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Abstract: Production companies operate in a complex economic, technological, social and political
environment. There are a number of factors contributing to a satisfactory market position, the most
important one being a properly defined and implemented strategy. It needs, however, to be
continuously monitored and, if necessary, modified. One of the elements subject to such evaluation is
the efficiency of the production processes, which has become the genesis of this article. In response
to the methods presented in the literature, a proposal using the logistic regression method for this
purpose is presented. The dichotomous form of the dependent variable makes it possible to make
such an evaluation in an unambiguous manner and to determine the significance and influence of
selected factors on the result thereof.
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1. Introduction

Market success of a manufacturing company is shaped primarily by the demand for the
manufactured products and the rate of return on capital employed [1,2]. Poor machine efficiency and
frequent downtimes can lead to a reduction in production levels, resulting in lost market opportunities,
increased operating costs and reduced profits [3]. It is therefore necessary to apply appropriate methods
and tools to support management and to organize maintenance services in an adequate manner to
ensure that the production system operates at the assumed levels of productivity and efficiency [4].

Effectiveness is an important element in the analysis of the production process [5–7], often
considered in scientific publications. It is assessed on the basis of various measures. In practice,
numerous mathematical models and tools are used to support the assessment of the performance
of machinery. The most frequently used measures for analyzing the efficiency of technical facilities
are those resulting from three general models of operation assessment, i.e., the reliability model,
the operational efficiency OEE (overall equipment effectiveness) model and the organizational and
technical KPI (key performance indicators) model [8]. In addition, methods and tools for its evaluation
can be classified in five main areas, i.e., operational, market, financial, technical or dynamic [9,10].
Particularly important from the point of view of machinery efficiency diagnostics is operational
efficiency, and the research in this area focuses primarily on the search for opportunities to reduce
the consumption of production resources. These include analysis of labor productivity growth, cost
reduction, minimization of losses and shortening of production cycles. Studies available in the
literature indicate the application of a number of methods and tools in this area, such as methods of
productivity and profitability indicators, analysis of efficiency and degree of work stations’ utilization,
cost calculation of activities, study of spatial efficiency of production organization and economic
evaluation of the production structure [11].
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Maintaining the company’s machinery stock at an appropriate level requires continuous
monitoring and evaluation of the adopted effectiveness indicators. A number of companies have
MES (manufacturing execution system) systems in place, which enable ongoing control of the above
parameters. There are also companies (including those examined by the authors) that do not have
such software and therefore proper evaluation of efficiency parameters is difficult. Such analyses are
supported by mathematical tools and methods, which also include modeling with the use of logistic
regression, as presented in this article. The subject of this research was a plastics manufacturing
company, while the main objective was to evaluate the effectiveness of the production process based on
selected factors that may significantly affect the level of machinery efficiency. The analysis was carried
out on the basis of information on the performance of the company’s production system recorded from
1 September 2015 to 31 August 2017.

Monitoring the effectiveness of utilization of the available machinery allows production reserves
or waste in the processes underway to be identified [12–14]. The basis for successful assessment is
an appropriate selection of measures and indicators. The analysis of literature made it possible to
distinguish those which were of the greatest importance both in theoretical and industrial-practical
aspects. Three general models should be distinguished:

• operational efficiency model OEE (overall equipment effectiveness),
• reliability model,
• organizational and technical model—KPI [15].

Within the operational efficiency model, a frequently employed parameter (which was monitored
in the examined entity as well) is the overall equipment effectiveness (OEE) indicator, which is widely
described in the literature [16–19]. The available studies most often present the theoretical aspects of
its calculation and indicate the categories of losses that may occur during the process of machinery and
equipment use in relation to ideal conditions [19–21]. Analyses are also available to demonstrate the
practical implementation of this parameter in manufacturing companies [12,22,23].

The OEE index is a product of three components [23,24], i.e., readiness and efficiency of machinery
and quality of the manufactured products. It is therefore a general, comprehensive assessment, most
often presented in percentage form. According to Seichi Nakajime from the Japan Institute of Plant
Maintenance [25,26], OEE should remain at 85.41%, but it should be stressed that each enterprise
operates in a specific environment; thus, this indicator will be different for each entity, depending on
its size, profile and industry, and will not take on the same value in two different operating units [9,27].
Therefore, in practice the above indicator has evolved into different forms of application depending on
the sector in which a given entity operates, adjusting to the needs of the environment. The following
indicators should be mentioned: OFE (overall factory effectiveness), OPE (overall plant effectiveness),
OTE (overall throughput effectiveness), PEE (production equipment effectiveness), OAE (overall asset
effectiveness) or TEEP (total equipment effectiveness performance) [21].

