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Abstract: The time shared optical network (TSON) has been proposed as a dynamic optical transport
network solution to provide high bandwidth and low latency connectivity in support of 5G technology
and beyond. This work reviews the TSON evolution stages developed in the framework of the U.K.
national project Towards Ultimate Convergence of All Networks (TOUCAN). The details of the TSON
architecture and its various development phases are discussed, and the performance of its latest
implementation is evaluated through relevant demonstration activities across the Smart Internet
Lab’s 5G (5GUK) test network.
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1. Introduction

Towards Ultimate Convergence of All Networks (TOUCAN) [1] is a University of Bristol-led
research project funded by the U.K. Engineering and Physical Sciences Research Council (EPSRC).
The TOUCAN aims to achieve ultimate network convergence, enabled by a new technology agnostic
architecture targeting a wide range of applications and end users. The architecture will facilitate
optimal interconnection of any network technology domains, networked devices, and datasets with
high flexibility, resource and energy efficiency, and the aim of satisfying the full range of quality of
service (QoS) and quality of experience (QoE) requirements.

With the rapid deployment of 5G and the emergence of beyond 5G technologies, telecom network
infrastructures are being populated with heterogeneous types of access technologies supporting new
types of services that often require high-bandwidth and low-latency key performance indicators (KPIs),
for instance, high definition (HD), augmented reality (AR), and virtual reality (VR) services. As such,
both last mile access (e.g., from edge to antenna) technologies, as well as fronthaul/backhaul and
metro/core transport technologies, are also evolving to support these requirements. Due to latency
and bandwidth requirements, optical networks are among the preferred transport technologies for
both fronthaul/backhaul and metro/core network segments. However, there is a large variety of
optical transport protocols and technologies that are being proposed by the industry and research
communities to support fronthaul (e.g., common public radio interface (CPRI), evolved common public
radio interface (eCPRI), time shared optical network (TSON)) and backhaul as well as metro and
core requirements (TSON, orthogonal frequency-division multiplexing (O-OFDM), flexi-wavelength
division multiplexing (WDM)). The choice of these technologies depends on the requirements that
the wireless access technologies introduced in terms of bandwidth, latency, and other factors (e.g.,
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mmwave, multiple-input, multiple-output (MIMO), massive MIMO), as well as on the architecture
of the various network segments. Additionally, with the maturity of virtualisation technologies and
specifically network function virtualisation (NFV), most of the wireless networking functions such as
mobile packet core are being virtualised for execution by commodity processors. To meet their latency
requirements, they are required (or at least some components of them) to be hosted at the edge of
the network. The aforementioned requirements indicate that there is an emerging requirement for a
generic edge interface that can be programmed both at transport protocol level and also at the network
function level. Such an interface can be deployed anywhere at the edge of the network, can interface
any access technology at any backhaul/metro/core network, and can also host network functions that
are sensitive to latency. TOUCAN, for the first time, has developed such an interface. A high-level
architecture of the TOUCAN interface is shown in Figure 1.

Figure 1. A high-level architecture of the Towards Ultimate Convergence of All Networks (TOUCAN)
interface. SDN: software defined networking, CPRI: common public radio interface, eCPRI: evolved
common public radio interface, TSON: time shared optical network, Flexi WDM: flexi-wavelength
division multiplexing, BW: bandwidth, OBSAI: open base station architecture initiative, OTDM: optical
time domain multiplexing, O-OFDM: optical orthogonal frequency-division multiplexing.

The TOUCAN realises its main vision by fulfilling the following four objectives:

1. Develop a radically new architecture that will take a technology agnostic approach targeting
cross-technology application, programmable infrastructure, and service composition driven by
KPIs in, for example, capacity, connectivity, spectrum utilisation, energy efficiency, fairness, QoS,
and QoE.

2. Converge heterogeneous technology domains seamlessly, specifically, wireless access and
optical access, high capacity optical metro/backbone networks, data centre (DC) networks,
and end devices.

3. Support very high bandwidth granularity range and capacity, from Pbps (e.g., inter-data centre
transport) to kbps (e.g., machine-to-machine communications).

4. Break traditional barriers between infrastructure, control, and service layers by making the
network infrastructure and its control part of the end-to-end service delivery chain.

