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Abstract: Tracking objects over time, i.e., identity (ID) consistency, is important when dealing with
multiple object tracking (MOT). Especially in complex scenes with occlusion and interaction of
objects this is challenging. Significant improvements in single object tracking (SOT) methods have
inspired the introduction of SOT to MOT to improve the robustness, that is, maintaining object
identities as long as possible, as well as helping alleviate the limitations from imperfect detections.
SOT methods are constantly generalized to capture appearance changes of the object, and designed
to efficiently distinguish the object from the background. Hence, simply extending SOT to a MOT
scenario, which consists of a complex scene with spatially mixed, occluded, and similar objects,
will encounter problems in computational efficiency and drifted results. To address this issue, we
propose a binary-channel verification model that deeply excavates the potential of SOT in refining the
representation while maintaining the identities of the object. In particular, we construct an integrated
model that jointly processes the previous information of existing objects and new incoming detections,
by using a unified correlation filter through the whole process to maintain consistency. A delay
processing strategy consisting of the three parts—attaching, re-initialization, and re-claiming—is
proposed to tackle drifted results caused by occlusion. Avoiding the fuzzy appearance features of
complex scenes in MOT, this strategy can improve the ability to distinguish specific objects from
each other without contaminating the fragile training space of a single object tracker, which is the
main cause of the drift results. We demonstrate the effectiveness of our proposed approach on the
MOT17 challenge benchmarks. Our approach shows better overall ID consistency performance in
comparison with previous works.

Keywords: multiple object tracking; identity consistency; single object tracking

1. Introduction

Multiple object tracking (MOT) in video (a critical problem for many applications including
robotics, video surveillance, and autonomous driving) remains one of the big challenges of computer
vision. The goal is to locate all the objects we are interested in, in a series of frames, and form a
reasonable trajectory for each one of them. Since recent progress has been made on object detecting,
tracking-by-detection (shown in Figure 1) has emerged as one of the most popular paradigms to solve
the MOT problem, as it breaks MOT into two parts: (i) detection, to separate interesting objects from
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the background in each frame, and (ii) data association, to align corresponding detections through time
series to form reasonable trajectories. However, missing and spurious detections, as well as complex
scenes under a MOT scenario like occlusions and object interactions in crowded environments (some
of the examples are shown in Figure 1), may set a barrier for the performance of MOT methods due
to the high dependency of detection. Also, the separation of detection from tracking itself may keep
object detection inaccessible to the temporal information of a certain object.

Figure 1. (a) One example of the overall tracking-by-detection paradigm in multiple object tracking
(MOT). At time t, the MOT method matches the last location of a certain object and aligns the track with
the upcoming detection provided by an external detector. Eventually, the goal is to form a reasonable
track of that object by repeating this process throughout the video. (b) Some examples of occlusion
under a MOT scenario. (c) Some examples of object interaction.

A common concern in MOT approaches is identity (ID) consistency—maintaining the objects’
identities as long as possible. This is difficult under occlusion and in crowded scenes, especially when
the appearances of the individual objects are not distinctive enough. Some of the offline methods
rely on tracklet (short trajectory segments) merging, rather than single detections, to keep track of the
objects. Online methods, on the other hand, use a re-identification method to retrieve certain objects
which are lost from tracking during occlusion or interaction. However, their performance is still not as
promising as desired. A single object tracker is capable of distinguishing objects from the background,
where the goal is to maintain tracking a single object as long as possible. Hence, it is intuitive to
implement a single object tracking (SOT) method in a MOT scenario to keep the ID consistency.

The MOT problem can be easily rephrased as multiple single object tracking problem, where all of
the objects’ states are estimated by a tracker formed of multiple single object trackers. However, scenes
under a MOT scenario are quite different from those in a SOT one, usually they are more complex.
Thus, directly pushing SOT methods into a MOT scenario still faces various challenges.
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The aim of single object tracking (SOT) is to locate an object in continuous video frames given an
initial annotation in the first frame. In contrast with MOT, there is only one object of interest and it
is always in the considered image scene. A single object tracker is constantly generalized to capture
appearance changes of the object, and it is designed to efficiently distinguish the object from the
background by training a strong discriminative appearance model to find the location of the object
within a searching area in the next frame. However, in the MOT context, multiple objects with similar
appearances and geometries in the searching area may confuse the single object tracker. Furthermore,
the update strategy of the single object tracker may lead to an ambiguity problem. These kinds of noisy
samples may contaminate the online training samples for the tracker, can lead to gradual drift, and
eventually will fail to track the object. Moreover, since the steady tracking of the single object tracker
heavily relies on the quality of initialized bounding-box in the first frame in order to correctly separate
the object from the background and possibly retrieve it after occlusion, the object candidates provided
by a real detector under the current MOT framework are usually imperfect. With considerable noise in
location and scale, this may become another major challenge.

