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Abstract: We evaluated electrocardiogram (ECG) biometrics using pre-configured models of 

convolutional neural networks (CNNs) with various time-frequency representations. Biometrics 

technology records a person's physical or behavioral characteristics in a digital signal via a sensor 

and analyzes it to identify the person. An ECG signal is obtained by detecting and amplifying a 

minute electrical signal flowing on the skin using a noninvasive electrode when the heart muscle 

depolarizes at each heartbeat. In biometrics, the ECG is especially advantageous in security 

applications because the heart is located within the body and moves while the subject is alive. 

However, a few body states generate noisy biometrics. The analysis of signals in the frequency 

domain has a robust effect on the noise. As the ECG is noise-sensitive, various studies have applied 

time-frequency transformations that are robust to noise, with CNNs achieving a good performance 

in image classification. Studies have applied time-frequency representations of the 1D ECG signals 

to 2D CNNs using transforms like MFCC (mel frequency cepstrum coefficient), spectrogram, log 

spectrogram, mel spectrogram, and scalogram. CNNs have various pre-configured models such as 

VGGNet, GoogLeNet, ResNet, and DenseNet. Combinations of the time-frequency representations 

and pre-configured CNN models have not been investigated. In this study, we employed the PTB 

(Physikalisch-Technische Bundesanstalt)-ECG and CU (Chosun University)-ECG databases. The 

MFCC accuracies were 0.45%, 2.60%, 3.90%, and 0.25% higher than the spectrogram, log 

spectrogram, mel spectrogram, and scalogram accuracies, respectively. The Xception accuracies 

were 3.91%, 0.84%, and 1.14% higher than the VGGNet-19, ResNet-101, and DenseNet-201 

accuracies, respectively. 

Keywords: deep learning, pre-configured model, convolutional neural network, time-frequency 

representation, electrocardiogram, biometrics 

 

1. Introduction 

Biometrics technology records a person’s physical or behavioral characteristics in a digital signal 

via a sensor and analyzes it to identify the person. Traditionally, names, passwords, and physical 

keys have been used to identify a person; however, these methods are vulnerable to convenience and 

security. Intellectually inferior children, people with disabilities, and patients might face difficulties 

in saying their names and might lose the keys. This could also apply in general to all people. However, 

children, dementia patients, and people with disabilities should be able to check their identities and 

have no fear of losing the keys, as the biometrics employ signals sourced from the body. Biometrics 

offer great convenience to human lifestyles throughout society. Considering the security 

requirements of any company/organization, biometrics automatically permit access only to those 
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whose identities have been verified. It also allows the automatic authorization of cash settlements or 

remittances even on online platforms [1–7]. 

Several characteristics of the body have been studied in the field of biometrics such as the face 

[8], fingerprints [9], iris [10], and others [11–16]. Face recognition normally uses color images captured 

from an RGB sensor. As face recognition using a camera can simultaneously acquire multiple face 

data from several people, it can be used in environments requiring parallel recognition such as when 

searching for missing persons. However, this would require the subject to be identified/recognized 

and the camera to face in a certain direction. Furthermore, the recognition rate is much lower and 

vulnerable to external physical obstructions if the subject to be recognized is far away. Fingerprint 

recognition can be implemented with high precision by touching the sensor easily with one hand. 

However, several attempts might be required until the identity is successfully established, as it is 

practically difficult to generate training data and perform recognition with limited data. Additionally, 

the hands tend to be highly exposed to pollution, face disadvantages such as having to take off gloves 

to access one’s smartphone at a cold ski resort, and face the possibility of fingerprint duplication or 

loss. Iris recognition makes it impossible to counterfeit identity and has a high recognition rate. 

However, it is troublesome to position the face near the sensor to acquire the data. The cost of building 

the iris recognition system is also higher. 

An electrocardiogram (ECG) is obtained by detecting and amplifying a minute electrical signal 

flowing on the skin using a noninvasive electrode when the heart muscle depolarizes at each 

heartbeat [17]. ECGs are generally used to measure the heart rate consistency, size, and location of 

the heart to detect any damage and effects of devices or medications used to regulate the heart such 

as pacemakers. This is possible as the ECG depends on the state and geometry of the body including 

the weight, height, and comport. The ECG can be used for biometrics due to the complex state and 

geometry of the body. In biometrics, the ECG is especially advantageous in security applications 

because the heart is located within the body and moves while the subject is alive. However, a few 

body states generate noisy biometrics. The geometry of the body temporarily changes when the 

subject receives an external impact due to movement, which changes the physical forces on the heart 

to generate a noisy ECG signal [17,18]. 

The analysis of signals in the frequency domain has a robust effect on the noise. Several studies 

have investigated the frequency domain of the ECG signal. Chen [19] investigated a fast ECG 

diagnosis technique using a frequency-based compressive neural network, wherein the raw signal 

was transformed to the frequency domain by dividing the time domain data into several windows. 