Figure 2 illustrates the generic TOUCAN architecture. In this architecture, the TOUCAN converged
physical infrastructure aims to design a generalised solution able to deliver agility, programmability,
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and flexibility for interfaces between heterogeneous transport technologies, that is, optical and wireless,
and different networks—for example, optical core, metro and access; wireless cellular; and wireless
local area networks. Figure 3 presents the architecture of the generic convergence-node with multiple
interfaces to fulfil the TOUCAN-converged physical infrastructure illustrated in Figure 2. In this
scenario, the node is implemented on field-programmable gate arrays (FPGAs) to provide the flexibility
and the requests for future network convergence. In addition, the node interface takes advantage of
the huge input–output (IO) resource and hardware programmability of FPGAs. Through high speed
transceivers, the FPGA could process the incoming traffic from Ethernet, access, wireless cellular,
and other networks. Then, the FPGA could use its computing power to perform traffic parsing, protocol
framing/mapping, traffic aggregation, and other operations. Moreover, the convergence node aims to
allocate resources elastically in time, spectrum, and space, in order to accommodate a large range of
traffic profiles and granularities in an efficient way and providing low latency on the basis of considered
vertical technology interfaces. Finally, the processed data traffic will drive different bandwidth variable
transmitters (BVTs) to generate optical signals for transmission towards different networks.

Figure 2. The generic TOUCAN architecture. TE: traffic engineering, IETF: internet engineering task
force, ONF: open networking foundation, SNMP: simple network management protocol, IMF: internet
message format.

The TSON solution [2,3] is a proprietary solution developed by the High Performance Networks
(HPN) research group, currently part of Smart Internet Lab, University of Bristol, and has been adapted
to support the convergence node proposed in Figure 3. This technology offers high bandwidth and
low-latency connectivity to support the requirements of High-Performance Networks. The TSON
solution is a proven active WDM solution that provides variable sub-wavelength switching granularity
and the ability to dynamically allocate optical bandwidth elastically. This solution is the first multiple
protocol programmable interface that meets 5G KPIs such as high bandwidth and sub-millisecond
end-to-end latency [4].

Several extensions have been applied to the TSON architecture over the course of the TOUCAN
project to equip this solution with more features. This work describes the TSON solution capabilities
and reviews its evolution stages. The rest of the paper is structured as follows: Section 2 introduces the
initial TSON solution implementations. In this section, we describe TSON extensions organised in four
stages of evolution. Section 3 presents the current status of the TSON implementation. In this section,
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the latest TSON architecture is introduced and its evaluation results are presented. The TSON control
plane is introduced in Section 4. Finally, Section 5 concludes the paper.

Figure 3. The generic convergence-node architecture. LTE-A: long term evolution advanced, PON:
passive optical network, WiFi: wireless fidelity, LiFi: light fidelity, BVT: bandwidth variable transponder.

2. TSON, the Past

The TSON solution has evolved over the course of the TOUCAN project. Its evolution in the
past comprised four stages: the TSON baseline solution, the multi-protocol solution in support of
cloud radio access network (C-RAN), the extensions required for the support of resilient C-RAN
services through network coding (NC) capabilities, and the extensions of TSON to support transmission
capabilities for both metro and long-haul networks. This section reviews theses evolution stages.

2.1. Evolution Stage 1: TSON Baseline

The TSON idea was initiated by designing a multi-wavelength fully bi-directional synchronous
and innovative flexible frame-based system [1,2]. It offers a flexible and multiplexed optical network
infrastructure and on-demand guaranteed time-shared multi-granular services. This solution is a
contentionless [5] solution through the deployment of a central resource allocation engine of route,
wavelength, and time assignment, in charge of setting up the sub-wavelength paths.

TSON offers two type of nodes, edge and core nodes, offering different functionality and levels of
complexity. The TSON edge nodes provide the interfaces between different domains, such as wireless,
passive optical network (PON), and DC, to the optical domain and vice versa. Figure 4 presents
the baseline of the TSON edge node data plane architecture. The architecture consists of one 10 Gb
Ethernet client to send and receive data, and two 10 Gb wavelengths (lambdas). In this architecture,
the ingress part of the edge node provides the aggregation and mapping, whereas the egress edge
nodes include the reverse functionality. The TSON can support elastic time and optical bandwidth
allocation. The ingress part waits to finish the processing of the current frame, and then starts to
transmit time-slices on the basis of the optical bandwidth. The optical bandwidth allocated to the
different services can be elastically defined on the basis of the requirements of each service.