The reliability model allows measures in statistical terms to be determined, on the basis of a time
analysis of the performance of technical facilities. In practice, these refer to the technical condition
of machines, as well as to the activities of maintenance staff. These are MTBF (mean time between
failures), MTTR (mean time to repair) or MTTF (mean time to failure) [15].

The organizational and technical KPI model includes a set of measures enabling a comprehensive
assessment of the efficiency and effectiveness of the implemented processes. It includes 72 indicators
classified in three areas: economic (e.g., total relative cost of maintenance), technical (availability of
facilities for preventive works) and organizational (number of maintenance staff) [28].

In relation to the analyzed company, indicators associated with the operational effectiveness
model, related to efficiency, will be preferable in the context of machinery stock management; therefore,
they have become the subject of this analysis. Following the literature in this field [13,29], it was
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assumed that efficiency in production processes is the quotient of the actual efficiency to the nominal
efficiency, as specified in the following ratio (1):

WQ =
Qr

QO
, (1)

where:

WQ—machinery operational efficiency indicator,
Qr—actual (achieved) efficiency (pcs./h),
QO—theoretical efficiency, as defined in the technical documentation (pcs./h).

Thus calculated, it indicates the degree of efficient use of the production line for each operation
and, as such, indicates areas for improvement. Efficiency is most often presented in percentage form.
This does not always allow for its quick and unambiguous assessment. In forecasting studies, it
is assumed to be a quantitative variable, which limits the availability of some modeling methods.
Therefore, with regard to the analyzed company, according to the authors, a better approach would
be to analyze the efficiency from the individual point of view of each company by determining its
satisfactory level and reacting only if it is not achieved.

Numerous studies using logistic regression models with regard to machine maintenance are
available in the literature. The main objective of the proposed tools is to assess the technical condition
of technical objects along with reliability parameters [30,31], predict upcoming failures [32,33] and
estimate the service life of machinery [34]. For example, Yan and Lee assessed the performance of an
elevator door system in real time and identified the types of possible failures [30]. Kozłowski et al.
developed a model classifying the condition of a cutting tool blade and predicting its durability [31].
Lee et al. studied the reliability of a cutting tool using a combination of logistic regression and acoustic
emission methods [32]. Caesarendra combined methods of logistic regression and relevance vector
machine to evaluate performance degradation and to predict failure times based on simulation and
experimental data [33], whereas Chen et al., on the basis of vibration characteristics of cutting tools,
developed a universal model enabling the analysis of reliability and performance for machine tools [34].

This article proposes a model of logistic regression to be used for analysis and evaluation of the
level of efficiency of executed processes. The research covered the process of manufacturing garbage
bags in a company operating several production plants located in Poland and Ukraine. It was carried
out in three main stages, in line with the CBM (condition-based maintenance) strategy. The basis for
the research were the work and inspection cards of roll making machines provided by the company,
which came from one of the plants and covered the period from 1 September 2015 to 31 August 2017.
These provided information in two main categories. Event data indicated what events occurred during
the operation of the machine (i.e., the need to repair, replacement of worn parts or breakdowns).
On the other hand, the condition monitoring data provided information about the current technical
condition of the facilities and the need for preventive measures (e.g., adjustment of Teflon blades).
The processing of the above information and interpretation thereof made it possible to identify factors
shaping the efficiency of the machinery stock. Then, on their basis, a model for the evaluation of
machinery efficiency was built. It was assumed that its satisfactory level was 90%. This value is based
on the daily production cycle, which also includes the breaks required by the Labor Code, daily service
and the preparation of the machine for operation. Finally, the manner in which the model can support
decision making in the area of improvement of the production processes was indicated [35].

Due to the specificity of manufactured products, i.e., serial products with standard parameters,
the company operates in the MTS (make to stock) production system. The plant works on a three-shift
basis, with each shift lasting 8 h. The process of model parameter estimation and the results obtained
are presented in subsequent sections of this article.
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2. Logistic Regression Model

Logistic regression is a model that allows the influence of several variables X1, X2, . . . , Xk on the
dichotomous variable Y in the mathematical form to be presented. The logistic regression model is
based on a logistical function that takes the following form:

f (x) =
ex

1 + ex =
1

1 + e−x , (2)

where e is the Euler number, and x is the value of the explanatory variable X.
The use of logistic regression is supported by the fact that it is not required to meet many

assumptions that are formulated in relation to linear regression and general linear models. These
include, first of all, the linearity of the relationship between a dependent and an independent variable,
as well as the normality and homoscedasticity of the distribution of independent variables. In addition,
observations must be reported using metric measurement systems.