In this paper, we propose an integrated model with a binary-channel verification and delay
processing model to tackle the aforementioned problems; see Figure 2 for an outline. When a new frame
comes in, SOT trackers produce two scores on both the predicting location given by the motion model
(the same as processing under the SOT scenario) and the region of interest provided by the detection.
Combined with the previous tracking score and the trajectory, the association model produces a refined
bounding box. When occlusion happens, the association model proceeds as usual, then marks the frame
ID where the occlusion happens and keeps the results for later processing. A delay processing model
composed with three processing parts is proposed. First, for those tracks encountering the deformation
problem (as in those with a low tracker score and low detection score), re-initiation discards the
non-deformed features trained before and re-initiates with new features after determination by spatial
information as the same object. Second, attaching for newly initialized tracklets during the occlusion
period, re-correlates them with tracks lost in the same period and re-attaches them if the correlation
score is above a certain threshold. Third, re-claiming, for unattached newly initialized tracklets after
the attach phase , assigns them to existing tracks in shadow tracking mode, which means the object
is tracked without any verification of detection through recent frames, if the re-correlation score and
overlap rate (as in the Intersection over Union (IOU) score between the newly initialized tracklets and
existing tracks for several frames) between them are above specified thresholds.

This paper thus presents three main contributions:

• We propose a binary-channel verification model to deeply excavate the potential of applying SOT
under a MOT scenario, specifically in refining the representation while maintaining the identities
of the objects during the tracking process.

• We introduce a delay processing model to improve the tracker capability of solving the drift
problem under occlusion and object interaction.

• We explore the proposed method on the MOT17 benchmark and perform an ablation study of
each block, showing the comparable performance on result-refinement and ID consistency, and
proving each block of our proposed method is indispensable.

This paper is organised as follows. Section 2 briefly reviews the state-of-the-art for computer
vision-based object tracking. The details of our proposed method are described in Section 3. The
experimental study and benchmark evaluation are then reported in Section 4. Finally, Section 5
concludes this paper and describes opportunities for future research.
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Figure 2. An example of our method. At time t, the estimated bounding boxes provided by every
single object tracker are sent to the binary-channel verification model along with the bounding boxes
from the external detector, where the determination of the output is based on the evaluation score of the
single object tracker alone. Then, a delay processing model focusing on potential complex circumstance
like t + 1 above is proposed to handle occlusion, deformation, etc. Single object tracking (SOT).

2. Related Work

2.1. Multiple Object Tracking

Although a great deal of work has been done on multiple object tracking (MOT), it still remains a
challenging task, especially in complex environments where occlusions and imperfect detections are
common. Recent works on MOT primarily focus on the tracking-by-detection paradigm. Most of them
can be roughly categorized into offline tracking and online tracking.

In offline tracking, MOT is formed as an offline global optimization problem which uses frame
observation through previous and future states to estimate the current status of objects [11–15]. A data
association method is widely used, such as the Hungarian algorithm [16,17], network flow [18,19],
or multiple hypotheses tracking [20]. However, offline methods are not suitable for causal applications
like autonomous driving, since future information is necessary.

Things are quite different in online tracking, where observations from before the current frame
are provided to the online estimation of object states. Trajectories are generated based on information
only up to the current frame, which adopt probabilistic inference [21] or deterministic optimization.
However, online methods heavily rely on the performance of the underlying detector, since they are
more sensitive to noisy detections. This is a resource waste of the tracker itself, since the detector
is unable to access the temporal information from the previous trajectories. Our work focuses on
extending online single object tracking (SOT) methods to MOT scenarios. SOT helps to alleviate the
limitations from imperfect detections, especially for missing detections. It is complementary to the
data association methods, since the tracking results of single object trackers at the current frame can be
considered as association candidates for the data association.
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2.2. Single Object Tracking Based on Regularized Correlation Filters