The functionality of the ingress part of the edge node in detail is in receiving and passing the
Ethernet frames to the 10 GE medium access control (MAC), then MAC discards the preambles and
frame check sequence (FCS), transmits the data to the receiver (Rx) in a first in first out (FIFO) manner,
and indicates whether the packet is status of the frame, that is, the frame is good or bad. The Rx
FIFO receives the data, waits for the frame status indication from the MAC, and then sends it to
demultiplexer (DEMUX) block when the data is valid. The role of DEMUX is to analyse the Ethernet
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frame information, that is, destination MAC address, source MAC address, and others, and dispatch
them into different FIFOs. The FIFOs wait for the aggregation unit to grant access to send data.
The aggregation unit grants access to the FIFO when the burst-length Ethernet frames are ready in the
FIFO and the time-slice allocation is available, then it transmits the bursts with a suitable wavelength
through the transmitter (Tx) FIFO. The egress part of the edge node receives a burst (time-slice) and
passes it to the Rx FIFO wavelength (Lambda0/Lambda1). The segregation unit segregates the burst to
Ethernet frames when the burst is completely received in Rx FIFO, and then transmits them to a Tx
FIFO. Finally, Tx FIFO sends the Ethernet frames to the MAC, where the MAC passes the data to the
transmitter before finally transmitting them out.

Figure 4. The time shared optical network (TSON) edge node baseline data plane architecture.
Rx: receiver, Tx: transmitter, MAC: medium access control, FIFO: first in first out, WL: wavelength,
MUX: multiplexer, DEMUX: demultiplexer.

The TSON core node does not carry out any data processing. Instead, it needs to control the
fast-optical switch in order to set up a path with a client’s request to switch the traffic optically. The core
node demands one switch per wavelength to direct the incoming optical time-slice signals towards the
output ports on the basis of the control plane definition. In addition, the dimension of the space switch
is defined by the number of fibres that are interconnected through the node.

TSON supports two different functional modes: Ethernet and elastic bandwidth allocation mode.
The Ethernet mode supports Ethernet-based packets without any time-slicing and elastic bandwidth
allocation is based on time-slicing. The TSON control plane is presented in Section 4. It should be noted,
however, that TSON is fully software defined networking (SDN) enabled. The parameters of TSON
nodes are programmable by an SDN controller, including quality of transmission (QoT), programmable
overhead, programmable time-slice size, programmable time-slice numbers in a frame, and time-slice
allocation. The TSON is client friendly (e.g., operator, service provider). When required to setup a
network service, after evaluating its requirements such as bit-rate, connectivity type, QoS, and QoT by
the network controller, the TSON nodes choose the corresponding QoT overhead size, time-slice size,
time-slice number, and time-slice allocation to fulfil such requests to compose a dedicated network
function slice of the node. TSON provides a hierarchy of three levels of resource granularity:

• Connections—referring to a sub-wavelength light path establishment between any two end points
in the TSON domain.

• Frames—wherein each connection lasts for a number of frames to improve statistical multiplexing
of data units.

• Time-slices—wherein each frame is divided into time-slices as the smallest units of
network resource.

The minimum granularity achievable by the TSON network is related to the frame length and the
number of time-slices inside a frame. The TSON baseline implementation has been participated in
several use cases [6–8].
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2.2. Evolution Stage 2: TSON Multi-Protocol

In the second evolution stage of the TSON solution, the TSON baseline technology has been
extended to support multi-protocol, as well as to provide synchronisation capabilities. We have chosen
xHaul as the multi-protocol scenario, which is joined Backhaul (BH) and Fronthaul (FH) services.
The reason to choose xHaul scenario is that the TSON can support varying service-related requirements
as its operational characteristics can be dynamically modified. Therefore, multiple Ethernet clients for
BH as well as CPRI integration for FH services are considered. The TSON client ports extension are
only limited to the number of available transceivers on FPGA boards, as well as the FPGA density to
support extended architecture.

Figure 5 illustrates the TSON edge node to support multi-protocol data plane architecture.
This architecture follows the TSON baseline legacy with the following extra features:

• Supporting xHaul—the TSON Ethernet client ports are extended to multi-ports supporting BH
services and native CPRI is added to support FH for the xHaul solution.

• Wavelength multiplexing—the clients can use a common wavelength (i.e., lambda) if the total
bandwidth of the client is less than 10 Gb. In this scenario, the frames are delivered to the related
clients at the egress nodes on the basis of their header information.