The logistic regression model can be written in several ways. Assuming that Y stands for a
dichotomous variable with values 1, for the occurrence of the event we are interested in (success), and
0, for the opposite case (failure), the logistic regression model is described by Equation (3):

P(Y = 1|x1, x2, . . . , xk) =
eβ0+

∑k
i=1 βi·xi

1 + eβ0+
∑k

i=1 βi·xi
, (3)

where βi i = 0, . . . , k are logistic regression factors, while x1, x2, . . . , xk are independent variables, which
can be measurable or qualitative.

An equivalent form of the logistic regression equation can be written as the odds for the occurrence
of the event (success) we are interested in:

P(Y = 1|X)

1− P(Y = 1|X)
= eβ0+

∑k
i=1 βi·xi . (4)

In a special case, for one independent variable the logistic regression equation takes the
following form:

P(Y = 1|X) =
eβ0+β1·x1

1 + eβ0+β1·x1
. (5)

If, in turn, both sides of the Equation (5) are logarithmized, the logit form of the logistic model
will be obtained:

logit P(Y = 1|X) = ln
P(Y = 1|X)

1− P(Y = 1|X)
= β0 + β1·x1. (6)

The condition necessary for logistic regression is a sufficiently large sample, the number of which
should be n > 10(k + 1), where k is the number of parameters.

Important concepts related to logistic regression are the odds and the odds ratio. The odds
are defined as the probability of an event occurring P(A) divided by the probability of an event not
occurring, 1 − P(A):

(Odds)S(A) =
P(A)

P(non−A)
=

P(A)

1− P(A)
. (7)

The odds ratio, in turn, marked OR, is defined as the odds of one event occurring S(A) divided by
the odds of another event occurring S(B):

ORAxB =
S(A)

S(B)
=

P(A)

1− P(A)
:

P(B)
1− P(B)

. (8)
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3. Estimation of Markov Logistic Model Parameters

The first stage of the study was to define possible explanatory variables in order to determine
which of them could be used in the model. The following explanatory variables were selected: shift,
device, occurrence of failure (yes or no) and no production order (yes or no).

The shift predictor was analyzed first. First of all, the normality of distribution and homogeneity
of the variance of the efficiency dependent variable during individual shifts was examined in order to
determine the possible methods of statistical analysis. The distributions in all groups turned out to
be inconsistent with the normal distribution, which is confirmed by the graphs in Figure 1 and the
calculated chi-square test statistic values, presented in Table 1.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 15 

to determine the possible methods of statistical analysis. The distributions in all groups turned out to 
be inconsistent with the normal distribution, which is confirmed by the graphs in Figure 1 and the 
calculated chi-square test statistic values, presented in Table 1. 

Ex
pe

ct
ed

 N
or

m
al

 V
al

ue

Shif t I

-20 20 60 100 140 180 220
-2
-1
0
1
2
3
4

Shif t II

-20 20 60 100 140 180 220

Shif t III

-20 20 60 100 140 180 220
-2
-1
0
1
2
3
4

 
Figure 1. Graphs of normality of distribution of the efficiency variable grouped by shifts. 

Table 1. Chi-square test statistic values of the efficiency variable grouped by shifts. 

 Chi-Square Degrees of Freedom p-Value 
Shift = 1st 4355.45 df = 8 p = 0.00 
Shift = 2nd 5932.71 df = 8  p = 0.00 
Shift = 3rd 6474.96 df = 8  p = 0.00 

Next, the homogeneity of variance in individual groups was checked; the Levene and Brown-
Forsythe test was used for this purpose. The obtained results are presented in Table 2. 

Table 2. Results of the Levene and Brown-Forsythe tests of the efficiency variable grouped by shifts. 

Average—
1st 

Average—
2nd 

Average—
3rd 

Levene 
F(1,df) 

Levene 
p 

Brn-Fors 
F(1,df) 

Brn-
Fors p 

66.54 69.84  1.54 0.21 0.01 0.9 
66.54  70.06 1.07 0.3 0.35 0.55 

 69.84 70.06 0.039 0.84 0.47 0.49 

Although the homogeneity of variance was confirmed in all groups, due to the lack of normality 
of distributions, the Mann–Whitney test was used to examine the significance of differences between 
individual averages, and the results thereof are presented in Table 3. 

Table 3. Results of the Mann-Whitney test for the difference between the average efficiency of 
individual shifts. 

1st Rank—Sum 2nd Rank—Sum 3rd Rank—Sum U p Z p 
67,690,346 71,212,432  32,380,940 0.00 −7.54 0.00 
67,299,784  70,787,487 31,990,378 0.00 −8.17 0.00 

 67,922,665 67,864,295 33,771,685 0.57 −0.57 0.57 

The analyses showed that there were no significant differences between the efficiency of the 
second and third shift, so a decision was made to combine them. However, the values obtained for 

Figure 1. Graphs of normality of distribution of the efficiency variable grouped by shifts.