Feature extraction was applied to the ECG signal in the spectral domain, and diagnosis was 

performed using a frequency-based compressive neural network. Akdeniz [20] detected ECG 

arrhythmia using a large Choi–Williams time-frequency feature set. The Choi–Williams time-

frequency transform was used for feature extraction, and several algorithms such as SVM (support 

vector machine) and k-NN (k-nearest neighbor) were compared. Sharma [21] studied a joint time-

frequency domain based coronary artery disease sensing system using ECG signals. The signal was 

converted to a time-frequency representation using an improved eigenvalue decomposition of the 

Hankel matrix and Hilbert transform. The time-frequency based features were computed, and these 

features were classified using the random tree and J48 decision tree. Zhao [22] studied noise rejection 

for wearable ECGs using the modified frequency slice wavelet transform and convolutional neural 

networks. The modified frequency slice wavelet transform was used to generate spectrograms, which 

were classified using a convolutional neural network (CNN). Aviña-Cervantes [23] evaluated the 

frequency, time-frequency, and wavelet analysis of an ECG signal. The Fourier transform, 

autoregressive moving average, multiple signal classification, short term Fourier transform, Choi–

Williams, Wigner–Ville, and wavelets were considered to compare the segmentation of the QRS 

complex which is the combination of three of the graphical deflections seen on a typical ECG. 

The deep learning network is a neural network that has several to several hundred hidden layers, 

in contrast to one or two hidden layers in existing neural networks. The many hidden layers enable 

the neural network to solve problems of various complexities, which cannot be solved using only a 

few hidden layers. A CNN is a deep learning network that has shown good performance in image 
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based applications. A CNN is a neural network that combines both feature extraction and 

classification. Several ECG biometrics based on the CNN have been studied. Zhang [24] studied 

single arm ECG biometric human identification using deep learning. Images projected from the 

trajectory of the ECG were used to train the CNN. Luz [25] evaluated the deep learning of off-the-

person heart biometrics representations. Two CNNs were trained using the raw signal and its 

spectrogram for feature extraction, where both features were classified by the distance measure. 

Finally, the scores were fused using the fusion rule. Deshmane [26] studied ECG based biometric 

human identification using CNNs in smart health applications. Fiducial points were detected from a 

raw signal, and the distances between these points were calculated. The distances were input in the 

SVM, k-NN, and CNN, and their performances were compared. Wu [27] studied personal identity 

verification based on a CNN. An ECG signal composed of 3600 samples in 10 s was converted to a 60 

× 60 grayscale image, which was used to train a CNN. Various other studies have focused on the ECG 

biometrics using CNNs.  

As the ECG is noise-sensitive, various studies have applied time-frequency transformations that 

are robust to noise, with the CNNs achieving a good performance in image classification. Various 

studies have applied time-frequency representations of 1D signals to CNNs using transforms such as 

MFCC (mel frequency cepstrum coefficient), spectrogram, log spectrogram, mel spectrogram, and 

scalogram. CNNs have various pre-configured models such as VGGNet [28], Xception [29], ResNet 

[30], and DenseNet [31]. These time-frequency representations are normally used in signal processing 

such as voice and sound and have reported improvement of performance such as in a noisy 

environment. The signal is changed to a 2D representation by time-frequency analysis, and the 2D 

representation is considered as an image. Among recent literature works, the CNNs has reported 

good performance in image classification. In ECG signals, it is necessary to find out whether the 

combination of time-frequency representation and CNN is significant enough to be applied to 

personal identification. The combinations of the time-frequency representations and pre-configured 

CNN models have not been investigated. In this study, we employed the PTB (Physikalisch-

Technische Bundesanstalt)-ECG and CU (Chosun University)-ECG databases. The MFCC accuracies 

were 0.45%, 2.60%, 3.90%, and 0.25% higher than the spectrogram, log spectrogram, mel spectrogram, 

and scalogram accuracies, respectively. The Xception accuracies were 3.91%, 0.84%, and 1.14% higher 

than the VGGNet-19, ResNet-101, and DenseNet-201 accuracies, respectively. 

In this paper, we evaluated ECG biometrics using pre-configured models of the CNN with 

various time-frequency representations. Section 2 describes various deep models of the 2D CNN. 

Section 3 discusses the ECG biometrics evaluated using pre-configured models of the CNN with 

various time-frequency representations. Section 4 presents the experimental results, and Section 5 

summarizes the conclusions. 

2. Deep Models of the 2D CNN 

2.1. VGGNet 

VGGNet was awarded second place in the ILSVRC (ImageNet Large Scale Visual Recognition 

Competition) 2014 competition. As VGGNet has a simple structure, it is more widely used than 

GoogLeNet, which was awarded first place. VGGNet uses a small filter size of 3 × 3 for convolution 

as opposed to various other neural networks that employ relatively large convolution filters. The 

model becomes more discriminating as the nodes are activated with ReLUs following convolution 

using a 1 × 1 filter. Additionally, a small sized filter only has a few parameters required/necessary for 

learning, which improves the learning speed. VGGNet has max pooling layers with a 2 × 2 filter size, 

two fully connected layers with 4096 nodes, and one fully connected layer with 1000 nodes. Instead 

of using one large filter, two successive 3 × 3 convolutions and three successive 3 × 3 convolutions 

have the same effect as 5 × 5 and 7 × 7 convolutions, respectively. By doubling the number of 

convolution filters after each max pooling layer, the depth of the neural network increases as the 

spatial dimension decreases. VGGNet was originally built to assess the error response to the depth 

of a neural network. VGGNet has models with depths of 8, 11, 13, 16, and 19. As the depth of the 
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neural network increased, the errors decreased until 19 and subsequently increased. VGGNet used 

scale jittering as a data augmentation for learning. This was learned using batch gradient descent [28]. 

Figure 1 shows the structure of VGGNet with the time-frequency representations as inputs. In the 

L@M × N notation, L, M, and N represent the size of the feature map and rows and columns of the 

filter, respectively. 

 

 

Figure 1. Structure of VGGNet with the time-frequency representations as inputs. 

