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Abstract: Soil thermal conductivity is an important parameter for understanding soil heat transfer.
It is difficult to measure in situ with available instruments. This work aims to propose a numerical
model to estimate the thermal conductivity from the experimental measurements of soil heat flux
and soil temperature. The new numerical model is based on the Fourier Law adding a constant
empirical parameter to minimize the uncertainties contained in the data from field experiments.
Numerically, the soil thermal conductivity is obtained by experimental linear data fitting by the Least
Squares Method (LSM). This method avoids numerical indetermination when the soil temperature
gradient or soil heat flux is very close to zero. The new model is tested against the different numerical
methodology to estimate the soil heat flux and validated with field experimental data. The results
indicate that the proposed model represents the experimental data satisfactorily. In addition, we show
the influence of the different methodologies on evaluating the dependence of the thermal conductivity
on the soil water content.

Keywords: fourier law; gradient method; soil heat flux; soil temperature; soil thermal conductivity;
soil water content

1. Introduction

Soil thermal conductivity is an important thermal property that governs the transfer of the soil
heat flux. The complexity of soil makes its thermal conductivity dependent on physical or chemical
properties, such as soil water content, porosity, density, texture, and mineral composition [1]. Different
empirical models have been suggested for the estimation of soil thermal conductivity, taking into
account these properties [2–8]. However, these models are mainly obtained using data from controlled
experiments in the laboratory by measurement techniques including steady-state methods such as the
guarded hot plate method [9], transient methods including the single line heat source probe [10,11] and
the dual-probe heat-pulse method [12–14]. A challenge has been to obtain estimates of the soil thermal
conductivity in situ (or in field experiments), in which soil properties are not well characterized as a
result of technical limitations [15,16] and/or climatic conditions.

Theoretically, in situ experimental measurements of soil heat flux and soil temperature can be
used to estimate the soil thermal conductivity by the Fourier Law of heat conduction, defined by [17]:

Gz = −λ
∂T
∂z

(1)
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where Gz (Wm−2) is the soil heat flux at a given depth z (m), T (K) is the soil temperature and λ
(Wm−1K−1) is the thermal conductivity of the soil layer. However, because the data are discrete
(measured in time intervals), the soil temperature gradient, ∂T

∂z , can be obtained by the variation rate
between the soil temperature and the depth, ∆T

∆z = T2−T1
z2−z1

. This methodology is called the Gradient
Method [4,5,16–19] Therefore, if we know the measurement of the soil heat flux at a given depth z (Gz)
and the soil temperature at depths relatively close to Gz, Equation (1) can be written as:

Gz = −λ

[
T2 − T1

z2 − z1

]
(2)

with z1 < z < z2, and where T1 = T(z1) and T2 = T(z2) represent the temperatures at depths z1 and
z2, respectively.

The experimental estimate of soil heat flux in z is often performed by the heat flux plate method.
Soil heat flux plates are small, rigid, disc-shaped sensors of known and constant thermal properties
that are placed horizontally in the soil near the surface. The heat flux through a calibrated plate is used
to estimate Gz in the surrounding soil at the plate depth [20]. That is, Equation (2) is used to estimate
the soil heat flux in a small soil layer if the λ of the plate is known.

Heat flux plate manufacturers describe important factors to be considered in an experiment to
estimate Gz, especially in a field experiment in which several procedures are not controlled, such as the
exact installation depth and the thermal contact resistance at the plate-soil interface [21–23]. Soil heat
flux sensors are often installed at depths ranging from 0.05 m to 0.20 m, considered to be mechanically
stable to ensure good measurement conditions besides not suffering significant time delays that can
reduce the accuracy of the measurements [24–26]. Ochsner et al. [15] concluded that the heat flux plate
underestimates soil heat flux because of the low plate thermal conductivity, thermal contact resistance,
and latent heat transfer effects. However, this is the main method to obtain the experimental soil heat
flux and widely used in studies of surface energy balance closure [27–29].