• Synchronisation—IEEE-1588 v2 [9] protocol is integrated for accurate synchronisation.

Figure 5. TSON edge node multi-protocol data plane architecture. Rx: receiver, Tx: transmitter, WL:
wavelength, CPRI: common public radio interface, TSON: time shared optical network.

In this architecture, the CPRI transceiver receives the CPRI frames and passes them to the
CPRI_TSON interface unit in the ingress side. The CPRI_TSON interface is responsible for the clock
domain crossing (CDC) and the mapping of the CPRI data and control to TSON format. Once the
CPRI frames reach the aggregation block, then, according to the look-up table (LUT) information of
the time-slice allocation, the aggregation block calculates the frames needed to construct the burst,
aggregates the frames, waits for the valid time-slice, and finally sends the burst into a different
wavelength. The egress side has the reverse functionality. Figure 6 presents how a CPRI flow can be
embedded into the TSON framing structure.
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Figure 6. Common public radio interface (CPRI) frame structure over TSON. C&M: control and
management, L1: layer 1, Ctrl_AxC: control data stream for antenna carrier, BFN: node B frame number.

High synchronisation accuracy over the network requires an accurate time-stamping method.
The TSON network requires global frame synchronisation among TSON nodes to achieve high
synchronisation accuracy over the network. We have adopted IEEE-1588-v2 protocol for the TSON
solution. Xilinx 10 Gb Ethernet Subsystem IP core [10] supports high accuracy IEEE-1588-v2 one-step
and two-step time-stamping on a 10GBASE-R network interface, but does not support multiple
IEEE-1588-v2-enabled subsystem instances [11]. To resolve this issue, a new subsystem has been
developed to support multiple IEEE-1588-v2 enabled subsystems. The Xilinx approach uses time
stamper unit for the transmit-side and the receiver-side inside the MAC and the physical coding
sublayer/ physical media attachment (PCS/PMA) sub intellectual property (IP) cores, respectively.
Unlike the Xilinx approach, the developed subsystem uses a separate developed time stamper. Figure 7
shows the proposed subsystem architecture. The developed time stamper follows the same features
as the Xilinx Subsystem. The time stamper unit is located between the MAC and PCS/PMA IP cores,
uses the Timer Syns clock, and follows the IEEE-1588-v2 protocol. In addition, the time stamper
considers the physical layer delay for stamping.

Figure 7. Proposed subsystem for synchronisation. AXI4: advanced eXtensible interface 4, MAC:
medium access control, PCS/PMA: physical coding sublayer/physical media attachment, XGMII: 10
gigabit media independent interface.
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The architecture supporting multi-protocol is evaluated [4] and employed in an end-to-end use
case demo [12]. Video S1 demonstrates the multi-protocol TSON extension to address the varying FH
capabilities needed by the different remote radio heads (RRHs) and BH requirements.

2.3. Evolution Stage 3: TSON NC for Resilient C-RANs

The third stage of the TSON evolution enables TSON to support NC for resilient C-RANs. The goal
is to protect the bandwidth demanding C-RAN services from possible optical network and/or baseband
unit (BBU) failures. The NC-based approach is developed to tackle the issue with increased resource
efficiency. A reduction in utilisation of 33% has been identified when using the NC approach compared
to the traditional 1 + 1 protection scheme. However, in order to adopt NC-based resilient FH networks
there are three main challenges:

• Coding—providing module-2 sum and replication operation at FH line rate, as these factors may
degrade the performance of C-RANs in practical systems.

• Storage—the operation of the decoding process at the edge imposes significant buffering
requirements due to the high data rate of FH streams.

• Synchronisation—synchronisation between flows reaching decode nodes.

TSON is extended [13] to address these challenges and execute the coding and decoding processes at
line rate, as well as minimising buffering requirements adopting a purposely developed synchronisation
scheme to make it suitable for C-RAN implementation. We considered a butterfly network for NC.
Figure 8 presents the butterfly network consisting of two TSON nodes. In this scenario, each TSON
node maps three source nodes of a butterfly network for NC. The TSON node 0 receives two different
FH traffic streams (A and B) and sends the streams A, B, and their modulo 2 sum (XOR) of both traffic
streams to the TSON node 1. The TSON node 1 receives the three traffic streams and transmits each
traffic stream A and B simultaneously to two destinations of the TSON node 1.