2.2. ResNet 

Deep layers in a deep neural network cause problems that interfere with learning such as the 

vanishing gradient, exploding gradient, and degradation. A vanishing gradient implies that the 

gradient becomes too small as it progresses through many layers, while the exploding gradient 

implies that the gradient becomes too large as it progresses through many layers. Degradation means 

that a simple shallow neural network performs better than a complex deep neural network. The input 

of the previous layer is used to calculate the output of the next layer. The input of the previous layer 

is reused by adding it to the output of the next layer. This method is known as a skip connection, and 

the learning proceeds until ReLU (W×X) converges to zero. Thus, the output Y has a value similar to 

the input X to enable the number of layers in the skip connection to be arbitrarily specified. This 

method reduces the vanishing gradient and allows small changes in the input to be delivered to the 

output. ResNet is thus built by being deeply stacked with many layers using the skip connection. 

ResNet performs convolution with 3 × 3 filter sizes similar to VGGNet [28] and uses convolutions 

with two strides, without pooling and dropout. ResNet is applied using skip correlation for every 

two convolutions [30]. Figure 2 shows the structure of ResNet with the time-frequency 

representations as inputs. 

  

Figure 2. Structure of ResNet with the time-frequency representations as inputs. 
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2.3. DenseNet 

The structure of a general neural network represents a sequential list of convolution, pooling, 

and a fully connected layer. Unlike a general neural network, DenseNet solves the problem of 

degradation using a dense connectivity as shown Equation 1. DenseNet has approximately twelve 

filters per layer and applies a dense connectivity to attach the output of the previous layer to the 

current layer to build feature maps in succession. Thus, the information from the initial layer is 

effectively transferred to the later layer. This allows all feature maps within the neural network to be 

entered into the final classifier, which includes features created in the middle layers. The network is 

designed to learn enough while reducing the total number of parameters. The dense connection 

functions as a regularization, which minimizes overfitting even when small sets of data are used for 

learning. DenseNet is designed by dividing the entire neural network into several dense blocks and 

placing feature maps of the same size in each dense block. A transition layer consisting of batch 

normalization, a convolution layer, and an average pooling layer is applied. A method to reduce the 

computational complexity using a bottleneck structure is applied. In the last section of the neural 

network, a global average pooling is used instead of a fully connected layer. DenseNet was trained 

using the stochastic gradient descent algorithm [31]. Figure 3 shows the structure of DenseNet with 

the time-frequency representations as inputs. 

xm = Hm([x0, x1, … , xm]) (1) 

 

 

Figure 3. Structure of DenseNet with the time-frequency representations as inputs. 

2.4. Xception 

Xception is based on an inception. It retrieves the relationship between the channels separately 

from the local information retrieval of the images. Xception is performed on every channel using a 

depthwise separable convolution, and the output is projected to a new channel space via convolution 

with a 1 × 1 filter size. Conventional convolution generates one feature map considering the local 

information and channels. In contrast, depthwise convolution generates one feature map for each 

channel and reduces the number of feature maps via convolution with a 1 × 1 filter size. Pointwise 

convolution employs a 1 × 1 filter size. In Inception, the convolution is followed by a nonlinear 

function. In the depthwise separable convolution, the first convolution need not have a subsequent 

nonlinear function. Xception consists of 36 convolutions in 14 modules for feature extraction. All 

modules except the first and last have linear residual connections. Xception is designed by linearly 
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stacking the modules using depthwise separable convolution and residual connections [29]. Figure 4 

shows the structure of Xception with the time-frequency representations as inputs. 

 

 

Figure 4. Structure of Xception with the time-frequency representations as inputs. 

3. ECG Biometrics using Pre-Configured CNN Models with Various Time-Frequency 

Representations 

3.1. Preprocessing 

The ECG signal is noise-sensitive and could be contaminated by low band frequency noises as a 

person moves through the muscles and high band frequency noises generated by the electrical source 

used to operate the ECG equipment [32]. Low band frequency noise can be reduced by applying an 

average convolution with a filter size of 500, while high band frequency noise can be reduced by 

applying an average convolution with a filter size of 10. As the average convolution is performed to 

distort the beginning and end of the signal, these parts are discarded, and the R peak points are 

subsequently detected. The data are configured by segmenting the signal to be centered on the R peak 

point, with only the lead I of the ECG used for the experiment. 

3.2. Time-Frequency Representations 

Five time-frequency representations are considered here to compare the ECG biometrics, namely 

the spectrogram [33], log spectrogram, mel spectrogram [34], MFCC [35,36], and scalogram [37]. The 

spectrogram used in this study is based on the short time Fourier transform (STFT). STFT is used to 

determine the sinusoidal frequency and phase by dividing a signal that changes over time into several 

regional sections. In practice, STFT splits a long time signal into shorter segments of equal length and 

subsequently applies the Fourier transform to each segment. For example, in the case of continuous 

time, the signal to be transformed is multiplied by a non-zero window function over a short period. 

The Fourier transform of the signal is then calculated by sliding the window along the time axis, 

which results in a two-dimensional representation of the signal. Mathematically, this can be 

expressed as Equation 2 [33]. 

X(τ, ω) = ∫ x(t)w(t − τ)e−jωtdt
∞

−∞

 (2) 
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The log spectrogram and mel spectrogram are log scaled and mel scaled versions of the 

spectrogram based on STFT. The log scale and mel scale have been famously used for voice 

applications because they emphasize the low band frequency relevant for voice analysis and 

deemphasize the high band frequency noise. ECG contains important information in the low band 

frequency [34]. The log scale and mel scale transforms can be mathematically expressed as Equation 

3 and 4, with the scale mappings of the log and mel transforms shown in Figure 5. 

y = log⁡(x) (3) 

m = 2595⁡log⁡(1 +
f

700
) (4) 

  

(a) (b) 

Figure 5. Scale mappings of the log and mel transforms; (a) Log; (b) Mel. 