Table 1. Chi-square test statistic values of the efficiency variable grouped by shifts.

Chi-Square Degrees of Freedom p-Value

Shift = 1st 4355.45 df = 8 p = 0.00
Shift = 2nd 5932.71 df = 8 p = 0.00
Shift = 3rd 6474.96 df = 8 p = 0.00

Next, the homogeneity of variance in individual groups was checked; the Levene and
Brown-Forsythe test was used for this purpose. The obtained results are presented in Table 2.

Table 2. Results of the Levene and Brown-Forsythe tests of the efficiency variable grouped by shifts.

Average—1st Average—2nd Average—3rd Levene F(1,df) Levene p Brn-Fors F(1,df) Brn-Fors p

66.54 69.84 1.54 0.21 0.01 0.9
66.54 70.06 1.07 0.3 0.35 0.55

69.84 70.06 0.039 0.84 0.47 0.49

Although the homogeneity of variance was confirmed in all groups, due to the lack of normality
of distributions, the Mann–Whitney test was used to examine the significance of differences between
individual averages, and the results thereof are presented in Table 3.
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Table 3. Results of the Mann-Whitney test for the difference between the average efficiency of
individual shifts.

1st Rank—Sum 2nd Rank—Sum 3rd Rank—Sum U p Z p

67,690,346 71,212,432 32,380,940 0.00 −7.54 0.00
67,299,784 70,787,487 31,990,378 0.00 −8.17 0.00

67,922,665 67,864,295 33,771,685 0.57 −0.57 0.57

The analyses showed that there were no significant differences between the efficiency of the
second and third shift, so a decision was made to combine them. However, the values obtained for
the first shift differ significantly from those obtained for the other shifts, therefore this group was left
without interference. These conclusions are confirmed by Figure 2 showing the differences described.
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The same test was performed for the device variable. The machines analyzed were of a single
type and came from a single production batch, which suggests that their productivity would be similar.
In order to confirm the equality of averages, the analysis of distribution normality and variance equality
in individual groups (this time defined by the device variable) was carried out again in order to select a
proper statistical distribution. The results of the normality test did not confirm the conformity. All the
calculated chi-square test statistic values did not allow the zero hypothesis of the compatibility of the
examined distribution with the normal one to be accepted. A definite deviation is confirmed by Figure 3.

The analysis of the equality of variance using the Levene and Brown-Forsythe tests showed that
variances are not equal in some groups. Consequently, the Mann–Whitney test was used to check the
difference between averages, the results of which are presented in Table 4.

Table 4. Results of the Mann-Whitney test for the difference between the average efficiency of
individual shifts.

H4 H5 H6 H12 H14 H21 H22 H23 H24 H25

H2 0.000 0.083 0.768 0.000 0.000 0.000 0.000 0.000 0.166 0.473
H4 0.000 0.000 0.007 0.012 0.000 0.000 0.000 0.000 0.000
H5 0.040 0.000 0.000 0.000 0.000 0.019 0.019 0.022
H6 0.000 0.000 0.000 0.000 0.000 0.069 0.716
H12 0.000 0.063 0.166 0.001 0.000 0.000
H14 0.000 0.000 0.000 0.000 0.000
H21 0.502 0.114 0.000 0.000
H22 0.107 0.000 0.000
H23 0.085 0.000
H24 0.056
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Since the average efficiency varied for virtually every pair of devices, a decision was made not to
combine them and to include each of them in the study. After defining the form of independent variables,
the impact of each of them on the dependent variable, i.e., efficiency, was checked, but presented in a
dichotomous form, as an assessment of whether the level achieved was satisfactory for the company.
In line with the expectations of the Management Board, it was assumed that the assessment was
positive if the productivity was equal to or above 90%. In other cases, the assessment would be negative.
The chi-square test allowed for a statistical and substantive study of the relationship between variables.
In all cases, the calculated test statistic did not allow the zero hypothesis on the lack of relationships
between variables to be accepted. It was therefore rejected in favor of the alternative hypothesis of
the existence of a relationship, the strength of which was measured using Yule’s Φ (for binary tables)
and Cramér’s V coefficient (for tables more complex than 2 × 2). The obtained results are presented in
Table 5.

The observed relationships between variables, although significant, are not strong. This is also
confirmed by the graphs of interaction of individual dependent variables with the explained variable
(Figure 4). Nevertheless, from the point of view of the analyzed company, the diagnosed bonds should
not take place at all. A uniform and efficient operation of all devices is expected, so even minor
deviations are undesirable and require further investigation.

The calculations carried out (Table 5) and the charts (Figure 4) confirm that the model variables
were selected correctly. This allows the parameters of the logistic regression model to be estimated,
the values of which are presented in Table 6.
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Table 5. Results of the tests of significance and strength of the relationship between the predictors and
the efficiency variable.