Figure 8. Butterfly network for network coding (NC) and its mapping on TSON edge nodes.

Figure 9 presents the TSON data plane architecture with extra pipelines to support NC for FH
considering the butterfly network. The marked extended pipelines in the figure follow the other
TSON pipelines legacy with extra coding/decoding capability. In the ingress node of these pipelines,
the incoming traffic parses to two flows: X and Y. The output ingress node contains three different
wavelengths (X, Y, and X XOR Y) that can be configured on the fly using SDN to address different
programmable parameters. The egress edge nodes include the reverse functionality with extra
replication outputs to support a butterfly network. The IEEE-1588-v2 synchronisation is employed for
accurate synchronisation. The TSON architecture supporting NC is presented and evaluated in [13].
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Figure 9. The TSON data plane architecture supporting NC.

2.4. Evolution Stage 4: TSON Multi Haul

The fourth stage of the TSON evolution is building a state-of-the-art disaggregated edge node to
support both metro and long-haul networks [14]. The reason behind creating such a disaggregated edge
node for the first time is the need for a flexible and programmable edge node architecture providing an
interface between the 5G access and transport network. This requirement is due to the plethora of
applications, their KPIs, and the diversity of 5G access network technologies that will share common
transport network solutions.

Figure 10 presents the proposed disaggregated edge node data plane architecture comprising
the TSON solution, Voyager [15], and wavelength selective switches (WSS) [16]. This architecture is
highly programmable using SDN. As the heart of the architecture, the TSON solution follows the
TSON multi-protocol legacy presented in the previous sub-section, as well as supporting both metro
and long-haul networks on demand on the basis of the operator or service provider requirements.
The TSON edge node aggregates/dis-aggregates any input access traffic to/from a highly synchronous
and bandwidth granular optical transport on the basis of time slot switching in a programmable way.
In addition, it provides access to a highly programmable coherent variable bandwidth transponder
suitable for spectrally elastic long-haul transmission. The Voyager is a Broadcom Tomahawk-based
switch with added dense wavelength division multiplexing (DWDM) ports, acting as a disaggregated
optical transponder [14]. It hosts multiple BVTs that are capable of dynamically allocating variable
spectral width and reach by modifying the device parameters. This is achieved through the support of
three types of modulation formats, namely polarisation multiplexed quadrature phase-shift keying
(PM-QPSK), 8-ary quadrature-amplitude modulation (8-QAM), and 16-ary quadrature-amplitude
modulation (16-QAM) that allow different line rates of up to 200 Gbps. The WSS provides filtering and
switching of the optical signal [15]. The WSS is used in this architecture as a programmable 4 × 16
optical switch that multiplexes and demultiplexes the optical signals to specific ports. As can be seen in
Figure 10, one WSS is connected to the Voyager and another to the TSON output ports. WSS’multiplex
and demultiplex four wavelengths with different bandwidths from the Voyager/TSON ports.
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Figure 10. The disaggregated edge node data plane architecture. WiFi: wireless fidelity, LiFi: light
fidelity, eCPRI: evolved common public radio interface, PON: passive optical network, DC: data centre,
WSS: wavelength selective switches.

Figure 11 presents the TSON data plane architecture in support of the disaggregated edge node.
The functions for the operation of TSON domains has been implemented in internal modules, within
the SDN controller, which collaborate for the on-demand provisioning of connectivity between TSON
nodes. The data plane functionality of this architecture is the same as the previous architecture.
The 10 Gbs wavelengths are dedicated for metro networks. The extended pipelines with 40 Gbs,
which are marked in Figure 11, are to support long-haul networks with only Ethernet mode. In the
extension scenario, the ingress TSON edge nodes are responsible for parsing, aggregation, and mapping
of any input traffic combination with different bandwidth into converged 40 Gbps Ethernet output,
whereas the egress edge nodes have the reverse functionality. The disaggregated edge nodes are
evaluated at the same time for both 8 km metro and 200 km long-haul networks and the evaluation
results are available in [14]. Results showed that low latency and power penalty for both metro and
long-haul networks.

Figure 11. The TSON solution data plane architecture in support of the disaggregated edge node.