Correlation filters (CF) have been actively adopted in single object tracking to improve robustness
and efficiency. Initially, since CF needs training, the work of online tracking seems inappropriate. In the
later years, with the development of the minimum output of sum of squared error (MOSSE) filter [28],
which introduces efficient adaptive training, changed the situation. To meet the real-time requirement,
a high-speed tracking method using kernelized correlation filters (KCF) [29] has been proposed, using a
Gaussian kernel function to reduce computational complexity. However, discriminative correlation
filter (DCF) based trackers are limited in their detection range because of the requirement of equal
filter and patch size, which leads to a constant failure under occlusion and object deformation. Thus,
a larger search region is necessary, which needs incorporation of a measure of regularization due to
the degradation of the discriminative power under more complex background. Danelljan et al. [44]
presented spatially regularized DCF (SRDCF) by introducing a spatial regularization in DCF learning.
To improve the performance of SRDCF, Danelljan et al. [5] replaced the Histogram of Oriented
Gradient (HOG) features to deep features in a Convolutional Neural Network (CNN) . Then, in [30],
a multi-resolution feature maps learning, named continuous convolutional operators for tracking
(C-COT), was proposed to optimize the estimation of the object position. Finally, the efficient
convolution operators (ECO) tracking scheme [3], as an improved version of C-COT, was proposed.
ECO picks the most efficient set of filters and discards unnecessary ones, and uses a Gaussian mixture
model (GMM) to represent diverse object appearances. These methods led to increasing performance
of the tracker and significantly reduced processing time.

2.3. A Single Object Tracker in MOT

Some of the previous MOT methods have attempted to adopt SOT methods into the MOT problem.
However, SOT methods are often used to tackle sub-problems. For instance, in [7], SOT is only used
to generate initial tracklets. Yu et al. [8] partitioned the state space of the object into four subspaces
and only utilized single object trackers to track objects in a tracked state. Chu et al. [1] implement the
single object tracker as a state estimation procedure and further train a CNN based classifier to handle
re-tracking and occlusion problems.

Few works integrated SOT methods throughout the whole tracking process. Breitenstein et al. [9]
trained an object-specific classifier to compute the similarity for data association in a particle filtering
framework. Yan et al. [4] kept both the tracking results of the single object trackers and the object
detections as association candidates and selected the optimal candidate using an ensemble framework.
However, tracking drift caused by occlusion still remains unsolved.

Chu et al. [10] used a dynamic CNN-based framework with a learned spatial-temporal attention
map to handle occlusion, where the CNN trained on ImageNet is used for pedestrian feature extraction.
Although it showed a good tracking performance, memory and time consumption may explode, since
it assigns a network for each object and conducts online learning. Our approach differs from these
methods by using a SOT method with a two-step verification and delay processing strategies to refine
the tracker results and tackle the drift problem, in order to deeply excavate the potential of applying
SOT under MOT scenarios.

3. Methodology

3.1. Overview

An overview of our proposed approach is shown in Figure 2. Following the tracking-by-detection
paradigm, the online MOT can be formulated as an optimization problem. Trajectories in the set
T = {track1, track2, · · · , trackk} are forked by the bounding boxes Bk = {x, y, w, h} of every object in
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the past frames. At frame t, the set of the objects’ locations B = {bk1 , bk2 , · · · , bkn} of the previous
frame t-1 are associate with the Dt detection candidates to maximize a final score:

Bk = argmax fk

(
t, Bt−1

k , Dt
j ,At,W t

v,dk,j

)
. (1)

Here, At denotes the final association results between the k-th object in B and the j-th detection in
D at frame t. at

kj
= 1 indicates that the association of track k and detection j is valid, while at

kj
= 0

otherwise. Furthermore, at
kj
= 0.5 means that frame t is in a complex environment and the association

result needs to be post-process by the delay processing model. W is a set of parameters to model each
object’s state, including previous information, deformation, and interaction status, which is learned
using the appearance and location information through previous frames. The function f (∗) calculates
the overall results of the tracking procedure for all the existing objects at frame t, defined as follows:

f (t, Bk) = ∑
kj

At
sT ,sO ,kj

· SOT
(

t, bt−1
k , dt

j,wt
v,d,kj

)
. (2)

Therefore, solving the online MOT problem is done by solving Equation (1) from frame to frame.

3.2. Binary-Channel Verification Model

A binary-channel verification model is proposed to improve the quality of the state estimation as
function of each object. For each object in frame t, a function SOTk is learned to separate the object
itself from the background information by assigning a high score to it, while returning low scores for
the background. The parameter at

k,j is set to choose the best correlated spatial location dt
j from Dt on

object k exclusively to one object only referring to scores from all objects. Regarding different states of
incoming tracks, ongoing tracks and occluded tracks, this model can operate on those two tracking
states in a similar way with some slight changes.

