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Abstract: Remaining useful life (RUL) prediction is a challenging research task in prognostics
and receives extensive attention from academia to industry. This paper proposes a novel deep
convolutional neural network (CNN) for RUL prediction. Unlike health indicator-based methods
which require the long-term tracking of sensor data from the initial stage, the proposed network aims
to utilize data from consecutive time samples at any time interval for RUL prediction. Additionally,
a new kernel module for prognostics is designed where the kernels are selected automatically,
which can further enhance the feature extraction ability of the network. The effectiveness of the
proposed network is validated using the C-MAPSS dataset for aircraft engines provided by NASA.
Compared with the state-of-the-art results on the same dataset, the prediction results demonstrate the
superiority of the proposed network.
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1. Introduction

As a major task of condition-based maintenance (CBM), health prognostics can predictively
maintain equipment, improve the reliability of the machinery and prevent catastrophic
consequences [1–5]. The main purpose of health prognostics is to explore the on-going degradation law
for the device by feature extraction of the device-related data, and then predict the remaining useful
life (RUL) [6]. Consequently, RUL prediction has received more and more attention from academia
and industry.

RUL prediction methods can be classified into two categories: model-driven methods and
data-driven methods. The model-driven methods aim to derive the degradation process of a machine
by setting up mathematical or physical models [7]. With the commonly used models such as the Markov
process model, the Winner process model and the Gaussian mixture model, the RUL can be predicted [8].
However, such methods rely on robust physical or mathematical models, which are difficult to obtain
owing to the complex environment [9]. Data-driven methods establish the relationship between
the acquired data and RUL through data mining, which can be more accurate with the real-time
monitoring data. In recent years, a number of effective data-driven algorithms have been proposed and
achieved good results, mainly including: neural networks [10], support vector regression (SVR) [11]
and gaussian process regression (GPR) [12].

Generally, data-driven methods consist of three stages: data acquisition, health indicator (HI)
construction and RUL prediction [13–16]. By learning the deterioration curve of HIs, the time it takes
for the current HI to reach the pre-set failure threshold (i.e., RUL) is estimated. Louen et al. [17]
proposed a new health indicator creation approach using binary support vector machine classifier
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and calculated the RUL through an identified Weibull function. Guo et al. [6,18] applied neural
networks to the construction of health indicators and the RUL was obtained by the particle filter.
Malhotra et al. [19] constructed a long short-term memory-based encoder-decoder (LSTM-ED) scheme
to obtain an unsupervised health indicator (HI).

Generally, the prediction accuracy of RUL is seriously affected by the quality of the constructed
HIs [20,21]. The current HI construction methods are perplexed by different amplitude ranges of
statistical features, which leads to unifying the failure threshold difficultly under different working
conditions [9,18]. In addition, as shown in Figure 1a, prediction methods based on HIs depend on
long-term tracking of equipment from the initial to the current time, which is impractical in some cases.
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Hence, some scholars have paid attention to the time window (TW)-based RUL prediction 
method and have begun to directly establish the correlation between the sensor signals and RUL. Lim 
et al. [22] developed a machine learning framework with a moving time window to determine the 
RUL of aircraft engines. Zhang et al. [23] used a fixed time window to predict the RUL of aircraft 
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Lim et al. [22] created a multilayer neural network as the deep learning algorithm to build the 
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Hence, some scholars have paid attention to the time window (TW)-based RUL prediction method
and have begun to directly establish the correlation between the sensor signals and RUL. Lim et al. [22]
developed a machine learning framework with a moving time window to determine the RUL of aircraft
engines. Zhang et al. [23] used a fixed time window to predict the RUL of aircraft engines. As depicted
in Figure 1b, this method can start sampling at any time when the equipment is running, obtain the
data from tq to tp, and the RUL at tp can be predicted directly according to these data. The key issue of
these methods is to establish the mapping between the original signal and the RUL.