Using experimental measures of soil heat flux and soil temperature, several authors estimated
the soil thermal conductivity by isolating λ in Equation (2). However, this procedure can lead to
possible numerical divergences, as shown by Li et al. [19,30] that eliminated data when soil temperature
gradient or soil heat flux is very close to zero to avoid this problem.

In this work, we propose a new numerical model to estimate thermal conductivity from
experimental measurements of soil heat flux and soil temperature. The model uses the Fourier
Law adding a constant empirical parameter (ε) to minimize the uncertainties contained in the data
from field experiments. Numerically, the solution model is a linear data fitting of the experimental
data using the Least Squares Method (LSM). This methodology avoids numerical indetermination and
possible data loss. The soil data collected in a field experiment on native vegetation of the Brazilian
Pampa biome will be used to calibrate and validate the proposed model.

This work is divided into three sections: Materials and Methods; Results and Discussions;
and Conclusions. The Materials and Methods section presents the description of the experimental site,
the proposed model, the justification for the proposition of the model and the method used to estimate
λ, in addition to the analysis sequence. The Results and Discussions section presents the results of
the proposed model in comparison to the different models used in here. This section also shows the
influence of the different methodologies on evaluating the dependence of the thermal conductivity on
the soil water content. Finally, the Conclusions present the pertinent reflections on the results obtained.

2. Materials and Methods

2.1. Experimental Site

The experimental measurements were obtained in an area of native vegetation designated for
cattle raising, in the city of Pedras Altas, Rio Grande do Sul state, Brazil, in the geographical location
31
◦

43′56′′ S, 53
◦

43′36′′ W, 395 m, located in the Pampa biome region (hereafter PAS). The soil in the
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study area is characterized as sandy loam with 59.30% sand; 0.81% clay; 39.89% silt. The average
values of the soil physical properties at 0.05 m and 0.15 m depths is: field capacity θFC = 0.28 m3m−3;
permanent wilting point θWP = 0.03 m3m−3; soil porosity θs = 0.42 m3m−3; and, soil bulk density
ρs = 440 kg m−3. More details about soil composition and experimental site are described in [31].

The typical climate in the region is classified as humid subtropical Cfa, according to Köppen [32].
The mean annual temperature is of 17 ◦C, presenting negative temperatures at morning in the winter
(~−3 ◦C) and almost 40 ◦C in the afternoon in the summer. The precipitation regime is well distributed
throughout the year.

Soil temperatures were measured with temperature sensors (T108, Campbell Scientific Inc., Logan,
Utah, USA) positioned at 0.05 m and 0.15 m below the surface, and the soil heat flux was measured
with a flux plate (HFP01, Hukseflux Thermal Sensor B.V., Delft, The Netherlands) positioned at 0.10 m
below the surface of the soil, so that it was halfway between the soil temperature sensors. The soil
water content (θ) was measured with a water content reflectometer (CS616, Campbell Scientific Inc.,
Logan, UT, USA) installed at 0.10 m below the surface. Data were collected during the year 2015 at a
frequency of 1 min and then averaged every 30 min. Due to technical problems, partial data collection
occurred during the period from January 01 to 12 (only the soil temperatures and water content were
collected), and there was no data collection from September 17 to November 05. If the measurement
system failed for one variable, all the other variables were removed from the data set.

2.2. Proposed Model

The relationship between Gz and ∆T
∆z , represented by Equation (2), is described by a linear function

of the variables, with λ being the proportionality constant. However, experimentally, we do not obtain
a relation defined by a linear function described by y = ax; instead, we obtain a relation defined
by a function described by y = ax + b, as shown in Figure 1, independent of the soil water content.
This figure illustrates the relationship between the Gz measured at z = −0.10 m and the variation
rate between the soil temperature and the depth