The function SOTk, as in the state estimation, is the first step to process the incoming frame.
An ordinary single object tracker is initialized by the object groundtruth bounding box in the first frame
where a certain object existed, and is slowly and constantly updated. However, in MOT, the tracker is
initially learned from detections provided by an external detector which contains considerable noise
with respect to the location. Moreover, if the object moves closer or away from the viewing point,
the scale of the object will also change rapidly. Hence, implementing a single object tracker under a
MOT scenario without any supervision will easily lead to identity switches or catastrophic mis-track
problems. Benefiting from the tracking-by-detection paradigm, detection can play the role of the
supervisor for the tracker. During the state estimation process, we rewrite the function as:

SOTk =
[
SOTT =

(
t, bt−1

k , dt
j,

t
v,d,kj

)
, SOTD =

(
t, bt

j , dt
j,

t
v,d,kj

)]
. (3)

For subsequent tracks, SOTk estimates the score sTk on the previous location containing the object
k (we assume the object has moved only slightly between frames, which is verified by high frame rates),
while SOTD calculates the score sDj on the location of the detection j within the search area using the
same trained single object tracker. sTk shows the confidence of the estimated bounding box provided
by the tracker as well as the probability of the object k’s existence in the current frame, while sDj gives
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the similarity between the detection j and the object k. The output bounding box can be assigned
as follows:

bk =


bdet i f sDj > sTk and sTk , sDj > sBCVthreshold

btracker i f sDj < sTk and sTk , sDj > sBCVthreshold
′loss′ i f sTk < sBCVthreshold
′misaligned′ i f sDj < sBCVthreshold and sTk > sBCVthreshold

where sTk = SOTT

(
t, bt−1

k , dt
j,

t
v,d,kj

)
, sDJ = SOTD

(
t, bt

j , dt
j,

t
v,d,kj

)
.

(4)

Here, sBCVthreshold is based on previous tracking information, bt−1
k represents the bounding box of

the same object in the previous frame and bt
j for the bounding box of the j-th detection in the current

frame. Also, results with an untrack mark will be sent to the memory waiting for future re-claim,
in order to save computational resources. For occluded tracks, bt−1

k , since it did not exist, the estimation
of the object should take place at a search area provided by the motion model instead of the previous
location, for which we follow the constant velocity assumption (CVA) [21,22] with a camera motion
compensation by calculating the motion information of highly trusted objects’ motion trends.

We take advantage of the idea of the non zero-sum game [27], where scores calculated on the
estimation of the tracker and associated detection push each other from frame to frame with the
concept that the result can be optimized as long as one of them shows a promising result, in order to
better refine the output bounding box and increase the quality of online training samples added to the
tracker at each frame. In this way, the single object tracker and the detection can be complementary to
each other and improve the performances of each other along the tracking process.

3.3. Delay Processing Model

SOT methods are designed to distinguish the object from the background and allow a certain
degree of deformation to handle appearance variation of the object. This mechanism will easily lead to
insensitivity of the tracker when distractions are similar to the object within the search area under the
MOT scenario. Hence, directly pushing a SOT method to MOT may easily lead to drifting problems. To
tackle the drifting situation caused by occlusion or instance interaction, we propose a delay processing
model. The consequences of occlusion can be seen as three main circumstances:

1. Object deformation. This appears when sTk and sDj are at the same level but below the association
threshold sDPthreshold. This kind of circumstance is usually determined as lost by the single object
tracker, which leads to the ID switch problem.

2. Object misalignment. Here the object track is assigned to a false detection with similar appearance
and motion features, usually expressed as an abrupt change of location, receiving a reasonable
estimation score sTk and similarity score sDj .

3. Doppelganger initialization. This occurs if the object experiences partial occlusion or slight
variation of appearance, where the tracker finds a new location at the current frame without
verification of any detection and keeps tracking for upcoming frames. Hence, a doppelganger
track will be initialized using the detection supposed to be assigned to the object, causing an
overlap problem.

The three circumstances set C is thus formed as follows:

C =


′de f ormed′ i f sTk ∈ sDj · (1± σ) < sDPthreshold
′misaligned′ i f sTk ∈ sDj · (1± σ) > sDPthreshold
′doppelganger′ i f sTk > sDPthreshold, sDj > sDPthreshold

. (5)

Here, σ is set to 0.2. To solve the aforementioned problems, we propose a delay processing model
consisting of three parts which specifically target those circumstances. Such model is not only able
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to avoid the noisy appearance features that might contaminate the training space of the single object
tracker, but to change the update strategy of the tracker to ensure the tracking performance.