Recently, deep learning has made remarkable achievements in the fields of image recognition,
speech recognition and unmanned driving [24,25]. Deep learning is characterized by the deep network
architecture where multiple layers are stacked in the network to fully capture the representative
information from the raw input data [26]. Therefore, as a powerful tool, deep learning shows its great
potential in establishing the correlation between the original signals and the RUL. Lim et al. [22] created
a multilayer neural network as the deep learning algorithm to build the correlation between signal
characteristics and RUL. Zhang et al. [23] proposed a multi-objective deep belief networks ensemble
(MODBNE) method for RUL prediction, which employs a multi-objective evolutionary algorithm
integrated with the traditional deep belief networks (DBN) training technique to evolve multiple
DBNs simultaneously subject to accuracy and diversity as two conflicting objectives. Within the deep
learning architecture, convolutional neural network (CNN) is further applied in this study because of
its excellent feature extraction ability in the face of variable and complex signals [27]. Babu et al. [28]
firstly applied CNNs to the field of RUL prediction and incorporated automated feature learning from
the raw sensor signals in a systematic way. Li et al. [27] established a deep CNN model and conducted
a preliminary exploration of the depth of the networks on RUL prediction. While CNNs have shown
great potential in prognostics, there are still few applications of CNN in RUL prediction.

In this paper, a novel CNN is presented. The kernel module composed of multiple convolutional
kernels was proposed for feature extraction. This module was derived from the inception network
proposed by Szegedy et al. [25]. Compared with the module used in the inception network, the feature
extraction of the convolution kernel was in the time dimension, which reduced the parameters of the
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module and transfers the application in the image field to prognostics. The relationship between the
raw signals and the RUL could be established through the learning process. The RUL was calculated
according to the new vector of input signals.

In this study, we used the C-MAPSS dataset provided by NASA for the RUL prediction of aircraft
engines [29]. The engine is the key component of the aircraft and there is always a pressing need
to develop new approaches to better evaluate the engine performance degradation and estimate the
remaining useful life [30]. The proposed network showed its superiority compared with the state-of-art
methods on the same dataset. Our attempt was a useful exploration for implementing the RUL
prediction on the unexpected events and provides the possibility to transfer the proposed method in a
simpler scenario.

This remainder of the paper is organized as follows. The proposed CNN is given in Section 2,
which illustrates the proposed architecture and the main scheme of the kernel module used in the
convolution layers. The experimental results of the proposed model compared with different depths,
time windows, optimization algorithms and other state-of-the-art methods are given in Section 3.
Section 4 summarizes the conclusions of this work.

2. The Proposed Deep CNN Architecture

As presented in Figure 2, the deep learning architecture proposed consisted of the convolution
layers, pooling layers and the fully-connected layer. Firstly, the normalized sensor data with the time
window was directly used as input to the CNN, and then the feature maps were increased. Secondly,
the convolution layer which was characterized by the kernel module was utilized for feature extraction
and the down sampling scheme was operated by the pooling layer. Thirdly, the dimension reduction
was performed before the fully connected layer, and then the feature mapping was implemented at the
fully connected layer.
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Figure 2. The flowchart of the proposed architecture. 
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to let the CNN automatically learn to select the size of the kernel. The selected kernels are one-
dimensional because feature extraction is mainly performed in the time dimension. The size of the 
kernel in the module should be adjusted according to the size of the input data, which means the size 
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2.1. The Kernel Module

The CNN previously used in prognostics contains only convolution kernels of the same size.
However, the field of vision extracted by a small-sized kernel could be smaller, and a larger-sized
kernel may ignore the details. Hence, different sizes of kernels can be used in each convolution
layer to let the CNN automatically learn to select the size of the kernel. The selected kernels are
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one-dimensional because feature extraction is mainly performed in the time dimension. The size of the
kernel in the module should be adjusted according to the size of the input data, which means the size
of the kernel cannot be larger than the size of the input data for the module in the time dimension.
Each convolution layer is characterized by the kernel module which is composed of kernels with
different sizes. The padding method was “SAME”. The kernel module is illustrated in Figure 3.
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The Lth layer is assumed to be the convolution layer which can be denoted as:

xL
j = f(

∑
i∈ML−1

xL−1
i × f L

j + bL
j ), (1)

where xL
j is the jth feature map of the output on the Lth layer, xL−1

i is the ith feature map of the output

on the L-1th layer, ML−1 is all the feature maps of the output on the L-1th layer, f L
j is the jth kernel on

the Lth layer, bL
j is the jth bias on the Lth layer.

The 1 × 1 convolution kernel can be used in front of the other kernels as the bottleneck to directly
reduce the computational burden of the convolution layer, which is explained in the next subsection.