[T2−T1
z2−z1

]
, with z1 = −0.05 m and z2 = −0.15 m, does

not satisfy Equation (2); since the graph Gz ×
∆T
∆z does not pass through the origin, there will be an

underestimate or overestimate of Gz with respect to
[T2−T1

z2−z1

]
for values negative or positive of Gz,

respectively. We assume that this behavior may be related to the finite difference method and the
experimental measurements of T and/or Gz. Therefore, to estimate λ from the experimental data on the
soil heat flux (Gexp) and the soil temperature at different depths, we propose to include an empirical
parameter (ε) in Equation (2). The new model for Gz can be expressed as:

Gz = −λ

[
T2 − T1

z2 − z1

]
+ ε (3)

where ε is a constant empirical parameter to be determined, representing a correction factor of an
energy flux that is not accounted for by the field experimental measurements. The addition of ε
becomes the model able to fit the observed behavior in the experimental data (Figure 1).

In analytical solutions of the Fourier Law, although not explicitly, this correction is also present,
for example in [17,33,34]. In these cases, the estimation of this correction is quite complex, requiring a
greater number of parameters obtained, in general, from adjustments to experimental data of soil heat
flux and soil temperature.
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Figure 1. Relationship between 𝐺  at 𝑧 = −0.10 𝑚 and the ratio of the soil temperature in relation 
to the depth (Δ𝑇/Δ𝑧) with 𝑧 = −0.05 𝑚 and 𝑧 = −0.15 𝑚. Data obtained at the Pedras Altas-RS 
experimental site for the period from 1 July to 31 July 2015. 

Data Fitting: Least Squares Approximation 

Figure 2 shows the daily cycle for the soil heat flux (𝐺 ) at 𝑧 = −0.10 m and the temperatures at 𝑧 = −0.05 m and 𝑧 = −0.15 m for four days in different seasons (Summer DOY 21; Autumn DOY 
111; Winter DOY 202; and Spring, DOY 325). Precipitation of 0.1 mm occurred in DOY 325 at 01:00 
AM (local time). These days were chosen to emphasize the variability in the amplitude of 𝐺  and soil 
temperature values and the hours when the soil temperature gradient is zero (𝑇 ≈ 𝑇 ), in different 
seasons. It may be noted that at hours when the soil temperatures approach each other at different 
depths, the 𝜆 obtained from Equation (2), by the division of 𝐺  by , can result in nonfinite 

values or lead to numerical divergences resulting in a divergent solution. 

 
(a) DOY: 21 (b) DOY: 111 

Figure 1. Relationship between Gexp at z = −0.10 m and the ratio of the soil temperature in relation
to the depth (∆T/∆z) with z1 = −0.05 m and z2 = −0.15 m. Data obtained at the Pedras Altas-RS
experimental site for the period from 1 –31 July 2015.

Data Fitting: Least Squares Approximation

Figure 2 shows the daily cycle for the soil heat flux (Gz) at z = −0.10 m and the temperatures at
z1 = −0.05 m and z2 = −0.15 m for four days in different seasons (Summer DOY 21; Autumn DOY 111;
Winter DOY 202; and Spring, DOY 325). Precipitation of 0.1 mm occurred in DOY 325 at 01:00 AM
(local time). These days were chosen to emphasize the variability in the amplitude of Gz and soil
temperature values and the hours when the soil temperature gradient is zero (Tz1 ≈ Tz2), in different
seasons. It may be noted that at hours when the soil temperatures approach each other at different
depths, the λ obtained from Equation (2), by the division of Gz by

[T2−T1
z2−z1

]
, can result in nonfinite values

or lead to numerical divergences resulting in a divergent solution.
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Figure 2. Example of diurnal cycles of 𝐺  (Wm ) at −0.10 m  and 𝑇  (°C) at −0.05 m  and −0.15 m for Days of the Year (DOY) with different characteristics. Vertical dotted lines represent the 
local times when the soil temperature in both depths are equals. 