Statistics Chi-Square df p

Shift
Pearson’s Chi2 82.35 df = 1 p = 0.00

NW Chi2 83.12 df = 1 p = 0.00
Yates Chi2 82.10 df = 1 p = 0.00

Fi for 2 × 2 tables 0.06
Contingency coefficient 0.06

Device
Pearson’s Chi2 538.57 df = 10 p = 0.00

NW Chi2 532.84 df = 10 p = 0.00
Contingency coefficient 0.15

Cramér’s V 0.15

Failure
Pearson’s Chi2 786.17 df = 1 p = 0.00

NW Chi2 1062.94 df = 1 p = 0.00
Yates Chi2 784.68 df = 1 p = 0.00

Fi for 2 × 2 tables −0.18
Contingency coefficient 0.18

Order
Pearson’s Chi2 1756.69 df = 1 p = 0.0000

NW Chi2 2576.74 df = 1 p = 0.0000
Yates Chi2 1754.97 df = 1 p = 0.0000

Fi for 2 × 2 tables −0.27
Contingency coefficient 0.26

Table 6. Parameters of the logistic regression model and their evaluation.

Effect

Modeled Probability Evaluation of Effectiveness—Positive Result Distribution: Binomial,
Binding Function: LOGIT

Effect Level Parameter Estimated
Standard Error

Wald’s Test
Statistics p 95.00% Cl −95.00% Cl

Absolute term β0 =−7.549 0.288 689.03 0.00 −8.112 −6.985
Shift 1st β1 =−0.292 0.031 90.59 0.00 −0.352 −0.232

Device H2 β2 =−1.241 0.067 343.29 0.00 −1.373 −1.110
Device H5 β3 =−1.066 0.067 256.69 0.00 −1.196 −0.936
Device H6 β4 =−1.153 0.068 291.56 0.00 −1.286 −1.021
Device H12 β5 =−0.668 0.065 104.14 0.00 −0.796 −0.539
Device H21 β6 =−0.809 0.065 153.40 0.00 −0.937 −0.681
Device H22 β7 =−0.496 0.067 55.25 0.00 −0.627 −0.365
Device H23 β8 =−0.525 0.067 60.84 0.00 −0.656 −0.393
Device H24 β9 =−0.873 0.067 168.66 0.00 −1.004 −0.741
Device H25 β10 =−1.167 0.068 296.30 0.00 −1.300 −1.034
Device H4 β11 =−0.317 0.072 19.323 0.00 −0.458 −0.176
Order no β12 = 5.047 0.251 403.059 0.00 4.554 5.539
Failure no β13 = 3.08 0.135 520.933 0.00 2.816 3.345
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All calculated parameters turned out to be statistically significant, which is confirmed by the
calculated Wald’s statistic value and the associated probability value p, which for each line is lower
than the assumed level of significance α = 0.05. (Table 6). This means that all the distinguished factors
significantly affect the evaluation of production efficiency. This allows the equation of the logistic
regression model to be written in the following form:

P
(
e f f iciency = yes

∣∣∣X)
=

ea

1 + ea , (9)

where
a = −7.549− 0.292 shi f t I − 1.241 ∗H2− 1.066 ∗H5− 1.153 ∗H6− 0.668 ∗

H12− 0.809 ∗H21− 0.496 ∗H22− 0.525 ∗H23− 0.873 ∗H24− 1.167 ∗
H25− 0.317 ∗H4 + 5.047 ∗ no order + 3.08 ∗ no f ailure.

(10)

The logistic regression curve is shown in Figure 5.
The logistic regression equation presented above can also take equivalent forms:

• logistic regression logit function:

logit P(e f f icient = 1
∣∣∣X) = In P(e f f icient= 1|X)

1−P(e f f icient= 1|X)
= −7.549− 0.292 1st shi f t−

1.241 ∗H2− 1.006 ∗H5− 1.153 ∗H6− 0.668 ∗H12− 0.809 ∗H21− 0.496 ∗
H22− 0.525 ∗H23− 0.873 ∗H24− 1.167 ∗H25− 0.317 ∗H4 + 5.047 ∗

no order + 3.08 ∗ no f ailure,

(11)

• in the form of the odds:

P
P(e f f icient = 1|X)

1− P(e f f icient = 1|X)
= ea, (12)
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where

a = −7.549− 0.292 shi f t I − 1.241 ∗H2− 1.066 ∗H5− 1.153 ∗H6− 0.668 ∗
H12− 0.809 ∗H21− 0.496 ∗H22− 0.525 ∗H23− 0.873 ∗H24− 1.167 ∗

H25− 0.317 ∗H4 + 5.047 ∗ no order + 3.08 ∗ no f ailure.
(13)

Figure 5. Logistic regression curve.