2.2. The 1 × 1 Kernels

The 1 × 1 convolution kernel was proposed firstly by Szegedy et al. [25], which has two functions.
Firstly, by adding the 1 × 1 kernels in front of other kernels in the kernel module, the computational
cost can be reduced. The total number of multipliers is the number of multipliers that need to be
calculated for each of output values times the number of output values. As illustrated in Figure 4,
two techniques are given for inputting n1 × n2 × f1 and outputting n1 × n2 ×m1, the first method is
to use only s× 1 convolution kernels, and an alternative architecture is to use the 1× 1 convolution
kernels and then the s× 1 convolution kernels.
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The total number of multipliers for the first technique tm1 and the second technique tm2 can be
calculated by

tm1 = n1 × n2 ×m1 × s× f1,
tm2 = n1 × n2 ×m2 × f1 + n1 × n2 ×m1 × s×m2,

(2)

where m2 represents the number of feature maps after the 1× 1 kernels.
If tm1 > tm2, then

(m1/m2 −m1/ f1) > 1/s, (3)

hence, the computational load can be reduced.
The second function of the 1 × 1 kernel is to change the number of feature maps and implement

linear combination of multiple feature maps. The input data is processed by the 1 × 1 kernel, and then
the number of the feature maps is increased, providing the convolution layer with the data for
feature extraction. In addition, the 1 × 1 convolution kernel is used for dimension reduction before
the fully-connected layer, which can further enhance the correlation between the extracted features
and RUL.

2.3. The Proposed Network

The proposed deep convolution neural network is shown in Figure 5. The depth of the network is
determined by the convolution-pooling layer or convolution layer. The pooling layer is used to reduce
the dimensions and does not need to perform complex matrix operations or learn any parameters.
The size of the kernel in the pooling layer is 2 × 1, and the stride is 2 × 1. The pooling method is
‘VALID’ max pooling and the size of input data will be halved in the time dimension through the
pooling layer. Finally, the fully-connected layer maps the features learned by the CNN to the output
through converting three-dimensional data into one-dimensional.
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The input data is three-dimensional and is expressed by T × S × F, where T is the length of the
TW, S is the sensor data and F is the number of feature map (the input data contains only one feature
map). The normalized data for T consecutive time cycles is directly used as input to the CNN. As the
depth of the model increases, the number of convolution kernels after the 1 × 1 kernels in each layer is
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doubled until the input of the Lth layer is less than six in the time dimension, and the pooling layer
will no longer be included in the layer and subsequent layers. If the pooling layer for the input data
less than six is used again, only the 1 × 1 convolution kernel can be used in the next layer, which is
only an increase in the number of feature maps rather than feature extraction. The number and size of
the convolution kernels in the subsequent layers will be the same as the Lth layer. Before other kernels,
the number of 1 × 1 kernels is half that of other kernels to satisfy Equation (3), while the first layer is
different. This is because the number of the initial 1 × 1 kernels before the first convolution-pooling
layer is half of other kernels in the first layer, so the number of the 1 × 1 kernels before other kernels is
set to one quarter of other kernels in the first layer as the bottleneck to reduce the parameters. Note that,
the maximum size of the kernel in each layer should be less than or equal to the time dimension of the
input data in that layer.

Here is a concrete example, when the TW size was set to 30, the number of different kernels is
presented in Table 1. Due to the dimensionality reduction of the pooling layer, the input size of the
third layer was 7 × S × 160, so the kernel module in this layer removed the 9 × 1 kernels. Similarly,
only 1 × 1 and 3 × 1 convolution kernels were used in the fourth and subsequent last layers, and no
pooling layers were added.

Table 1. The number of different kernels in each layer (time window 30).

