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Abstract: An effective reduced-order model is presented in this paper for the vibration analysis of a
mistuned blade–disc–shaft assembly considering the flexibility of the shaft and the rotordynamic
effects. For the sake of accurate modeling and quantitative analysis, three-dimensional (3D) finite
element models were employed in obtaining the governing equations of motion with the Coriolis
force, centrifugal stiffening, and spin softening effects taken into account. Then, an efficient model
order reduction technique based on the coordinate projection by normal modes of tuned assembly
and cyclic symmetry analysis was developed for mistuned blade–disc–shaft assembly. The criterion
of whether one matrix could be incorporated in cyclic symmetry analysis is presented. During the
modeling, the mistuning in blade and disc was taken into account and dealt with independently. In
mistuning projection, the blade and disc parts were both projected onto their tuned counterparts of
the sector model, where the boundary conditions were set to be fixed and free, respectively. Finally, an
example of a blade–disc–shaft assembly was employed to validate the effectiveness of the presented
method in free and forced vibration analysis.
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1. Introduction

Blade–disc–shaft assemblies are the key components of engines and compressors and take an
important position in the design of these machines [1]. As the basis for design, developing accurate
dynamic models for such assemblies and gaining deep insight into their vibration characteristics are of
great significance. For this reason, the vibration issues of blades and rotor systems attracted enormous
attention from researchers and engineers, and a huge number of investigations were published in the
past few decades [1–4]. Nevertheless, most of the available investigations concentrated either on the
vibration of the blade and disc by neglecting the flexibility of the shaft or on the dynamics of rotor
systems by assuming the blade and disc to be rigid and tuned.

Some researchers considered the mutual interactions between bladed discs and shafts and
developed several dynamic models for blade–disc–shaft assemblies. Crawley et al. [5] presented a
simplified analytical model for rotating a flexible blade-rigid disc-flexible cantilevered shaft system.
Okabe et al. [6] addressed an equivalent modeling technique for a blade–shaft system by dividing the
system into a shaft plus additional equivalent mass-spring models of blades. Zhang et al. [7] presented
a method for dynamic analysis of flexible blade–disc–shaft systems by means of the finite element
method and a modal synthesis approach. Huang et al. [8] developed an analytical approach for the
coupled shaft torsion and blade bending vibration analysis using the weighted residuals method. Chun
et al. [9] proposed an analytical substructure synthesis method for analyzing the coupled free vibrations
between shaft and blades. A1-Bedoor [10,11] presented efficient models for coupled shaft-torsional
and blade-bending vibration analysis using Lagrange’s equation and the assumed modes method. Ma
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et al. [12] developed a dynamic model for rotor–blade systems by representing blades as Timoshenko
beams and shafts as multiple lumped mass points connected by massless springs. She et al. [13]
developed an analytical model for the coupling vibration analysis of a blade–disc–shaft system. In these
investigations, the mistuning in blades and discs, which is an inevitable issue due to manufacturing
tolerances, material deviations, and in-service wear, tended to be neglected. Regarding this issue,
some researchers took mistuning into account. Khader et al. [14] presented a simple analytical model
for non-rotating flexible blade-rigid disc-flexible shaft assemblies by representing blade mistuning
as frequency deviations. Kim [15] developed a simplistic model for describing the in-plain whirling
behavior of a mistuned bladed rotor using complex coordinate transformation and modulation. Li
et al. [16] established a dynamic model for a shaft–disc–blade system considering the mistuning in
blade length and stagger angle. These investigations provided effective ways for the modeling of
blade–disc–shaft assemblies. Nevertheless, the models developed in these investigations were mainly
analytical or lumped with, more or less, some simplifications and assumptions. Although such models
have the advantages of ease of use, they have limitations in modeling and analysis of complex rotor
assemblies, such as those of engines and compressors in practical industrial application.