MFCC is a linear cosine transform of the log power spectrum at the nonlinear mel scale over 

short intervals of a signal. MFCC represents coefficients synthetically composed of an MFC that is 

derived from the cepstral representation of an audio clip. The normal cepstrum has linearly spaced 

frequency bands, while the mel frequency cepstrum has equally spaced frequency bands. The human 

auditory system, which is sensitive to low band frequencies, is similar to the mel frequency cepstrum. 

This frequency warping mimics the human auditory system, which is primarily sensitive to the low 

frequency band, to better represent low frequency signals such as ECGs. The process to calculate 

MFCC can be summarized as follows. Step 1: As the input signal in the time domain is constantly 

changing, it is divided into equally sized regions in a short time for simplicity. Step 2: The power 

spectrum is then calculated for each region from the divided signals. Step 3: The energies of the mel 

filter bank are calculated. Step 4: The energy values of the mel filter bank are logged. Step 5: The 

discrete cosine transform (DCT) is applied to the logged energy values. The obtained DCT coefficients 

represent MFCC, and the size of the dimension can be appropriately adjusted [36]. Figure 6 shows 

the process used to calculate MFCC. 

 

Figure 6. Process used to calculate MFCC. 
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A scalogram represents the absolute values of the coefficients obtained from the continuous 

wavelet transform of a signal. The wavelet transform is a time-frequency transform, which is more 

efficient than the cosine and Fourier transforms [38]. The Fourier transform is weak for high 

resolution applications as the analysis is performed on a single scale. In contrast, the wavelet 

transform is analyzed on a multi-scale. The Fourier transform decomposes the signal into sinusoids 

of different frequencies, which can subsequently be inversed. The wavelet transform decomposes the 

signal into shifted, scaled mother wavelets that can be inversed. In Equation 5, T(a, b) represents the 

continuous wavelet transform, wherein the signal f(t) is decomposed into the scaled or shifted 

mother wavelets of ψa,b(t). 

T(a, b) = ⁡
1

√a
∫ f(t) ∗ ψ (

t − b

a
) dt

∞

−∞

 

aϵR+ − {0}, bϵR 

(5) 

The parameters a and b can be used to adjust the scale and position of the mother wavelet. In 

this study, we employed the Morse wavelet as the mother wavelet with P2 = 60 and γ = 3. The 

generalized Morse wavelet can be expressed as Equation 6 [37]. Figure 7 shows the time-frequency 

representations. 

ΨP,γ(ω) = U(ω)aP,γω
P2

γ e−ω
γ
 (6) 

   

(a) (b) (c) 

   
(d) (e) (f) 

Figure 7. Time-frequency representation: (a) original signal; (b) MFCC; (c) spectrogram; (d) mel 

spectrogram; (e) log spectrogram; (f) scalogram. 

3.3. ECG Biometrics Using Various CNN Models 

As the ECG signals are noise-sensitive, various studies have focused on the frequency domain 

to reduce the noise in the biometrics. Different methods used to transform signals into the time-

frequency domain include the spectrogram, log spectrogram, mel spectrogram, MFCC, and 

scalogram. The time-frequency transformation of a 1D signal results in a 2D matrix, which can be 

applied to a 2D CNN. Time-frequency analysis can be used to calculate the frequency and phase of 

the signal. As the noise is mainly concentrated in a specific region of the frequency domain, the useful 

signal and noise can be independently extracted. The discriminative features might be 

narrow/restrictive due to similarities in the different ECG signals from each person. However, the 

hidden features can be visualized in the time-frequency domain by expressing the signals at various 
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scales and frequencies. The ECG data that have been transformed from 1D to 2D using the time-

frequency transform can be applied to the 2D CNN. The 2D CNN has shown good performance in 

image applications, which has led to new CNN models being proposed. The popular open source 

models include the VGGNet, ResNet, Xception, and DenseNet. Combinations of the time-frequency 

representations and pre-configured CNN models have not been investigated. In this paper, we 

evaluate ECG biometrics using pre-configured models of the CNN with various time-frequency 

representations. The PTB-ECG [39,40] and CU (Chosun University)-ECG [18] databases were used in 

this study. PTB-ECG is a popular, open access ECG dataset, while CU-ECG was directly constructed 

for this study. Figure 8 shows the ECG biometrics using various time-frequency representations. 

 

Figure 8. ECG biometrics using several time-frequency representations. 

We concentrated on the classification task. We used the accuracy as a performance measure of 

the ECG biometrics. The correct classification (CC) was divided by the total classification, i.e., the 

sum of the CC and WC (wrong classification) to obtain the accuracy [41] as shown in Equation 7. 