Layers Input Output
The Number of the Different Kernels

- 1 × 1 1 × 1 1 × 1 1 × 1
Sum1 × 1 3 × 1 5 × 1 7 × 1 9 × 1

First convolution–pooling layer 30 × S × 8 15 × S × 80
- 4 4 4 4

16 16 16 16 16 80

Second convolution–pooling layer 15 × S × 80 7 × S × 160
- 16 16 16 16

32 32 32 32 32 160

Third convolution–pooling layer 7 × S× 160 3 × S × 256
- 32 32 32 -

64 64 64 64 - 256

Fourth convolution layer 3 × S × 256 3 × S × 256
- 64 - - -

128 128 - - - 256

Subsequent layers 3 × S × 256 3 × S × 256
- 64 - - -

128 128 - - - 256

3. Experiment and Analysis

3.1. Experimental System

NASA C-MAPSS dataset generated by the aircraft engine simulation models is often used for
comparison of different approaches [29]. The C-MAPSS dataset contains four sub-datasets that
correspond to different simulation conditions and engine failure modes. Each sub-dataset has one
training set and one testing set. The training set contains temporal data of 21 outputs of the aircraft
engine simulation model from the unknown state of the model to the stage of failure. These 21 outputs
include diverse types of data such as temperature data, speed data and pressure data at different
positions of the engines, etc. The information of the C-MAPSS dataset is given in Table 2. The failure
modes of FD001 and FD002 are only high-pressure compressor (HPC) degradation, while the failure
modes of FD003 and FD004 include high-pressure compressor degradation and fan degradation.
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Table 2. Information of NASA C-MAPSS dataset.

Sub-Dataset FD001 FD002 FD003 FD004

Engine models for training 100 260 100 249
Engine models for testing 100 259 100 248

Simulation conditions 1 6 1 6
Fault modes 1 1 2 2

As shown in Table 3, only 14 sets among the 21 outputs were selected for the study, the others
were constant during the life of the engines from health to failure and did not provide any valuable
information for RUL prediction [23]. Therefore, as shown in Table 3, 14 sets of time-varying variables
with indices 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20 and 21 were selected in the study. The state of the
aircraft engine was healthy during the early operation period. In the initial stage, it was assumed that
the RUL of the aircraft engine was a constant value. Based on the degradation mechanism of aircraft
engines in this dataset [23], the constant value of RUL in the early stage was set to 125 in this paper.

Table 3. The selected time-varying variables.

The Selected Time-Varying Variables Units

Total temperature at LPC outlet ◦R
Total temperature at HPC outlet ◦R
Total temperature at LPT outlet ◦R
Total pressure at HPC outlet psia
Physical fan speed rpm
Physical core speed rpm
Static pressure at HPC outlet psia
Ratio of fuel flow to Ps30 pps/psi
Corrected fan speed rpm
Corrected core speed rpm
Bypass ratio –
Bleed enthalpy –
HPT coolant bleed l bm/s
LPT coolant bleed l bm/s

3.2. Experimental Setup

3.2.1. Data Pre-Processing

In the CNN, the characteristics of relatively smaller values will be weakened, and the characteristics
of relatively larger values will be amplified. To eliminate the problems caused by different numerical
ranges, the data need to be standardized. The zero-mean normalization method was used in this paper,
which is denoted as:

TRAINi
j =

traini
j − µ

i
train

σi
train

, (4)

where TRAINi j represents the normalized value of the jth data point from the ith sensor in a training
sample, traini j represents the true value of the jth data point from the ith sensor, µi

train represents the
mean of the ith sensor and σi

train represents the standard deviation.
At the same time, the standardization of data in the testing set should be based on the mean

and standard deviation of the training set, so that the impact of future data on the current model can
be avoided.

3.2.2. Time Window Processing

Many multivariate temporal data-based prediction models take as an input a multivariate data
point sampled at a single time stamp, which neglects some useful temporal information that may
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much improve prediction performance [23]. Therefore, the TW is introduced to solve this problem.
Specifically, at any particular timestamp, TW covers the data of the current timestamp and its several
preceding timestamps, which is then fed as an input into the prediction model [23]. In this study, the
effect of the TW size on the prediction results was considered.

3.2.3. Training Process

The models were trained ten times to reduce the fluctuations in the training process. The constant
value of RUL in the early stage was 125, the number of 1 × 1 kernels after the input layer was
8, the number of 1 × 1 kernels before the fully-connected layer and the number of neurons in the
fully-connected layer was 64 and 800, respectively. The dropout rate was set to 0.5 and the activation
function was ReLU. The training parameters are presented in Table 4.

Table 4. Training parameters.