An important element of the evaluation of the studied process is the calculation of the odds of an
event occurrence (in this case a satisfactory result of efficiency). The sign at the estimated parameter of
the logistic regression model indicates whether the analyzed odds are greater (plus) or smaller (minus)
in relation to the reference level. The scale of this change is indicated by the unit odds ratio shown for
each parameter in Table 7.

Table 7. Odds ratios for individual predictors.

Effect Effect Level Odds Ratio 95.00% Cl −95.00% Cl p

Shift 1st 0.747 0.704 0.793 0.00
Device H2 0.289 0.253 0.330 0.00
Device H5 0.344 0.302 0.392 0.00
Device H6 0.316 0.276 0.360 0.00
Device H12 0.513 0.451 0.583 0.00
Device H21 0.445 0.392 0.506 0.00
Device H22 0.609 0.534 0.694 0.00
Device H23 0.592 0.519 0.675 0.00
Device H24 0.418 0.366 0.477 0.00
Device H25 0.311 0.273 0.356 0.00
Device H4 0.729 0.633 0.839 0.00

No order—yes no no 155.489 95.002 254.487 0.00
Failure—yes no no 21.7679 16.7083 28.3595 0.00

The odds ratio for the 1st shift is 0.75, which means that compared to the 2nd shift, the odds of
achieving satisfactory efficiency is 0.75 times lower. In other words, the odds for the proper efficiency
is 1.34 times higher in the case of the 2nd shift. The H14 machine was used as a reference when
analyzing the impact on the efficiency of individual devices. Its efficiency is the highest in the test
sample, so all the model coefficients obtained are negative, which means less odds of achieving a
positive result. The odds ratios are given in column 3 of Table 6. The worst result was obtained for
the H2 machine with an odds ratio of 0.289, which means an almost 3.5-fold increase in the odds of
achieving satisfactory efficiency when replacing H2 with H14.
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The results for the other machines, showing how much the efficiency of each machine should be
increased in order to obtain the efficiency evaluation as in the case of the H12 machine, are shown in
Table 8.

Table 8. Odds ratios for individual predictors.

Machine Number H2 H5 H6 H12 H21

OR 3.460 2.904 3.169 1.950 2.246

Machine Number H22 H23 H24 H25 H4

OR 1.642 1.690 2.393 3.212 1.372

The last two parameters in Table 7 refer to the absence of an order or failure, as their occurrence
has a negative impact on the efficiency. Where there is no downtime, the odds of achieving the expected
efficiency are 155 times greater than otherwise. Similarly, the occurrence of a failure has a similar effect,
but its absence is not as spectacular. There is a 21-fold increase in the odds if the failure does not occur.

The presented model can also be used for predictive purposes, allowing for forecasting the
probability of achieving the predicted success (here, the assumed efficiency). It is therefore important
to assess the quality of the prediction. For this purpose, it is helpful to determine the so-called cut-off

point π0. This parameter allows the observed dichotomous values of a dependent variable to be
compared with the continuous probability values calculated on the basis of the model. This value falls
within the range (0, 1) and is defined as follows [36] when:

π̂(x) = P̂(Y = 1|x) > π0, (14)

it is assumed that an event has occurred (ŷ = 1). In the opposite situation, when

π̂(x) ≤ π0, (15)

it is assumed that an event has not occurred (ŷ = 0).
Prediction ideally occurs when sensitivity and specificity are equal to 1, which means no false

positive or negative results. In real life research, the point corresponding to a case where a model best
discriminates occurrences is called the optimal cut-off point. It is determined using the Youden’s index
(J), which takes the following form:

J = sensitivity + speci f icity− 1. (16)

The optimum cut-off point corresponds to the case where the J value reaches its maximum. For the
case under consideration, the proposed cut-off point is shown in Table 9.

Table 9. Cut-off point of the logistic regression model concerned.

Number of
Observations Cut-off Point True Positive True Negative False Positive False

Negative SE 1-SP Youden’s
Index

5 0.51 2864 13,903 2210 5905 0.33 0.14 0.19

For the proposed cut-off point, the sensitivity is 0.32, and the specificity is 0.86. There are 16,767
well classified cases (2864 true positive and 13,903 true negative) and 8115 badly classified cases (2210
false positive and 5905 false negative cases).

Based on the above table it is possible to assess the effectiveness of model prediction in relation
to successes and failures, using tools among which one can distinguish such statistics as accuracy,
sensitivity or specificity, ROC (receiver operating characteristic) curve or values of rank correlations.
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The simplest measure is accuracy, calculated according to the following formula:

Accuracy = ACC =
TP + TN

TP + TN + FP + FN
, (17)

where:

TP—number of true positive results,
TN—number of true negative results,
FP—number of false positive results,
FN—number of false negative results.