The daily average of 𝐺  and 𝑇  for the different depths can show variability throughout the 
year, as shown in Figure 3. The existence of days that have low-temperature variability at different 
depths or values of 𝐺  near zero can also cause numerical divergences, especially when isolating 𝜆 in Equation (2) [Error! Reference source not found.,Error! Reference source not found.]. In Figure 
3, the daily soil water content (𝜃) is also shown, presenting a high variability throughout the year, 
with small values in summer and autumn seasons. 

To avoid possible divisions by zero using Equation (2), different works in the literature estimate 
the soil thermal conductivity using, for example, daily averages [Error! Reference source not 
found.,Error! Reference source not found.] or specific times [Error! Reference source not found.]; 
some even eliminate data in which the temperatures are approaching zero [Error! Reference source 
not found.]; and, others eliminate soil heat flux data near signal changes (before and after) because 
these values are relatively small and consequently increasing errors [Error! Reference source not 
found.,Error! Reference source not found.]. In contrast to these techniques, in this work, we propose 
the use of the Linear Least Squares Method (LLSM) to obtain the coefficient of soil thermal 
conductivity and the additional term ( 𝜀 ) presented in Equation (3). This technique allows the 
estimation of 𝜆 without inverting Equation (2). This procedure avoids the exclusion of data, allowing 
a more realistic estimation of the soil thermal conductivity. 

 

Figure 2. Example of diurnal cycles of Gexp (Wm−2) at −0.10 m and Tsoil (◦C) at −0.05 m and −0.15 m
for Days of the Year (DOY) with different characteristics. Vertical dotted lines represent the local times
when the soil temperature in both depths are equals.

The daily average of Gexp and Tsoil for the different depths can show variability throughout the
year, as shown in Figure 3. The existence of days that have low-temperature variability at different
depths or values of Gexp near zero can also cause numerical divergences, especially when isolating λ
in Equation (2) [19,30]. In Figure 3, the daily soil water content (θ) is also shown, presenting a high
variability throughout the year, with small values in summer and autumn seasons.

To avoid possible divisions by zero using Equation (2), different works in the literature estimate
the soil thermal conductivity using, for example, daily averages [4,18] or specific times [18]; some
even eliminate data in which the temperatures are approaching zero [19]; and, others eliminate soil
heat flux data near signal changes (before and after) because these values are relatively small and
consequently increasing errors [19,30]. In contrast to these techniques, in this work, we propose the
use of the Linear Least Squares Method (LLSM) to obtain the coefficient of soil thermal conductivity
and the additional term (ε) presented in Equation (3). This technique allows the estimation of λ
without inverting Equation (2). This procedure avoids the exclusion of data, allowing a more realistic
estimation of the soil thermal conductivity.
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2.3. Numerical Models Calibration and Validation

Data from Gexp and Tsoil were selected for different depths on 3 random days (an entire day of data)
of each month of the year, totaling 33 days (since during October, data were not collected), and were
used to estimate λ by different methods. The following methods were used:

• Method 1 (M1): Isolating λ in Equation (2) and calculating the average value of λ;
• Method 2 (M2): Isolating λ in Equation (2) and calculating the average value of λ for the observed

data whose temperature variation (∆T) is equal to or greater than |0.1|;
• Method 3 (M3): Isolating λ in Equation (2) and calculating the average value of λ for the 13-h

data (local time). This time was chosen because it presents, in general, a greater variation of the
temperature in relation to the depth than the other times;

• Method 4 (M4): Least squares method applied to Equation (2);
• Method 5 (M5): Least squares method applied to Equation (3).

The method validation was performed using the experimental dataset, excluding the days used to
estimate λ. Analyses were performed considering the whole period (day and night) and separating
the periods into day and night. For this, the daytime period was considered as the interval between
06:00 and 18:00 and the night, the interval between 18:00 and 06:00.