Sub-Dataset FD001 FD002 FD003 FD004

Length of the TW 10/20/30 20 30 15
Training samples 19731/18731/17731 48,819 21,820 57,763

Batch size 760/721/682 2220 809 1992
Epoch number 40 40 30 50

The relationship between batch size, iteration and epoch can be expressed as

one epoch = number of iterations
=

⌈
total samples/batch size

⌉ (5)

The loss function is defined as follows

Loss =

√√√
1

Nb

Nb∑
i=1

h2
i , (6)

where Nb is the number of the batch size and hi = RULpredicted −RULtrue.
The loss function was minimized during the training process using the Adam optimization

algorithm and the parameters of the model were saved. Experiments were run on a personal computer
with Intel Core i7-8700 CPU, 16GB memory and GTX 1080 Ti GPU. The programming language was
Python 3.6 with scientific computing library numpy and deep learning library tensorflow-gpu.

3.2.4. Evaluation Functions

There are mainly two kinds of evaluation functions for this dataset. One evaluation function gives
different weights to the late predictions and early predictions, and the other is that the weights for both
conditions are the same.

The first type of evaluation function [29] is shown in Equation (7), where N represents the number
of aircraft engines in the testing set.

S =


N∑

i=1
(e−

hi
13 − 1) hi < 0

N∑
i=1

(e
hi
10 − 1) hi ≥ 0

. (7)

The scoring function is asymmetric, which penalizes late prediction (i.e., the estimated RUL value
is larger than the actual RUL value) more heavily than early prediction (i.e., the estimated RUL value
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is smaller than the actual RUL value) since late prediction may result in more severe consequences [23].
The second type of evaluation function can be expressed as

RMSE =

√√√
1
N

N∑
i=1

h2
i . (8)

Root mean square error (RMSE) has the same weight for early predictions and lag predictions.

3.3. Performance Analysis

In this section, the performance of the proposed deep learning architecture for prognostics is
presented. In addition, extensive experiments were performed to investigate the impact of key factors
on the results, including the depth of the model and the size of the time window, as well as different
optimization algorithms. Compared with the state-of-the-art results on the C-MAPSS dataset, the
prediction results demonstrated the superiority of the proposed network.

3.3.1. Performance of the Results

The trained model was used to predict the RUL of different aeroengines in the testing set.
The testing set FD001, FD002, FD003 and FD004 contain 100, 259, 100 and 248 sets of aircraft engine
simulation data from the unknown state of t1 to the unknown state of t2 respectively, and each set of
simulation data is truncated to obtain T consecutive cycles data of the aeroengine. The testing set also
gives the actual RUL of aeroengines at t2 to verify the effectiveness of the algorithm. Then, the testing
data of T consecutive time cycles is used to predict the RUL of the aeroengine in the unknown state
of t2.

Overall, the models achieved accurate results for the prediction of the RUL of aircraft engines
in the testing set. Based on the two evaluation functions, Table 5 presents the performance of the
trained models on the testing set. The model was trained ten times. Using RMSE as the evaluation
function, the model performed best in the FD001 testing set, with a mean score of 12.18, while the
model performed the worst in FD004 with a mean score of 22.12. It can be seen from Figure 6 that
the prediction results of the FD001 and FD003 were better than those of the FD002 and FD004 due to
the multiple simulation conditions of FD002 and FD004. At the same time, the prediction result of
the algorithm for FD001 was better than that of FD003, because the failure mode of FD003 included
high-pressure compressor degradation and fan degradation, while the failure mode of FD001 was only
high-pressure compressor degradation.

Table 5. The performance of the model (std: standard deviation).

Sub-Dataset FD001 FD002 FD003 FD004

RMSE (mean) 12.18 19.58 15.67 22.12
RMSE (std) 0.31 0.27 0.46 0.47
RMSE (best) 11.77 19.24 14.97 21.32
RMSE (worst) 12.67 20.29 16.16 22.74
S (mean) 224.16 2494.35 1279.85 4523.32
S (std) 23.08 264.54 245.31 809.26
S (best) 200.55 2118.57 865.06 3268.99
S (worst) 261.69 3012.73 1620.35 6163.57
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Figure 6. Comparison between the score of the first evaluation function (S) and root mean square error
(RMSE) when the number of aircraft engines (N) is set to 1.