For the model concerned,

ACC =
2864 + 13903

2864 + 5905 + 2210 + 13903
= 0.674 = 67.4%. (18)

However, the sensitivity SE and specificity SP are most often considered in such analyses but
treated as pairs, which, after being marked on the plane and after connecting the points with segments,
form the so-called ROC curve. For the analyzed model this curve is presented in Figure 6.

Figure 6. ROC curve for the model concerned.

The most important parameter for assessing the ROC curve is AUC—area under the ROC curve.
It takes values from 0 to 1. The interpretation of the result was based on the Kleinbaum and Klein
classification (Table 10), according to which discrimination is sufficient [37].

Table 10. Cut-off point of the logistic regression model concerned.

AUC Value Score

0.9 < AUC < 1.0 Excellent discrimination
0.8 < AUC < 0.9 Good discrimination
0.7 < AUC < 0.8 Sufficient discrimination
0.6 < AUC < 0.7 Weak discrimination
0.5 < AUC < 0.6 Insufficient discrimination

The model can therefore be considered satisfactory, although it is recommended rather for
qualitative analysis of processes and modification of production strategy on its basis.

Production in the company in question is carried out in a continuous three-shift system. Regardless
of the production plan, the plant is fully manned and all machines are in operation at all times.
The acceptable level of efficiency assumed by the management should be 90%, which allows all
scheduled and expected downtime to be taken into account. The study indicates that in most cases
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this level is not reached. In almost 25,000 out of over 156,000 observations, this level was not reached.
It turned out that the efficiency of the first shift was lower compared to the second and third ones,
which suggests the need to diagnose the causes of circumstances or even to restructure the shift system.
The use of individual machines also has a negative impact on efficiency. It turns out that many of them
represent much lower efficiency than the one taken as a reference point, the efficiency of which was the
highest (but also less than 100%). Of course, a lack of orders also leads to a significant reduction in
productivity. Such a result, next to failures that occur, indicates the need for a detailed analysis of the
machinery. It might be advisable to exclude several machines from the production process so that
production is closely correlated with demand. Unused machines could constitute a reserve in case of
failure and thus increase the level of readiness of the machinery.

4. Conclusions

The reliability of machinery and equipment is an essential part of the proper functioning of a
business. Modern technologies support the maintenance of an adequate level of readiness and suitability
of the technical infrastructure. They not only facilitate production control and implementation of
modern operating strategies, but also ensure continuous monitoring of processes and detection of any
disturbances or failures. The activities carried out in this area boil down to balancing the maintenance
of full operational efficiency and continuity of production and ensuring an acceptable level of costs of
these activities.

This is a difficult task, particularly in the case of older generation machinery stock, which is
deprived of support from computerized production management systems—as the one presented in this
article. In any case, however, the aim is to ensure that machines function perfectly without failures and
that products are manufactured without defects. On the other hand, it is also important to ensure the
efficiency of the equipment use and balanced workload, which proved to be a problem in the analyzed
company. This was the reason for undertaking research in this field and the basis for mathematical
analysis of the effectiveness of the manufacturing process.

The lack of IT systems for controlling and monitoring the production process results in the inability
to archive data on an ongoing basis, which makes it much more difficult to control processes, and
sometimes it is conducive to abandonment thereof. Poor quality of recorded documentation imposes
significant limitations on the use of mathematical tools as well; therefore, the authors wanted to present
simultaneously that even in such a situation it is possible to create mathematical models that would
improve the efficiency of the machinery stock. The available data proved to be sufficient to achieve
the research objective, which was to formulate a model providing an unambiguous answer as to
whether the efficiency of the equipment used in production is acceptable from the point of view of the
assumptions made by the company (in this case 90%).

This was made possible through the use of logistic regression, which, above all, does not require
the meeting of assumptions made by other mathematical models, e.g., linear regression and general
linear models. The advantage of this method is also the form of the dependent variable. The predictor
here is a dichotomous variable and its values can be interpreted as the probability of an event occurring.
The organization of production in the analyzed company has remained unchanged for many years. All
machines work three shifts every day. Regardless of the orders placed and the market demand, full staff is
employed. Machines are taken out of the process only in cases of random incidents. Lack of modification
of the adopted procedures and control of the implemented processes results—as demonstrated in the
research—in the process not being effective and the use of machinery not being optimal.