The λ values obtained by each calibration were entered into the respective equations of each
method together with the experimental values of the soil temperature, thereby obtaining estimated Gz

values that were used in the different methods to estimate λ (GM1, GM2, . . . ). The method validation
was performed using the values of Gz with the values obtained experimentally (Gexp) through the
statistical indices RMSE and R2. These indices were calculated by the following equations:

RMSE =

√∑(
Yexp −Yest

)2

n
(4)

R2 = 1−

∑(
Yexp −Yest

)2

∑(
Yexp −Y

)2 (5)

where Yexp represents the observed values, Yest represents the estimated values, Y represents the mean
of the observations and n represents the number of observations.

3. Results and Discussions

Table 1 shows the soil thermal conductivity and the empirical parameter calibrated by the
different methods with the experimental data of the Pedras Altas-RS site. The results of λ obtained
using Equation (2) by the different methods (M1, M2, M3, and M4) show variability of almost 25%,
with a reduction of the RMSE of approximately 40% between M1 and M4 and an increase of R2 of
approximately 12% for the daily period.

Table 1. Values of λ and ε, obtained by the different methods and respective statistical analyses. Obs.:
The Daily column represents the statistics for the entire period (Day and Night).

Calibration Validation

λ
(Wm−1K−1)

ε
(Wm−2)

RMSE (Wm−2) R2

Daily Day Night Daily Day Night

Method 1 (M1) 1.331 - 5.56 7.31 2.92 0.82 0.71 0.77
Method 2 (M2) 1.148 - 3.86 5.08 1.97 0.92 0.86 0.89
Method 3 (M3) 1.014 - 3.24 3.97 2.28 0.94 0.91 0.86
Method 4 (M4) 1.011 - 3.23 3.95 2.30 0.94 0.91 0.85
Method 5 (M5) 0.993 -2.216 2.43 3.06 1.58 0.97 0.95 0.93
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From all analyzed methods and periods, M1 presented the worst statistical indices. This result is
perhaps due to the fact all data were used in the simulation, which can generate numerical divergences
when |∆T| ≈ 0, consequently, on average, can overestimate λ. For M2 were eliminated data when
|∆T| ≤ 0.1, representing 5% of total data and resulting in a decrease of 30% in RMSE compared to M1
(Table 1). However, in periods when G is around zero, this methodology can cause unrealistic λ values.
The M3, estimating λ value for a reference hour (13:00—local time), had a decrease of RMSE around
15%. However, also in this method, some unrealistic λ values can be obtained. An example is a day
when precipitation occurs, or the sky is very cloudiness, increasing hardly the solar radiation at the
surface. If in this hour G is close to zero or the soil temperature in both depths are similar, the same
problems described for M1 and M2 can happen.

The methods M3 and M4 presented results in which both the λ and the statistical indices were very
close, suggesting that using the hour that represents the largest difference between the temperatures
can be considered a good alternative for the estimation of λ. However, using M3, we do not have
information about the diurnal cycle of λ, as mentioned by [30]. Here we do not analyze the diurnal
cycle of λ for anyone method.

The M5 presented the best statistical indices for all analyzed periods, proving to be the best
method for λ estimation. In the daily period, a decrease of 3.13 Wm−2 in RMSE between M1 and M5 is
observed. The greatest errors were found in the day periods for all methods since it is during this period
that the greatest temperature variations occur (Table 1). The results of λ obtained by Equation (2) and
Equation (3) by the LSM (M4 and M5, respectively) show very close values. However, the RMSE of M4
is higher than that of M5, indicating that M5 improved the estimate of Gz. Additionally, the parameter
ε represents almost 20% of the average annual value of Gexp that was 12.8 Wm−2.