3.3.1. Re-Initiation

The first part is called Re-Initiation, as shown in Figure 3. When the object encounters the
deformation problem, e.g. a pedestrian turning around, appearance models tend to fail – including the
single object tracker. It is non-trivial to rely on motion estimation model to determine the location with
highest probability after occlusion for certain objects. We follow the constant velocity assumption and
assume that the object’s velocity can not change abruptly through neighboring frames. If the object
is retrieved by the motion model and validated by the single object tracker using an independent
retrieving score sretrieve after several occlusion frames, the tracker discards the outdated non-deformate
appearance features and re-initiates with new samples.

Figure 3. An illustration of the re-initiation phase in the proposed delay processing model. When
deformation happens in an upcoming timestamp t + 1, the single object tracker may suffer the drift
problem as shown in the solid box. The proposed method will re-train the single object tracker using a
new detection (denoted by the dotted box) and discard outdated appearance features.

3.3.2. Attaching

The second part is named attaching (see Figure 4). When an object is misaligned with a false
detection, the appearance model of the single object tracker is still powerless, since distraction with
a similar appearance and geometry can easily give the single object tracker an illusion which may
lead to drift results. However, with the high frame rate of the sequence, we assume that the object
has moved only slightly between frames. Following this assumption, misaligned distraction can be
notified if the offset of the object between adjacent frames is beyond a noticeable score based on the
recent motion trend. If this happens, the wrong association is discarded and the object is marked as
occluded for now, waiting for later processing. When the occlusion stops, several new tracks may be
initialized due to the above situation, the tracker will perform a second-time correlation between the
new tracks and the occluded tracks labeled within the occlusion period, and assign new tracks if the
re-correlation score srecorrelate is higher than sReCthreshold.
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Figure 4. An example of how attaching handles object retrieval after occlusion. The occlusion happens
at time t, the single object tracker belonging to the object in the yellow box at time t failed to track and
save to memory. A new object in the white dotted box is initialized from detection at time t + 1 after
occlusion. The attaching phase is able to attach the new object in the white dotted box to the lost one
in the yellow box, eliminate the object in white dotted box, and keep tracking using the single object
tracker from the yellow box object from before.

3.3.3. Re-Claiming

The third part, re-claiming, is a core procedure to retrieve occluded objects after messy frames as
in Figure 5. For all the objects in the shadow tracking mode, as lost verification of detection for recent
frames, the re-claiming part also performs a second-time correlation between newly initialized tracks
and shadow objects. Moreover, the model calculates the overlap rate between those new tracks and
the shadow object. If the re-correlation score srecorrelate and the overlap rate show that the new track is
the doppelganger of the shadow object with a high probability, then the re-claiming phase chooses a
more accurate bounding box from both tracks based on their tracking scores before, following a rule
that each object can only appear a single time at a certain frame. One thing worth mentioning is that
these kind of doppelgangers may be created by deformation or partial occlusion. This procedure can
be viewed as a precaution in case of failures by the re-initiation part.
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Figure 5. Demonstration of the re-claiming part. When encountering deformation,the single object
tracker occasionally keeps on tracking using the trained model with non-deformed appearance features,
which then will produce the inaccurate red box at time t + 1. At the same time, the corresponding
detection which failed to align with a certain object might lead to the initialization of a new object in
the green box. Under this circumstance, the re-claiming part chooses the more accurate bounding box
and terminates the newly initiated object.

3.4. Initialization and Termination

The single object tracker heavily relies on the quality of the initialization bounding box in the
first frame, which is usually hand picked in a SOT scenario. However, object candidates provided
by an external detector under the current MOT framework are the only inputs to count on, though
a high percentage of detections are imperfect in location and scale. We follow the argument in [6],
that trackability of an object is not only dependent on its visibility, but also its size. After analyzing
visibility and size of each external detector, we set the confidence score threshold for initialization as
δ = −1, 0.6, 0.7 corresponding to Deformable part model (DPM), Faster Region-Convolutional Nueral
Network (FRCNN) and Scale-Dependent pooling (SDP). The single object tracker is initialized using
the detection results in set Dt left after pre-processing by the detection purification and filtering by δ.
As for track termination, since occluded objects will be saved in memory at every frame and trying
to be re-established by the above procedures, the ones that can not be relinked for t > 55 frames are
considered lost and removed from the memory to save computational resources.