The logistic regression model made it possible to identify the causes influencing machinery
efficiency. It turned out that the load is not identical during every shift, the productivity is much lower
during the first shift in comparison to the other shifts. Restructuring the shift system and limiting the
production process to only two shifts or modifying the working time could increase the productivity
of machinery, optimize the use of human resources and reduce the costs of the production process.
The load on the individual machines also appeared to be disproportionate. Increased use of one piece
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of equipment may result in an increase in the frequency of breakdowns, increase the costs of repairs
and reduce the total life of the equipment, so it would be advisable to evenly distribute production
across all equipment. The reduction in productivity was also caused by a decline in the number of
production orders. The lack of production control with regard to orders received and the maintenance
of a continuous three-shift readiness exposes the company to costs and favors the aforementioned
disproportionate workload.

The studied company has no IT systems in place that enable comprehensive monitoring of
production processes. Therefore, the unquestionable advantage of the proposed model is the provision
of additional information allowing decisions to be made on the production and use of machinery.
They can also encourage the implementation of modern solutions and the abandonment of traditional,
outdated methods of recording and archiving data.

In companies that use specialist MES systems based on real-time information on manufacturing
execution at subsequent workstations, the proposed model can improve monitoring of productivity
drops below the adopted level and activate preventive actions. Additionally, the implementation of
data obtained from the IT system may allow to the model to be extended with additional parameters,
which is important from the point of view of individual companies.

The aim of the article was to investigate the possibility of developing a model for the analysis and
evaluation of the level of efficiency of ongoing production processes, as well as to indicate the method
of logistic regression as a tool supporting decision-making in this respect. The model developed for
the analyzed company indicated the need for a strict correlation between the demand for a product
and the production process. Adopted strategies require verification and modification.

The proposed model may also serve as a basis for setting directions for improvement of the
production process, by maximizing the use of the machinery stock and reducing the idle time of both
employees and equipment. Re-application of the logistic regression model constructed on the basis of
the observation of the process after introduction of changes allows the effectiveness and efficiency of
implemented solutions to be evaluated.

Author Contributions: Conceptualization, A.B. and M.G.; Formal analysis, A.B.; Methodology, A.B.; Resources,
M.G.; Writing—original draft, A.B. and M.G.; Writing—review & editing, A.B.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References
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przykładzie linii rozlewu butelkowego. Innow. W Zarz. I Inż. Prod. 2016, 2, 654–662.
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for real-time supervision system. Eksploat. I Niezawodn. Maint. Reliab. 2019, 21, 679–685. [CrossRef]

32. Yan, J.; Ko, M.; Lee, J. A prognostic algorithm for machine performance assessment and its application.
Prod. Plan. Control 2004, 15, 796–801. [CrossRef]

http://dx.doi.org/10.1080/00207543.2015.1136082
http://dx.doi.org/10.1016/j.ejor.2017.02.026
http://dx.doi.org/10.17531/ein.2019.3.7
http://dx.doi.org/10.21008/j.2083-4950.2016.6.4.8
http://dx.doi.org/10.1016/S1369-8001(03)00011-8
http://dx.doi.org/10.1016/j.eswa.2010.10.056
http://dx.doi.org/10.1108/IJPPM-01-2016-0028
http://dx.doi.org/10.1108/01443579910244223
http://dx.doi.org/10.1080/00207540601142645
http://dx.doi.org/10.1016/j.rcim.2016.01.008
http://dx.doi.org/10.1080/00207540903160766
http://dx.doi.org/10.1115/1.1962019
http://dx.doi.org/10.17531/ein.2019.4.18
http://dx.doi.org/10.1080/09537280412331309208


Appl. Sci. 2019, 9, 4770 16 of 16

33. Caesarendra, W.; Widodo, A.; Yang, B.S. Application of relevance vector machine and logistic regression for
machine degradation assessment. Mech. Syst. Signal Process. 2010, 24, 1161–1171. [CrossRef]

34. Chen, B.; Chen, X.; Li, B. Reliability estimation for cutting tool based on logistics regression model using
vibration signals. Mech. Syst. Signal Process. 2011, 25, 2516–2537. [CrossRef]

35. Jardine, A.K.S.; Lin, D.; Banjevic, D. A review on machinery diagnostics and prognostics implementing
conditio-based maintenance. Mech. Syst. Signal Process. 2006, 20, 1483–1510. [CrossRef]

36. Stanisz, A. Modele Regresji Logistycznej. Zastosowanie W Medycynie, Naukach Przyrodniczych I Społecznych;
Statsoft Polska: Kraków, Poland, 2016.

37. Kleinbaum, D.G.; Klein, M. Logistic Regression A Self-Learning Text; Springer: Berlin, Germany, 2010.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ymssp.2009.10.011
http://dx.doi.org/10.1016/j.ymssp.2011.03.001
http://dx.doi.org/10.1016/j.ymssp.2005.09.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Logistic Regression Model 
	Estimation of Markov Logistic Model Parameters 
	Conclusions 
	References