Figure 7 shows the prediction results of the model. For FD001, the model used had seven layers
and the size of the time window was selected as 30. For FD002, the model used had three layers and
the size of the time window was selected as 20. For FD003, the model used had three layers and the
size of the time window was chosen to be 30. For FD004, the model used had two layers and the size
of the time window was selected as 15.
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Since the testing set gives the actual RUL of the aeroengines in the unknown state of t2, the RUL
of aeroengines from t1 to t2 can be obtained from this value, e.g., the RUL at time t1 is the actual RUL
at time t2 plus t2 − t1. The function to calculate the RUL from t2 to t1 can be expressed as

actualRUL at t = (actualRUL at t2) + ( t2− t), (9)

where t1 + N ≤ t < t2.
When the time window is selected as N, the RUL of aircraft engines from t1 + N to t2 can be

predicted. Figure 8 shows the predicted results from t1 + 30 to t2 of two randomly selected aeroengines
in the FD001 testing set. The RUL prediction values for the No. 17 and No. 24 aeroengines at time t2

corresponding to the predicted results in Figure 7. In Figure 8, the yellow dashed box represents that
the RUL of the aeroengine was a constant value of 125 at the initial stage of aeroengine operation. The
predicted result of the No. 17 aeroengine was slightly lower than the actual value at the beginning,
but the error was small. With the increasement of the time cycle, the result was more accurate. The
predicted result of RUL of the No. 24 aeroengine had slight fluctuations at the initial stage. As the time
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cycle increased, the predicted and actual values became very close and eventually the more accurate
result was obtained.
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3.3.2. Effects of the Depth and Time Window

As for the models applied to the FD001 dataset, the depth of the network would be gradually
increased from one to eight while other parameters remained unchanged to explore the influence of
the depth of the CNN on the results. At the same time, the effect of the size of the TW on the results is
also discussed.

With the evaluation function RMSE as a criterion, Figure 9a depicts the prediction results of
models with different time windows and depths. When the size of the TW was selected as 10, the value
of RMSE grew gradually to 17.64 at the five layers, after which it fluctuated between 17.55 and 17.92.
For the algorithm with the TW of 20, the value of RMSE fluctuated between 15.61 and 16.48 from one
layer to eight layers, ending at 16.32. Regardless of the TW of 10 or 20, the prediction accuracy of the
model did not get better as the depth of the neural network increased. However, when the TW was set
to 30, the performance of the model became better as the depth of the layer increased. The increase in
the depth of the model after seven layers could not lead to the improvement of the result and would
have increased the burden on the network. In this experiment, the seven-layer model with the TW 30
achieved the best result in the FD001 testing set.
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Figure 9a shows that the increase of the TW could improve the prediction result because the
larger time window meant that more raw information could be covered, which could better reflect
the degradation of the aircraft engines [27]. However, the TW could not be increased indefinitely,
the maximum allowable TW was determined by the smallest operating cycles present in the testing set.
For example, for an engine with an operating history of 20 cycles, it was impossible to create a time
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window of 30 cycles [22]. Therefore, the TWs selected for FD001, FD002, FD003, and FD004 were 30,
20, 30 and 15, respectively.

As shown in Figure 9b, for the FD002 dataset, as the depth of the model increased from one to three,
the prediction accuracy was improved, but if the depth of the model further increased, the prediction
result would fluctuate. For the FD003 and FD004 datasets, as the depth of the corresponding model
increased, the optimal prediction results were obtained when the third layer and the second layer
were respectively reached. If the model depth was continuously increased, the prediction result of the
model would fluctuate and increase computational costs.

3.3.3. The Effect of the Optimization Algorithms

An appropriate optimization algorithm is crucial for the prediction results, which can further
improve the prediction accuracy. The optimization algorithm has the effects of damping out the
oscillations in the gradient descent. In the field of deep learning, optimization algorithms such as
Adagrad, Adadelta, RMSprop and Adam are often used for gradient descent. This paper studied the
effect of these algorithms on the prediction results. In this set of comparative experiments, the size of
the TW was set to 30, and the depth of the deep CNN was seven for the FD001 dataset.