3.5. Detection Purification

Detection plays an critical role in the tracking-by-detection paradigm. It is even more important
when extending SOT methods to MOT as SOT relies much more on the quality of the detection
results. Following the analysis of the detection in Section 3.4, we perform a purification strategy on the
detection set D≈. Firstly, we adopt non-maximum suppression (NMS) on the incoming frame. Then,
we perform a strategy based on the assumption that detections in set Nt

j (which is the set of detections
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within the neighborhood of the j-th detection) with a similar size, should be provided a similar score
by the same detector as in the following:

bdet = α · bDj , where α =

1 i f sizej ∈ size∗ · (1± ε), (∗) ∈ Nt
j

0 i f sizej /∈ size∗ · (1± ε), (∗) ∈ Nt
j

. (6)

Here, ε is set to 0.2. With the two-step aforementioned cleaning strategies, detection results with
low confidence and incomplete bounding boxes will be ruled out by the tracker.

4. Experiments

We perform an experimental study of the aforementioned models and further show that our
models can tackle drift results when extending SOT to MOT, while maintaining tracking performance.
We then demonstrate the tracking performance of our proposed method on the MOT Challenge dataset
focusing on pedestrian tracking.

4.1. Implementation Details

We adopt the efficient convolution operator (ECO) tracker [3] as our single object tracker. ECO
addresses computational complexity and over-fitting problems in state-of-the-art discriminative
correlation filters (DCF) trackers by presenting a factorized convolution operator and a compact
generative model of the training sample distribution. Due to the significantly increasing computational
complexity when applying a single object tracker to a MOT scenario, we choose the faster version
of ECO using hand craft features (histogram of oriented gradients (HOG) [31] and colour names
(CN) [32]).

The proposed method is implemented in Python running on a desktop with
Intel R© CoreTM i7-3930K @ 3.20GHz CPU. With the implementation of the binary-channel
verification model and the delay processing model, the average speed of the proposed method on the
MOT17 dataset is about 1.72 fps, which is acceptable compared with other state-of-the-art methods
including LSST17 (offline) [33] at 1.5 fps, and DMAN (online) [34] at 0.3 fps. The average densities on
each frame of the MOT17 training set and test set are 21.1 and 31.8 persons per frame, respectively.

The widely accepted clear MOT metrics [35] are adopted to evaluate the performance of our
method, including multiple object tracking accuracy (MOTA) and multiple object tracking precision
(MOTP), computed from false positives (FP), false negatives (FN) and the identity switch (IDs) as
Equation (7). The calculation of aforementioned metrics are as follows:

MOTA = 1− FN + FP + IDs
GT

∈ (−∞, 1] (7)

MOTP =
∑t,i dt,i

∑t ct
. (8)

Here dt,i is the bounding box overlapping hypothesis i with its assigned ground truth object,
and ct denotes the number of matches in frame t. The MOTA score takes into account the number
of times a tracker makes an incorrect decision. However, under some circumstances the ability to
track the identities of objects is also worth measuring. In [35] it is introduced the mostly tracked (MT),



Appl. Sci. 2019, 9, 4771 12 of 19

mostly lost (ML), and ID F1 (IDF1) scores to measure the performance of a tracker for those abilities.
The computation of the IDF1 score is formed as follows:

IDP =
IDTP

IDTP + IDFP
(9)

IDR =
IDTP

IDTP + IDFN
(10)

IDF1 =
2

1
IDP + 1

IDR
=

2IDTP
2IDTP + IDFP + IDFN

(11)

Here, IDTP is the number of true positive ID matches. This can be seen as the percentage of
detections correctly assigned in the whole sequence. IDFN is the number of false negative ID matches,
and IDFP denotes the sum of false positive IDs.

4.2. Dataset

We adopt the multi-object tracking benchmarks MOT17 to evaluate our tracking performance.
It consists of several challenging pedestrian tracking sequences, with a significant number of occlusions
and crowded scenes, varations in angle of view, sizes of objects, camera motion, and frame rates.
MOT17 has the same video sequences as the lastest MOT16 [23] challenge benchmark, but provides
more accurate ground truth in the evaluation. In addition to DPM [24], Faster-RCNN [25] and scale
dependent pooling (SDP) [26] detections are also provided for evaluating the tracking performance.
The number of trajectories in the training data is 546 and the number of total frames is 5316.
The complexity of the tracking problem requires several metrics including multiple object tracking
accuracy (MOTA), most tracked (MT), ID F1 score (IDF1) and so on. Specifically, the MOTA and
IDF1 scores quantify two of the main aspects: object coverage and identity. Also, we perform all
the experiments using the public detections provided by the MOT Challenge for fair comparison.
The single object tracker of our method is only initialized and online trained from public detection
bounding boxes.