Accuracy = ⁡
CC

CC⁡ + ⁡WC⁡
 (7) 

4. Experimental Results 

4.1. Database 

Two databases were used to analyze the performance of the deep model for time-frequency 

representations in the ECG biometrics. The first database was PTB-ECG, which was built by the 

National Metrology Institute of Physikalisch-Technische Bundesanstalt. PTB-ECG has 27,000 

recordings, which were acquired from 290 people sitting in a comfortable state in a chair. The ECG 

data were acquired from subjects that included patients with heart disease and healthy people. The 

ECG data were acquired using twelve standard leads and three frank leads at 1000 samples/s. Two 

to three recordings of varying length from 23 s to two minutes were acquired for each person, with 

an average time difference of 500 days between any two measurements [39,40]. The second database 

was CU-ECG, which was directly constructed for biometrics at Chosun University (CU). The 

database was acquired from 100 people, which included males and females, aged 23 to 34. The ECG 

data were acquired from subjects seated in a comfortable state in a chair. Sixty ECG signals were 

recorded for each person using a short length. The data were acquired with a sampling rate of 500 

kHz for 10 s each time, with only the lead I signal recorded. The ECG acquisition equipment was 
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developed using Keysight, MSO9104, Atmega8, and non-invasive electrodes for constructing the CU-

ECG database. Figure 9 shows the environment for acquiring the CU-ECG signals [18]. 

 

 

Figure 9. Environment for acquiring the Chosun University (CU)-ECG signals. 

4.2. Experimental Results 

The experiment was performed using a computer with the following specifications: Nvidia 

GeForce GTX 1080 Ti, Intel i7-6850K central processing unit at 3.60 GHz, Windows 10 64-bit operating 

system, and 64 GB random-access memory. In this study, ECG biometrics using pre-configured 

models of the CNN with various time-frequency representations were evaluated. The signals were 

preprocessed to reduce the noise, and the R peak points were detected to normalize the center point 

of the ECG data. In other words, one data point was extracted based on each detected R peak point. 

However, the number of R peaks detected for each recording was different, as each person had a 

different heart rate, and the detection rate of the R peak was different for each signal. To construct 

the same amount of data for each class, the total number of R peak points detected for each class was 

calculated. The class was excluded when the number of detected R peaks was too small. When the 

number of detected R peaks was large, a few detected R peaks were removed to ensure the same 

amount of data in each class. Considering only the data from lead I, a frame length of 784 centered 

on the detected R peak point was obtained. The data were then transformed to the time-frequency 

representations. Here, the spectrogram, log spectrogram, mel spectrogram, scalogram, and MFCC 

were considered as the time-frequency representations. The transformed ECG data were 2D, which 

could be applied to the 2D CNNs. Figure 10 shows the process of making the input image from the 

raw ECG signal. The pre-configured models based on the 2D CNN were the VGGNet, Xception, 

ResNet, and DenseNet models discussed earlier. The 2D ECG image was input to the CNN, and the 

neural network was trained to classify its identity. The depth of the neural network in the VGGNet, 

ResNet, and DenseNet models was 19, 101, and 201, respectively. We did not consider a potential 

issue from the variability from the selection of the ECG sensor devices. A different ECG sensor device 

(or product) would change the shape of the ECG signals and accuracy. 
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Figure 10. Process of making the input image from the raw ECG signal. 

PTB-ECG is an open access database and includes ECG data from 290 people. However, the data 

from 211 people were used to construct the PTB-ECG database as the ECG data from the remaining 

79 had only few R peak points. The R peak points from 211 people were compared and adjusted to 

ensure that the maximum number of data per class was 120. The database size of PTB-ECG was 784 

× 25, 320 (120 data/class × 211 classes). The row refers to the dimension of the data, while the column 

indicates the number of data. To train the CNNs, PTB-ECG was divided into the training, validation, 

and test datasets with ratios of 0.45, 0.05, and 0.5, respectively. To shorten the training time, the 

training set was composed of 45% normally less than other literature works in the field of machine 

learning, and a larger ratio for the training set results in too high accuracy to compare performance. 

The sizes of the training, validation, and test datasets were 784 × 11,394, 784 × 1266, and 784 × 12,660, 

respectively. Figure 11 shows the structure of PTB-ECG. The CNNs were trained using a mini-batch 

size of 30, an initial learning rate of 0.0001, the Adam (adaptive moment estimation) training 

optimizer, and an epoch varied according to the model. PCA (principle component analysis)-L2 was 

executed by entering vectors reshaped from the diminished input image and measuring Euclidean 

distance (L2). The PCA dimension was 20. Table 1 shows the accuracies achieved by PCA-L2 using 

time-frequency representations on PTB-ECG. PCANet [42] is a neural network that has a CNN 

architecture based on PCA. PCANet was executed with 4 as the patch size, 4 filters, 4 as the block 

size, and 0.5 as the block overlap ratio. Table 2 shows the accuracies achieved by PCANet using time-

frequency representations on PTB-ECG. Table 3 presents the accuracies achieved by the different 

models based on CNN using time-frequency representations on PTB-ECG. Considering MFCC on 

PTB-ECG, CNN failed to train VGGNet-19. The best accuracies achieved by the time-frequency 

representations on PTB-ECG were 98.99% for DenseNet-201 in MFCC, 98.85% for Xception in 

spectrogram, 97.16% for Xception in log spectrogram, 96.92% for Xception in mel spectrogram, and 

97.83% for ResNet-101 in scalogram. This paper did not consider a potential issue from the variability 

from the selection of the ECG sensor devices. A different ECG sensor device (or product) would 

change the shape of the ECG signals and accuracy. The MFCC input to the DenseNet-201 model 

achieved the best accuracy for the PTB-ECG dataset. Figure 12 shows the training processes that 

achieved the best accuracies for the time-frequency representations applied to PTB-ECG. 
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Figure 11. Structure of Physikalisch-Technische Bundesanstalt (PTB)-ECG employed in this study. 

Table 1. Accuracies achieved by PCA-L2 using time-frequency representations on PTB-ECG. 