Figure 4 shows the dispersion diagrams of Gz using the λ values in Table 1 with the validation
data. In general, the M1 and M2 models underestimate the observations when they are negative and
overestimate them when they are positive. The M3 and M4 models show an overestimation of the
values for both situations. Finally, the M5 model shows a behavior very similar to the observed data.
Furthermore, the applied least square method (LSM) is adequated for this estimation.
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that interfere in the estimation of the soil heat flux, i.e., 𝐺  is not simply proportional to the soil 
temperature gradient. Thus, the inclusion of ε also influences the soil thermal conductivity 
estimation, although the model still considers ε constant with depth. 
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Figure 5 shows the daily average cycle of the Gexp values obtained by the methods M4 and M5,
with the values of λ from Table 1 used for these methods. The M5 represent the daily average cycle
better than M4 for all hours, especially at night. The greatest difference between the experimental data
and M4 and M5, during the nighttime, occurred at 05:30 and was 2.4 Wm−2 and 0.3 Wm−2, respectively;
and during the daytime occurred at 14:30 and was 3.1 Wm−2 and 0.9 Wm−2, respectively. The diurnal
peak of Gz was better represented by M5, which had a difference of 0.4 Wm−2 at 12:30, while M4
showed a difference of 2.5 Wm−2 at the same hour.
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Figure 5. Annual average daily cycle for soil heat flux at −0.10 m, experimental (Gexp) and estimated by
M4 (GM4) and M5 (GM5) method.

The best results obtained by M5 prove that the addition of the ε parameter includes corrections
that interfere in the estimation of the soil heat flux, i.e., Gz is not simply proportional to the soil
temperature gradient. Thus, the inclusion of ε also influences the soil thermal conductivity estimation,
although the model still considers ε constant with depth.

Further analysis of the influence of the soil water content on the estimation of λ is shown in
Figure 6. All experimental data were used to present the relationship between the soil thermal
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conductivity (λ) and the soil water content (θ). In this case, we used only the LSM to solve Equations
(2) and (3) for each day, i.e., M4 and M5, obtaining λ daily values. Then, these values were grouped by
intervals of 0.01 of the soil water content daily average. With the grouped data, the λ mean value and
the respective standard deviation of each cluster were calculated, as shown in Figure 6a. Note that the
use of different equation results in a different behavior between the soil thermal conductivity and the
soil water content. In general, M4 presented higher mean values and standard deviations than M5.
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Figure 6. Relationship between the soil conductivity (obtained by Equation (2)—M4 and Equation
(3)—M5) and the soil water content (θ): (a) the mean and standard deviation of daily λ value and
grouped by θ ranges (values without standard deviation represent only one data in dataset); (b) λ
estimated for soil water content intervals; (c) ε from M5 vs. θ; (d) λ values as in (b) and λ estimated by
Johansen, Lu-Ren, and Tong Models.

Using another approach, the experimental half-hour data of the days presenting similar soil water
content daily averages (0.01 intervals) were grouped. With the grouped data, a single value of λ was
estimated for each soil water content range, using M4 and M5, as shown in Figure 6b. For low and
high values of soil water content, there are few experimental data; however, the models present the
similar values of λ in the intervals of low soil water content and differ considerably for intervals of
high values soil water content. For the rest of the soil water content values, both equations showed
similar behaviors.

The results present in Figure 6a,b show that for high values of soil moisture, both methods
generate a greater variability on the λ dataset, concluding that other variables commanding λ values
can exist when the soil water content is high, i.e., close to the field capacity.
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The ε values of Equation (3) using this latter methodology are shown in Figure 6c. A nonlinear
variation of ε in relation to the soil water content is observed, with values between −3 Wm−2 and
−1.5 Wm−2 and an average value of −2.1 Wm−2.

Figure 6d shows the relationships between soil thermal conductivity and soil water content—λ(θ),
obtained using M4, M5 (both estimating λ for soil water content intervals), Johansen Model [35],
Lu-Ren Model [36] and Tong Model [6] (see Appendix A). For Tong Model, the empirical parameters
were calibrated using λ(θ), for M4 and M5. The values of these parameters are presented in Table 2
together with the original values for sandy loam soil type. The results show that the variation of
λ(θ) depends on the method applied, consequently influencing the estimation parameters describing
empirical equations for λ(θ). The Tong Model calibrated using M5 presented the best statistic index
(Table 2).