4.3. Tracking Performance

4.3.1. Evaluation Results on the MOT17 Datasets

Evaluation of our method is performed on the test set of the respective benchmark, without any
training or optimization on the training set. The overall results accumulated over all sequences are
shown in Table 1, including three sets with different public detectors in MOT17. Although our method
does not show the state-of-the-art MOTA, high performance in both IDF1 and MT metrics proves
that our method can manage object ID consistently. This is what we aimed for. Specifically, most
tracked (MT) and identity preserving (IDF1) (which compares groundtruth trajectory and computes
trajectory by a bipartite graph, and reflects how long of a object has been correctly tracked) prove the
effectiveness of our method on ID preserving, which outperform the other online trackers on MOT17.
Different from online methods, offline methods do have both future and past information to further
optimize the status of each object, which is usually expressed by a better overall performance. Despite
this, our method still shows competitive ability on ID preserving, which is reflected by the IDF1 and
MT results. The overall results prove the ability of our methods to preserve the identity of objects. By
adding another location estimation, provided by the single object tracker, as a second verification, the
quality of the objects’ representation is increased. Also the delay processing model helps in tackling
the occlusion problem, which leads to better maintaining of the objects’ identity after occlusion or
deformation.
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Table 1. Tracking performance on the MOT17 benchmark dataset. Best in bold. Definitions of
abbreviations haven’t been introduced before: ML, FP, FN, ID Sw. and Frag. stand for Most Lost, False
Positive, False Negative, Identity Switch and Fragments respectively

MOT17 Dataset

Mode Method MOTA ↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ ID Sw.↓ Frag↓

Offline

jcc [36] 51.2 54.5 17.1% 35.4% 20148 252531 2285 5798
eHAF17 [37] 51.8 54.7 23.4% 37.9% 33212 236772 1834 2739

SAS_MOT17 [38] 44.2 57.2 16.1% 44.3% 29473 283611 1529 2644
eTC17 [39] 51.9 58.1 23.1% 35.5% 36164 232783 2288 3071
LSST17 [33] 54.7 62.3 20.4% 40.1% 26091 228434 1243 3726

Online

HAM_SADF17 [2] 48.3 51.1 17.1% 41.7% 20967 269038 1871 3020
AM_ADM17 [40] 48.1 52.1 13.4% 39.7% 25061 265495 2214 5027

Tracktor17 [6] 53.5 52.3 19.5% 36.6% 12201 248047 2072 4611
MOTDT17 [6] 50.9 52.7 17.5% 35.7% 24069 250768 2474 5317
DMAN [34] 48.2 55.7 19.3% 38.3% 26218 263608 2194 6378

Ours 48.9 57.0 21.9% 38.5% 32914 253059 2392 4973

To further illustrate the effectiveness of our method on results refinement and object ID preserving,
we carefully select other online methods with a similar number of FP and FN (which leads to a similar
MOTA score) with ours, since ID consistency metrics are critically affected by FP and FN. According
to Table 2, our method shows the best IDF1 and MT results with the same level of FP and FN, which
proves our method’s ability of maintaining the objects’ identities in a similar environment. As for ID
switches metrics, our method only achieve the second best results in Table 2, which is because most of
the switches occur when using the SDP detector, which has additional small detections. For smaller
detections, feature representation of the single object tracker is coarse. Thus, correlation filters do not
perform well when handling occlusion and deformation. Since our method performs online tracking,
using future information to refine trajectories is not an option either.

Table 2. Comparison of ID consistency with similar MOTA (FP and FN) in MOT17 benchmark dataset.

Comparison of ID Consistency

Method MOTA↑ IDF1↑ MT↓ ID Sw.↓
PHD_GM [42] 48.8 43.2 19.2% 4407
MTDF17 [41] 49.6 45.2 18.9% 5567

GMPHDOGM17 [43] 49.9 47.1 19.7% 3125
HAM_SADF17 [2] 48.3 51.1 17.1% 1871

Ours 48.9 57.0 21.9% 2392

Figure 6 shows some of the visualization tracking results of our method under different
circumstances. Specifically MOT17-03 and MOT17-08 represents static camera and crowded
surveillance, while MOT17-07 and MOT17-14 show a moving camera. Each frame is chosen for
their complexity that can show the performance of our method well.
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Figure 6. Visualization of selected sequences from the MOT17 benchmark dataset.

4.4. Ablation Study

For better understanding the effectiveness of each building block of our method, we ablate
each part from the whole method and compare with a baseline which directly introduces the single
object tracker within the MOT scenario , marked as the baseline in each table below. The analysis of
performance is carried out on the MOT17 benchmark train set, and each study is conducted separately
on the different external detectors (DPM, FRCNN, and SDP) provided by the dataset.

