. In general, for the proposed crack length calculation method, the calculation
accuracy should increase as the crack length increases when the crack quality is good. However, this
rule was not shown in this experiment because the calculation of the crack length was based on image
processing technology. The image processing technology was not only related to the actual length of
the crack but also to the clarity of the image, the influence of noise, the width and shape of the crack,
and other factors. Due to these factors, when the number of cracks was small, the calculation results
showed no regularity. Additionally, by improving the splicing program and verifying the splicing
accuracy, the splicing effect was quantified in this paper, which could directly reflect the development
of the cracks.

In recent years, crack detection methods based on UAVs have attracted widespread attention due
to their stability and high efficiency. The cloud platform of the UAV can ensure that the camera is
completely horizontal during the shooting process. A drone image acquisition system equipped with a
laser range finder can simultaneously acquire the crack image and the corresponding focal length and
working distance in the front view of the camera. However, to obtain a complete crack, the use of the
object distance method requires the controlling of the flying speed of the UAV and the shooting time
interval, which is undoubtedly inefficient. Therefore, in the future, the range finder should be replaced
with two laser emitters with a pitch of 10 cm mounted on both sides of the camera so that the emitted
laser light is always within the shooting range. Then, the UAV can calculate the crack size using a video
by taking the emitted laser as a ruler, which will greatly improve the detection efficiency. Since a laser
spot has a certain size, improving measurement accuracy is still a difficult aspect of crack detection.
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4. Conclusions

In this paper, the sizes and trends of cracks were studied by image recognition. First, the crack
width was computed using the scale method and the object distance method, and the accuracies of the
two methods were compared. Next, a double edge pixel statistical algorithm was proposed to calculate
the crack length. Finally, an improved algorithm based on SIFT feature matching was proposed to solve
the problem of crack image mosaic. The results of the experimental evaluation can be summarized as
follows:

1. The object distance method can accurately measure cracks with a width of more than 0.10 mm,
and its accuracy can reach 90%, much higher than the scale method.

2. Accuracy can be improved by calculating the length of the crack using the double edge skeleton
method. Compared with the measured results, the accuracy of crack length was up to 92%.

3. The improved splicing algorithm can accurately and quickly acquire the complete shape of the
crack, and the splicing precision can reach 98%.

Consequently, the results show that the double edge skeleton method and the improved SIFT
splicing algorithm can effectively and reliably identify cracks.
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