Input Type Model Test Accuracy 

MFCC 

PCA-L2 

97.59 

Spectrogram 98.16 

Log spectrogram 97.76 

Mel spectrogram 97.76 

Scalogram 97.96 

Table 2. Accuracies achieved by PCANet using time-frequency representations on PTB-ECG. 

Input Type. Model 
Accuracy 

Training Test 

MFCC 

PCANet 

99.72 98.56 

Spectrogram 99.72 98.15 

Log spectrogram 99.70 98.74 

Mel spectrogram 99.78 98.37 

Scalogram 99.78 98.89 
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Table 3. Accuracies achieved by various models based on the CNN using different time-frequency 

representations on PTB-ECG. 

Input Type Model Epoch 
Accuracy 

Training Validation Test 

MFCC 

VGGNet-19 20 0.47 0.47 0.47 

Xception 20 99.72 99.45 98.84 

ResNet-101 20 99.46 99.13 97.84 

DenseNet-201 5 99.77 99.61 98.99 

Spectrogram 

VGGNet-19 20 98.80 97.71 96.58 

Xception 20 99.76 99.53 98.85 

ResNet-101 20 99.57 99.37 98.08 

DenseNet-201 5 98.90 98.50 97.83 

Log spectrogram 

VGGNet-19 20 98.03 96.52 94.99 

Xception 20 99.18 98.50 97.16 

ResNet-101 20 99.45 97.95 96.79 

DenseNet-201 5 97.12 95.26 94.38 

Mel spectrogram 

VGGNet-19 20 95.08 91.00 89.11 

Xception 20 98.68 98.18 96.92 

ResNet-101 20 97.80 98.42 96.85 

DenseNet-201 5 97.48 96.92 95.98 

Scalogram 

VGGNet-19 20 98.46 98.66 97.02 

Xception 20 98.75 98.82 97.33 

ResNet-101 20 99.43 98.74 97.83 

DenseNet-201 5 99.13 98.74 97.16 

  

(a) (b) 

  
(c) (d) 

Figure 12. Cont. 
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(e) (f) 

  
(g) (h) 

  
(i) (j) 

Figure 12. Training processes that achieved the best accuracies for the time-frequency representations 

applied to PTB-ECG. (a) Accuracy of DenseNet-201 using MFCC; (b) loss of DenseNet-201 using 

MFCC; (c) accuracy of Xception using spectrogram; (d) loss of Xception using spectrogram; (e) 

accuracy of Xception using log spectrogram; (f) loss of Xception using log spectrogram; (g) accuracy 

of Xception using mel spectrogram; (h) loss of Xception using mel spectrogram; (i) accuracy of 

ResNet-101 using scalogram; (j) loss of ResNet-101 using scalogram. 

The CU database directly constructed for this study was acquired at 500 kHz. The dataset was 

resampled to 1 kHz because it was too large for data processing. The CU database included ECG data 

from 100 people. However, the data from 99 people were used to construct CU-ECG as the ECG data 

from one subject had very few R peak points. The R peak points from 99 people were compared and 

adjusted to ensure that the maximum number of data per class was 300. The size of the CU-ECG 

database was 784 × 29,700 (300 data/class × 99 classes). The row represents the dimension of the data, 

while the column indicates the number of data. To train the CNNs, CU-ECG was divided into the 

training, validation, and test datasets with ratios of 0.45, 0.05, and 0.5, respectively. The sizes of the 
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training, validation, and test datasets were 784 × 13,365, 784 × 1485, and 784 × 14,850, respectively. 

Figure 13 shows the structure of CU-ECG. The CNNs were trained using a mini-batch size of 30, an 

initial learning rate of 0.0001, the Adam training optimizer, and an epoch varied according to the 

model. PCA-L2 was executed by entering vectors reshaped from the diminished input image and 

measuring Euclidean distance. The PCA dimension was 20. Table 4 shows the accuracies achieved 

by PCA-L2 using time-frequency representations on CU-ECG. PCANet was executed with 4 as the 

patch size, 4 filters, 4 as the block size, and 0.5 as the block overlap ratio. Table 5 shows the accuracies 

achieved by PCANet using time-frequency representations on CU-ECG. Table 6 presents the 

accuracies achieved by the different models based on the CNN using time-frequency representations 

on CU-ECG. The best accuracies achieved by the time-frequency representations on CU-ECG were 

93.82% for DenseNet-201 in MFCC, 94.03% for Xception in spectrogram, 90.65% for Xception in log 

spectrogram, 88.84% for Xception in mel spectrogram, and 93.49% for Xception in scalogram. The 

spectrogram input to the Xception model achieved the best accuracy for the CU-ECG dataset. Figure 

14 shows the training processes that achieved the best accuracies for the different time-frequency 

representations applied to CU-ECG. 

 

Figure 13. Structure of CU-ECG. 

Table 4. Accuracies achieved by PCA-L2 using time-frequency representations on CU-ECG. 

Input Type Model Test Accuracy 

MFCC 

PCA-L2 

90.36 

Spectrogram 89.41 

Log spectrogram 86.43 

Mel spectrogram 87.39 

Scalogram 90.14 
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Table 5. Accuracies achieved by PCANet using time-frequency representations on CU-ECG. 

Input Type Model 
Accuracy 

Training Test 

MFCC 

PCANet 

96.05 89.88 

Spectrogram 95.99 90.88 

Log spectrogram 96.03 89.94 

Mel spectrogram 95.99 89.10 

Scalogram 95.92 92.29 

Table 6. Accuracies achieved by various models based on the CNN using time-frequency 

representations on CU-ECG. 