3. TSON, Present

This section presents the fifth evolution stage, this being the current architecture of the TSON
solution. The current architecture maintains all previous features of the TSON and adds more
functionality and flexibility to it. In addition, the architecture is implemented, tested, and evaluated
over a real testbed.
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3.1. Evolution Stage 5: Current TSON Architecture

Figure 12 presents the current TSON edge node data plane architecture. The ingress TSON edge
nodes are responsible for parsing, aggregation, and mapping of any input traffic combination with
different bandwidths (in this implementation less than 10 Gbps) into either 10 Gbps TSON output with
different granularity or converged 100 Gbps Ethernet output, whereas the egress edge nodes have the
reverse functionality. As it can be seen in Figure 12, the architecture is similar to the pervious TSON
solution architecture.

Figure 12. The TSON edge node current data plane architecture. m + n − 1 = number of 10 G
input–outputs (IOs).

Although this architecture carries out the previous features, it adds more values to the TSON
solution. Seven new TSON solution features in the current implementation are as follows:

• Modularity—a set of intellectual property (IP) cores have been created to ease and shape the
TSON system integration.

• Extendibility—the TSON pipelines are designed to be extendable. The only limitation factor is the
FPGA chip density and IOs for implementation.

• Optimisation—the TSON pipelines are optimised to reach lower latency for 10 Gb pipelines and
reduce the latency by 6.7%.

• 100 Gb aggregation—× 10 Gb to 100 Gb aggregation is added to the design.
• Frame format—the TSON frame format is changed. In this scenario, each TSON frame slice carries

the incoming client frame format. This means if the client data is Ethernet packets, the TSON
frame slices are shaped by Ethernet frames. This feature makes the TSON frames transparent for
other packet processing devices, but the time-slices frames are visible for them for processing.

• Symmetry—each 10 Gb line can be used as client or lambda, depending on the demands without
changing anything in the hardware if m + n − 1 = number of 10 G IOs, where m is the number
of clients and n is the number of lambdas. This feature is another result of the changing TSON
frame format.

• Elastic bandwidth allocation mode—this mode is enabled for both 10 Gb and 100 Gb wavelengths.

3.2. The TSON Testbed Setup and Experimental Results

Xilinx vcu108 evaluation board is employed for this implementation. Figure 13a shows the TSON
edge node, which is a Xilinx FPGA board connected to a server and receiving the SDN control plane
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command via peripheral component interconnect express (PCIe). The FPGA board is connected to two
FPGA mezzanine cards (FMCs) to provide 16 × 10 Gb (m + n − 1 = 16) IOs. Figure 13b shows the
testbed setup architecture with two TSON edge nodes. The edge nodes are connected to 6 × 10 Gbps
ethernet traffic analysers from one side and from the other side to Smart Internet Lab’s 5G test network.
The 10 Gbps traffic streams can be aggregated to 10 or 100 Gbps traffic that is both sent to the metro
network on the basis of different control policies.

Figure 13. Testbed setup: (a) TSON edge node; (b) the TSON edge nodes testbed setup architecture.

The Smart Internet Lab’s 5G test network (5GUK test network) has its core in the HPN lab at the
University of Bristol. The test network serves several nodes in Bristol, as well as the Roman Baths
in city of Bath, in providing access points for end user terminals connectivity for experimentation.
Figure 14 presents the 5GUK test network locations we have used to make a ring topology for the
evaluation scenarios. Note that the ring topology is approximately 8 km.

Figure 14. The Smart Internet Lab’s 5G test network (5GUK test network) ring topology to evaluate the
TSON edge nodes. HPN: High Performance Networks.

We have validated the functionality of the TSON edge nodes by applying different control
policies on the fly using the SDN controller for both aggregated 10 and 100 Gb lines at the same time.
Two different scenarios were considered for the experimental evaluation of the edge nodes. The first
scenario involved back-to-back connection of two TSON edge nodes with standard single mode fibre
(SSMF). In the second scenario, the proposed nodes were evaluated over the 5GUK test network with
8 km of optical fibre. We evaluated the nodes using a fixed frame of 1500 B length. We used fine
granularity to evaluate the edge nodes. In the fine granularity case, the TSON packet size was the
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same as the Ethernet frames, that is, 1500 B in length. For the sake of performance analysis, one 4 Gb
and one 4.5 Gb client frames were converged to a 10 Gb line. Four 9.8 Gb clients were converged to a
100 Gb line. The Ethernet performance parameters under consideration included bit error rate (BER)
and latency. Latency is defined as the time difference between the arrival of a frame at the analyser,
and its departure from the analyser.