Table 6 presents that Adam had the lowest score with the best performance, while the other
algorithms spent more computational costs with higher score. The RMSE of Adam and Adagrad were
almost the same, and RMSprop had the largest standard deviation. The learning rate of 0.001 was
appropriate to Adam, Adagrad and RMSprop. The reduction of the learning rate will cause the training
time to increase, and the larger value of the learning rate will cause the result to oscillate. However,
the learning rate of 0.001 was too slow for Adadelta algorithm to converge, so the learning rate of
the Adadelta was set to 0.01. According to the time spent in the training process, Adam algorithm
ran on the GPU for the shortest time, with the average running time of 72.56s. While the learning
rate was increased, the Adadelta algorithm took the longest time on the GPU and cost 621.15s. Adam
combines the advantages of Adagrad and RMSprop, having the ability to handle sparse gradients
and deal with non-stationary targets. Therefore, from the results of the computational cost and the
evaluation function, Adam was the optimal gradient descent algorithm.

Table 6. Computational cost and result.

Optimization
Algorithms Learning Rate Epoch Number RMSE (Mean) RMSE (Std) GPU Time (s)

Adam 0.001 40 12.18 0.31 72.56
Adagrad 0.001 150 12.22 0.24 303.49
Adadelta 0.01 300 12.34 0.12 621.15
RMSpro 0.001 50 13.89 0.69 102.16

3.3.4. Comparing with Related Works

This paper used all the sub-datasets in the NASA C-MAPSS dataset. Some literature has only
reported results on the FD001 dataset in terms of RMSE, but in order to fully evaluate the effectiveness
of the model, the results of all four sub-datasets were given. In this section, the performance of the
proposed method is compared to other state-of-the-art methods reported in the literature.

As shown in Table 7, the proposed models outperformed the existing prediction models in the
datasets except for FD003. There are two failure models of FD003, therefore the network proposed
in this paper had relatively weak learning ability in this sub-dataset, but it was still better than the
results in References [23,28]. FD002 and FD004 correspond to complex simulation conditions, and have
more practical significance. The method proposed in this paper achieved better results than the
previous methods on these two datasets. The RUL prediction was based on health indicators in
References [17,19], and these two methods were only validated on FD001. Compared with these two
methods, the proposed network reduced the score on FD001 by 17.64 and 0.63, respectively. A similar
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study, which was published in Reference [27] and achieved the best results on the C-MAPSS dataset in
published papers, were selected to be compared with our method. However, the shortage of this method
was that it selected a specific kernel artificially. Therefore, the performance of this method was worse
than the proposed method in terms of FD001, FD002 and FD004 datasets. In addition, the proposed
network showed its superiority over the other time window-based methods in References [22,23,28].

Table 7. Performance of various methods on the C-MAPSS dataset (RMSE).

Approach FD001 FD002 FD003 FD004 Constant Value of RUL in
the Early Stage

Support vector machine [17] 29.82 N/A N/A N/A Not applied
First attempt of CNN [28] 18.45 30.29 19.82 29.16 130

Random forest [23] 17.91 29.59 20.27 31.12 Not applied
Gradient boosting [23] 15.67 29.09 16.84 29.01 Not applied

ANN [22] 15.16 N/A N/A N/A Not provided
MODBNE method [23] 15.04 25.05 12.51 28.66 Not applied

LSTM [19] 12.81 N/A N/A N/A 125
CNN with time window [27] 12.61 22.36 12.64 23.31 125

Proposed method 12.18 19.58 15.67 22.12 125

4. Conclusions

The traditional health indicator-based methods need the long-term tracking of the signals,
which are laborious and time-consuming. A novel CNN based on the time window was proposed to
tackle this issue. Additionally, the kernel module was constructed, which can let the network learn to
select the kernels automatically. The effectiveness of the proposed network was demonstrated using
the C-MAPSS dataset. The main contributions of this paper are as follows:

(1) The raw industrial sensor signals were standardized and transmitted to the network for RUL
prediction without long-term tracking and constructing HIs that relied on signal processing expertise.

(2) A novel kernel module composed of one-dimensional convolutional kernels of different sizes
was proposed for feature extraction in time series.

(3) The 1×1 convolutional kernel was introduced to handle the multiple channels in the
kernel module.

However, some limitations still existed in the presented methods. For example, the networks for
each sub-dataset were trained and evaluated separately. Besides, the C-MAPSS dataset was created
by simulation models in controlled environments. The real world has many uncontrollable events,
which should be considered further.
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