Table 2. Original and Calibrated parameters of Tong Model [6], and statistical index (R2 and RMSE).

Original—Tong Model M4 M5

a 1.88 1.14 1.25
b 1.67 1.07 1.01
c 3.90 14.06 10.02

R2 0.65 0.66 0.88
RMSE 0.0953 0.0941 0.0545

4. Conclusions

In this paper, we proposed a numerical model to estimate the thermal conductivity from
experimental measurements of the soil heat flux and soil temperature at different depths. The proposal
is based on the Fourier Law adding a constant empirical parameter (ε). The ε parameter minimizes the
uncertainties contained in the data from field experiments, leaving the model able to fit the behavior
observed in the experimental data.

Different numerical techniques of solving Equation (2) were used and were compared to the
method used in the proposed model (Equation (3)). This study shows that isolate λ in Equation (2)
(M1, M2, M3) can affect the accuracy of the soil thermal conductivity estimates. The use of the LSM
to estimate the thermal conductivity (M4 and M5) presented better results than the other methods,
which allows us to conclude that LSM is an adequate technique for this estimation. However, the M5
presented the best results, thus confirming the hypothesis that the addition of an empirical parameter
is necessary and influences the accuracy of the soil heat flux estimate.

Currently, many micrometeorological experimental fields are measuring atmospheric and soil
variables to improve the weather and climate models. For the soil, the data are obtained similarly to the
experimental design used in this work. Therefore, we believe the results obtained here will contribute
to this issue since the methodology proposed improved the estimation on soil thermal properties,
consequently the soil heat flux, an essential component for studies on surface energy balance closure.
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Appendix A

The Johansen model [35–37] for soil thermal conductivity is represented as:

λ =
(
λsat − λdry

)
Ke + λdry (A1)

where λdry and λsat are the thermal conductivities for the dry and saturated, respectively in units of
soil (Wm−1K−1) and Ke is the Kersten number, defined by:

Ke ≈ 0.7 log10 Sr + 1.0 (Sr > 0.5) (A2)

Ke ≈ log10 Sr + 1.0 (Sr > 0.1) (A3)

where (Sr =
θ
θs

) is the normalized soil water content, θs is the saturated soil water content and θ is the
soil water content, in units (m3m−3).

The λsat parameter is obtained by a geometric mean equation:

λsat = λ1−n
s λn

w (A4)

where n is the soil porosity (m3m−3), λs is the thermal conductivity of soil solids (Wm−1K−1) and λw is
the thermal conductivity of the water (λw = 0.594 Wm−1K−1 at 20

◦

C). The λs value is obtained by
another geometric mean equation:

λs = λ
q
qλ

1−q
o (A5)

where q is the quartz content of the total solids content, λo is the thermal conductivity of other materials
(Wm−1K−1) and λq is the thermal conductivity of the quartz (λq = 7.7 Wm−1K−1). λo was taken as
2.0 Wm−1K−1 for soils with q > 0.2 and 3.0 Wm−1K−1 for soil with q ≤ 0.2.

The λdry parameter was defined by Johansen [35–37] by a semi-empirical relation with respect to
the soil density, as follows:

λdry =
0.135 ρb + 64.7
2700− 0.947ρb

(A6)

where ρb is the soil bulk density (kg m−3).
The Lu-Ren model [36] uses the same Johansen’s (1975) equation (Equation A1), with a new

Kersten number:
Ke ≈ e{α[1−S(α−1.33)

r ]} (A7)

where α is a parameter dependent on soil texture. In addition, Lu et al. [36] introduced a new equation
for λdry, described as:

λdry = −0.56n + 0.51 (A8)

with n the soil porosity (m3m−3).
The Tong model [6] is an empirical model for soil thermal conductivity, defined by:

λ = a− be(−cθ) (A9)

where a, b e c are empirical parameters.
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