Table 1 presents the latencies for the mentioned scenarios. This table shows that each TSON
convergence node took 4.43 and 3.16 µs for 10 Gb convergence and 100 Gb convergence, respectively.
The back-to-back latency was 8.86 µs for 10 G convergence, which was 2.54 µs more than 100 G
convergence. Further measurements have been taken to find out the reason. An edge node consists of
10 Gb IP cores, TSON pipelines, and 100 Gb IP core. We have measured the latency for individual
components. Figure 15 shows the measurement result for 100 G convergence. In this scenario, frames
passed one 10Gb IP core, TSON pipelines, and one 100 Gb IP core. As can be seen in Figure 15,
the TSON pipelines’ latency was approximately the same as the 10 Gb IP core, and the 100Gb IP core
latency was much less than the 10 Gb IP core. The TSON pipelines’ latency was approximately 1.5 µs,
which is very low. Figure 16 shows the BER for the evaluation scenarios. As it can be seen in this figure,
the penalty was negligible for both 10 and 100 Gb convergence scenarios.

Figure 15. Performance evaluation: latency for one TSON edge node components. IP: intellectual property.

Figure 16. Performance evaluation: bit error rate (BER) for different evaluation scenarios. B2B: back
to back.
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Table 1. Latency for different test scenarios.

Destination Latency (µs)

Back to back, 10 G convergence 8.86
Back to back, 100 G convergence 6.32

8 km, 10 G convergence 47.6
8 km, 100 G convergence 45.1

4. TSON Control Plane

This section overviews the TSON control plane. The TSON is fully software defined networking
(SDN) enabled [17]. ONOS controller has been used as an SDN controller, wherein some applications
or modules have been extended or developed. The TSON control plane architecture is depicted in
Figure 17. It comprises an ONOS SDN controller where the OpenConfig driver is extended in order to
handle the TSON features. Also, the NETCONF/OpenConfig agent based on the extended OpenConfig
has been developed. This agent receives the request from the SDN controller via NETCONF in order to
configure the FPGA. The developed NETCONF agent can process the received request and configure
the TSON device implemented by an FPGA.

Figure 17. The TSON control plane architecture. FPGA: field-programmable gate array. SDN: software-
defined networking, NETCONF: network configuration protocol, TDM: time domain multiplexing.

OpenConfig is used to represent the TSON device. Indeed, the standard OpenConfig YANG
model does not handle all the TSON features and needs to be extended. The OpenConfig YANG model
implements several modules. Logical channel of the terminal device module has been extended to
control the TSON parameters, such as:

• Virtual local area network (VLAN) pairs;
• Time slots size;
• Frames size;
• Mode of transmission (TSON or Ethernet) to select the granularity.

Figure 18 depicts the logical representation of the OpenConfig agent, wherein several clients
(depending on the TSON device implementation) and two outputs are shown. The OpenConfig agent
can configure the transmission mode (Ethernet or TSON) to configure the TSON parameters (if this
mode of transmission is selected) or multiplex/demultiplex the logical ingress channels on one of the
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optical channels. Also, an FPGA driver is developed in order to send the parameters to the FPGA
agent via REST API.

Figure 18. Logical representation of the TSON node based on OpenConfig. OCH: optical channel, LC:
logical channels.

5. Conclusions

We proposed the TSON in order to provide a dynamic optical transport solution in support of 5G
technology and beyond. The TSON solution has been adapted and evolved over the course of the
TOUCAN project. This work presents the evaluation stages. We started with the TSON baseline stage,
focusing on the TSON solution idea, its architecture, and functionality. TSON baseline only supports
one client with Ethernet protocol; therefore, we have extended it to support multi-protocol with multi
clients. xHaul, as the multi-protocol scenario, was chosen for this extension, and synchronisation
capabilities were added to the TSON. Then, the TSON was extended to support NC for resilient
C-RANs for the sake of 33% reduction in utilisation. The goal of the next evolutionary step is creating
a disaggregated edge node to support both metro and long-haul networks. Finally, the current TSON
architecture was presented and evaluated using the 5GUK test network. The evaluation results denote
the reliability of the TSON solution over dark fibres.

Supplementary Materials: The following are available online at https://www.youtube.com/watch?v=FtGxYhiNO_
g: Video S1: Programmable multi-technology 5G node.
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