Input Type Model Epoch 
Accuracy 

Training Validation Test 

MFCC 

VGGNet-19 20 93.35 90.24 86.21 

Xception 20 96.07 95.56 93.62 

ResNet-101 20 95.56 95.15 92.46 

DenseNet-201 5 96.17 95.08 93.82 

Spectrogram 

VGGNet-19 20 91.95 91.99 87.87 

Xception 20 96.01 95.62 94.03 

ResNet-101 20 95.69 94.48 91.64 

DenseNet-201 5 94.71 94.01 91.83 

Log spectrogram 

VGGNet-19 20 93.76 91.92 87.56 

Xception 20 95.26 93.80 90.65 

ResNet-101 20 94.01 92.53 89.29 

DenseNet-201 5 93.92 92.79 88.75 

Mel spectrogram 

VGGNet-19 20 88.80 89.29 86.28 

Xception 20 92.65 91.99 88.84 

ResNet-101 20 91.55 91.45 88.42 

DenseNet-201 5 90.76 90.03 86.77 

Scalogram 

VGGNet-19 20 93.55 93.60 90.56 

Xception 20 95.68 95.56 93.49 

ResNet-101 20 95.71 94.75 92.11 

DenseNet-201 5 95.58 95.08 92.84 

  

(a) (b) 
Figure 14. Cont. 
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

Figure 14. Training processes that achieved the best accuracies for the time-frequency representations 

applied to CU-ECG. (a) Accuracy of DenseNet-201 using MFCC; (b) loss of DenseNet-201 using 
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MFCC; (c) accuracy of Xception using spectrogram; (d) loss of Xception using spectrogram; (e) 

accuracy of Xception using log spectrogram; (f) loss of Xception using log spectrogram; (g) accuracy 

of using Xception mel spectrogram; (h) loss of Xception using mel spectrogram; (i) accuracy of 

Xception using scalogram; (j) loss of Xception using scalogram. 

The MIT(Massachusetts Institute of Technology)-BIH(Beth Israel Hospital) arrhythmia database 

consists of ECG signals from 48 subjects. The data had a sample rate of 360 Hz and a 10 s length. Most 

data had the MLII (Modified Limb lead II) signal except two subjects. Therefore, MLII data from 46 

subjects were used for biometrics. Noise was eliminated from the signal, and the R peaks were 

detected by the Pan–Tompkins algorithm. The number of detected R peaks was small because the 

length of MIT-BIH arrhythmia had a short length signal. The R peak points from 46 people were 

compared and adjusted to ensure that the maximum number of data per class was five. Data were 

captured with 289 samples putting the R peak as the center. The size of the MIT-BIH-arrhythmia-

ECG database was 289 × 230 (5 data/class × 46 classes). The row represents the dimension of the data, 

while the column indicates the number of data. To train the CNNs, MIT-BIH-arrhythmia-ECG was 

divided into the training and test datasets with ratios of 0.6 and 0.4, respectively. The sizes of the 

training and test datasets were 289 × 138 and 289 × 92, respectively. The CNNs were trained using a 

mini-batch size of 10, an initial learning rate of 0.0001, a max epoch of 5, and the Adam training 

optimizer. PCA-L2 was executed by entering vectors reshaped from the diminished input image and 

measuring Euclidean distance. The PCA dimension was 20. Table 7 shows the accuracies achieved 

by PCA-L2 using time-frequency representations on MIT-BIH-arrhythmia-ECG. PCANet was 

executed with 4 as the patch size, 4 filters, 4 as the block size, and 0.5 as the block overlap ratio. Table 

8 shows the accuracies achieved by PCANet using time-frequency representations on MIT-BIH-

arrhythmia-ECG. Table 9 presents the accuracies achieved by the different models based on CNN 

using time-frequency representations on MIT-BIH-arrhythmia-ECG. The best accuracies achieved by 

the time-frequency representations on MIT-BIH-arrhythmia-ECG were 48.91% for DenseNet-201 in 

MFCC, 63.04% for DenseNet-201 in spectrogram, 84.78% for DenseNet-201 in log spectrogram, 38.04% 

for DenseNet-201 in mel spectrogram, and 75.00% for DenseNet-201 in scalogram. The log 

spectrogram input to the DenseNet-201 model achieved the best accuracy for the MIT-BIH-

arrhythmia-ECG dataset. There were some cases of learning failure because the size of the dataset 

was too small.  

Table 7. Accuracies achieved by PCA-L2 using time-frequency representations on MIT 

(Massachusetts Institute of Technology)-BIH (Beth Israel Hospital)-arrhythmia-ECG. 

Input Type Model Test Accuracy 

MFCC 

PCA-L2 

4.35 

Spectrogram 1.09 

Log spectrogram 2.17 

Mel spectrogram 3.26 

Scalogram 1.09 

Table 8. Accuracies achieved by PCANet using time-frequency representations on MIT-BIH-

arrhythmia-ECG. 

Input Type Model 
Accuracy 

Training Test 

MFCC 

PCANet 

100 78.26 

Spectrogram 100 89.13 

Log spectrogram 100 86.96 

Mel spectrogram 100 82.61 

Scalogram 100 86.96 
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Table 9. Accuracies achieved by various models based on the CNN using different time-frequency 

representations on MIT-BIH-arrhythmia-ECG. 