4.4.1. Binary-Channel Verification for Bounding Box Refinement

We show the effectiveness of our binary-channel verification (BCV) model within our proposed
method based on the aforementioned baseline in Figure 7, denoted by BCV. We select the MOTA and
IDF1 metrics to evaluate the overall performance and the ID preserving ability. For both metrics,
BCV shows significant improvements of performances on the DPM detector, while there is a relatively
small cap between using the detection only and our BCV model on the FRCNN and SDP detectors.
The reason for this is most likely the different quality of detection results provided by each detector.
The DPM detector tends to have much more noise and usually produces partial detection under
complex scenes, such as crowded and occluded environments for objects. On the other hand, BCV is
able to increase both metrics for our baseline method, which is the single object tracker using only,
where detection is only used to retrieve the object when occlusion happens. By introducing BCV, a
clear increase of IDF1 and MOTA shows that detection can help the tracker not only to better recognize
each object during tracking, but also to optimize the training samples for the single object tracker that
may lead to maintaining the identity of each object as long as possible. In this way, detection and the
single object tracker may easily complement each other to achieve a better performance than using
only one of them.
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Figure 7. MOTA and IDF1 scores of our binary-channel verification model. We separate detection
from a different external detector such as DPM, FRCNN, and SDP. Blue columns represent our baseline
which is directly using the single object tracker under the MOT scenario, while orange ones are the
results using detection only and discard all estimation from the single object tracker except for the ones
occluded or undetected and grey ones are our binary-channel verification model results.

4.4.2. Delay Processing Model

We separate the three parts of the delay processing (DP) model, and using the same metrics
mentioned before to analyze how much each part contributes to the overall performance. Quantitative
results of each part only along with integrated model are shown in Figure 8, where baseline indicates
simply applying SOT in MOT, the same as in Figure 7. From Figure 8a–c, we can see that different
parts of the DP model shows approximately the same effect on the baseline method, the quantitative
increment of each part is more of the same. Base on that, one can easily presume that merging those
three parts together should improve the performance enormously. However, as shown in Figure 8d,
the overall performance of our DP model just slightly increases the quantitative results. That is because
although these three parts are for three different circumstances, these circumstances can happen to the
same object and emerge as different situation for the following frames. For instance, facing occlusion,
one may continue tracking in shadow mode and cause a doppelganger problem, or completely stop,
or even deform. Thus, either one part of the DP model could have solved the situation after several
frames when we separate three parts, still tracking the same object as a result. Though the overall
performance does not show a promising result as we expected, each part is non-trivial for the whole
DP model, like icing on the cake. One can fill in the blank space while others ignore.

4.4.3. Detection Purification

Detection quality yields an important factor which influences the performance of the single
object tracker , since it is critical during initiation and online training throughout the whole tracking
procedure. By separating our detection purification strategy with the proposed method, we can tell
the effectiveness of the detection quality in tracking. Figure 9 shows the results of our purification
strategy for detection. Following the argument in [6], that the SDP detector has additional small
detections and thus has less FN samples, which boosts the single object tracker since the tracker
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itself can impossible initialize from a location that the external detector is incapable of providing.
We can see this purification strategy affects most the DPM detector which shows the necessity of our
detection purification.

Figure 8. (a–d) show the comparison between each block and baseline method in MOTA and IDF1
score respectively.

Figure 9. MOTA and IDF1 change after applying detection purification.
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5. Conclusions and Future Work

In this paper, we proposed a SOT-based MOT method in order to increase the accuracy of tracking
results focusing on ID preservation. We introduce a binary-channel verification model using a separate
single object tracker and detection provided by an external detector equally. Moreover, a delay
processing model is proposed to handle the drift problem that easily emerges when applying a single
object tracker under a MOT scenario. Our method outperforms other state-of-the-art methods on the
MOT17 benchmark according to the IDF1 and MT metrics, which proves our method is capable of
preserving identity consistency when dealing with occlusion. Finally, we have shown some qualitative
results under different hard-to-solve circumstances.

Though a re-initialization part is implemented in the delay processing model to handle geometry
changes of certain objects, tracking objects with significant deformation after occlusion still remains
unsolved since appearance features are mostly dissimilar for a tracker to reclaim the object. In our
future work, we plan to train a generative model for the tracker to better recognize deformations of
the same object without misalignment with other distraction information including similar objects.
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