Input Type Model Epoch 
Accuracy (%) 

Training Validation 

MFCC 

VGGNet-19 5 2.17 2.17 

Xception 5 2.17 5.43 

ResNet-101 5 18.12 22.83 

DenseNet-201 5 66.67 48.91 

Spectrogram 

VGGNet-19 5 2.9 2.17 

Xception 5 14.49 8.7 

ResNet-101 5 36.96 38.04 

DenseNet-201 5 75.36 63.04 

Log spectrogram 

VGGNet-19 5 2.17 2.17 

Xception 5 94.06 70.65 

ResNet-101 5 86.96 72.83 

DenseNet-201 5 97.10 84.78 

Mel spectrogram 

VGGNet-19 5 2.17 2.17 

Xception 5 2.9 5.43 

ResNet-101 5 24.64 32.61 

DenseNet-201 5 50.72 38.04 

Scalogram 

VGGNet-19 5 3.62 4.35 

Xception 5 96.38 67.39 

ResNet-101 5 96.38 67.39 

DenseNet-201 5 99.28 75.00 

The mean accuracies of the different time-frequency representations applied to PTB-ECG were 

98.56% for MFCC, 97.84% for spectrogram, 95.83% for log spectrogram, 94.72% for mel spectrogram, 

and 97.34% for scalogram. The mean accuracies of the different time-frequency representations 

applied to the CU-ECG were 91.53% for MFCC, 91.34% for spectrogram, 89.06% for log spectrogram, 

87.58% for mel spectrogram, and 92.25% for scalogram. The mean accuracies of PTB-ECG and CU-

ECG corresponding to the time-frequency representations were 95.04% for MFCC, 94.59% for 

spectrogram, 92.45% for log spectrogram, 91.15% for mel spectrogram, and 94.79% for scalogram. 

The MFCC accuracies were 0.45%, 2.60%, 3.90%, and 0.25% higher than the spectrogram, log 

spectrogram, mel spectrogram, and scalogram accuracies, respectively. Figure 15 shows a 

comparison between the accuracies of the different time-frequency representations. 

 

Figure 15. Comparison between the mean accuracies of the different time-frequency 

representations. 
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The mean accuracies of the different models in PTB-ECG were 94.43% for VGGNet-19, 97.82% 

for Xception, 97.48% for ResNet-101, and 96.87% for DenseNet-201. The mean accuracies of the 

different models in CU-ECG were 87.70% for VGGNet-19, 92.13% for Xception, 90.78% for ResNet-

101, and 90.80% for DenseNet-201. The mean accuracies of PTB-ECG and CU-ECG for the different 

models were 91.06% for VGGNet-19, 94.97% for Xception, 94.13% for ResNet-201, and 93.84% for 

DenseNet-201. The Xception accuracies were 3.91%, 0.84%, and 1.14% higher than the VGGNet-19, 

ResNet-101, and DenseNet-201 accuracies, respectively. Figure 16 shows a comparison between the 

accuracies of various models based on the CNN. The mean accuracies of PCA-L2 and PCANet were 

97.81 and 98.54 in PTB-ECG, 88.75 and 90.42 in CU-ECG, and 2.4 and 84.78 in MIT-BIH-arrhythmia-

ECG, respectively. The Xception in PTB-ECG was 0.1% higher than PCA-L2 and 0.72% lower than 

PCANet. The Xception in CU-ECG was 3.38% and 1.71% higher than PCA-L2 and PCANet, 

respectively. 

 

Figure 16. Comparison between the mean accuracies of various models based on CNN. 
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5. Conclusion 

We evaluated ECG biometrics using pre-configured models of CNNs with various time-

frequency representations. Biometrics technology records a person’s physical or behavioral 

characteristics in a digital signal via a sensor and analyzes it to identify the person. Biometrics offer 

great convenience to human lifestyles throughout society. An ECG signal is obtained by detecting 

and amplifying a minute electrical signal flowing on the skin using a noninvasive electrode when the 

heart muscle depolarizes at each heartbeat. In biometrics, the ECG is especially advantageous in 

security applications because the heart is located within the body and moves while the subject is 

alive. However, a few body states generate noisy biometrics. The analysis of signals in the frequency 

domain has a robust effect on the noise. As the ECG is noise-sensitive, various studies have applied 

time-frequency transformations that are robust to noise, with CNNs achieving a good performance 

in image classification. Various studies have applied the time-frequency representations of 1D ECG 

signals to 2D CNNs. Combinations of the time-frequency representations and CNN deep models 

have not been investigated. In this study, we employed MFCC, spectrogram, log spectrogram, mel 

spectrogram, and scalogram time-frequency transforms and the VGGNet, GoogLeNet, ResNet, and 

DenseNet deep CNN models. The PTB-ECG and CU-ECG databases were used in this study. The 

MFCC accuracies were 0.45%, 2.60%, 3.90%, and 0.25% higher than the spectrogram, log spectrogram, 

mel spectrogram, and scalogram accuracies, respectively. The Xception accuracies were 3.91%, 0.84%, 

and 1.14% higher than the VGGNet-19, ResNet-101, and DenseNet-201 accuracies, respectively. The 

mean accuracies of PCA-L2 and PCANet were 97.81 and 98.54 in PTB-ECG, 88.75 and 90.42 in CU-

ECG, and 2.4 and 84.78 in MIT-BIH-arrhythmia-ECG, respectively. The Xception in PTB-ECG was 

0.1% higher than PCA-L2 and 0.72% lower than PCANet. The Xception in CU-ECG was 3.38% and 

1.71% higher than PCA-L2 and PCANet, respectively. The Xception with time-frequency 

representation showed close accuracy in PTB-ECG, which was easily successfully classified. However, 

the Xception outperformed other methods in CU-ECG, which was not easily successfully classified. 

Further studies would focus on new and better time-frequency representations. 
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