Three-dimensional (3D) finite element models could overcome these limitations by discretizing
the complex assemblies as solid elements, where the detailed geometry can be accurately captured,
and the flexibility of all components can be taken into account. Such models were widely employed in
the modeling and analysis of bladed discs [17–20] and complex rotor systems [21–24]. Nevertheless,
the huge number of degrees of freedom (DOFs) in 3D finite element models hinders the computational
efficiency in analysis, especially for systems containing random factors, such as mistuning. Hence, a
number of model order reduction techniques were developed, including the generalized component
mode synthesis methods [25–27] and some other effective methods for specific structures, such as
the subset of nominal modes (SNM) [28], the fundamental mistuning model (FMM) [29], and the
component mode mistuning method (CMM) [30] for mistuned bladed discs. The substructure-based
methods are more general approaches for reduced-order modeling. Nevertheless, they are often not
that efficient in analyzing mistuned blade discs, as a large number of interface DOFs may be retained,
resulting in the model not being concise enough. SNM, FMM, and CMM are more efficient methods, as
they were proposed with respect to mistuned bladed discs. In these investigations, however, the shafts
were commonly assumed to be rigid and their flexibilities tended to be neglected. For the analysis of
mistuned a blade–disc–shaft assembly, the flexibility of the shaft should not be neglected, as it may
lead to non-negligible coupling vibration between the shaft and bladed disc. Therefore, an effective
model order reduction technique for a mistuned blade–disc–shaft assembly remains to be developed.

In this paper, a reduced-order model for the vibration analysis of mistuned blade–disc–shaft
assemblies is presented, where the rotordynamic effects are all taken into account. Firstly, 3D finite
element models of blade–disc–shaft assemblies are employed to obtain the governing equations of
motion. Then, an efficient model order reduction technique based on the coordinate projection by
normal modes of tuned assembly and cyclic symmetry analysis is developed. During the model order
reduction, the mistuning in blade and disc is taken into account and dealt with independently. Finally,
the effectiveness of the presented method is validated by an example of a blade–disc–shaft assembly.
This paper is organized as follows: in Section 2, the governing equations of motion are presented.
Section 3 addresses the formulations of model order reduction. Section 4 contains the validation of the
presented method. Conclusions are given in Section 5.

2. Equations of Motion

Practical blade–disc–shaft assemblies tend to possess complex geometries, which are hardly
modeled by lumped parameter models without several simplifications. Three-dimensional finite
element models could accurately describe complex structures without simplifications. As bladed discs
tend to be axially symmetric, their governing equations contain periodically time-variant terms if
analyzed in inertial frames of reference. Therefore, the rotating frames are employed in this paper. For
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a 3D finite element model of a mistuned blade–disc–shaft assembly, its governing equation of motion
at a constant rotating angular velocity Ω has the following general form:

M
..
u + [Cd + Cc(Ω)]

.
u + [Ke + Kc(Ω) −Ks(Ω) + Kδ]u = f, (1)

where M, Cd, and Ke are the mass, damping, and elastic stiffness matrices of the assembly, Cc(Ω),
Kc(Ω), and Ks(Ω) represent the speed-dependent Coriolis, centrifugal stiffening, and spin softening
matrices, respectively, Kδ denotes the additional stiffness matrix due to mistuning, u is the vector of
response, and f represents the vector of external forces. As the 3D finite element models are employed,
the above matrices are obtained via linear assumption. In this paper, the external forces acting on
the blades are assumed to be traveling wave excitations, where the forces on the ith blade can be
expressed as

fi(t) = B0cos(ωt−ϕi), i = 1, 2, · · · , N, (2)

where B0 denotes the forcing amplitude vector, ω represents the angular frequency of excitation, and
ω = CΩ, where C is the engine order (EO) of excitation, and ϕi is the interblade phase angle defined as
ϕi = (i− 1)Cθ0, where θ0 = 2π/N, and N is the number of blades.

3. Reduced-Order Modeling

3.1. Model Order Reduction via Cyclic Symmetry Analysis

Model order reduction techniques are often employed, combined with finite element models,
to significantly reduce the computational requirements during analysis. It is much more urgent for
mistuned bladed discs, as mistuning is highly random and thousands of mistuning patterns are
often needed to study the statistical vibration characteristics. In this paper, the ideas presented in
References [28–30] are employed and further developed for blade–disc–shaft assemblies. From a
general perspective of view, these methods belong to the mode superposition method, whereas the
modes used are those of a tuned bladed disc rather than a certain mistuned case. According to these
approaches, the normal modes of the tuned blade–disc–shaft assemblies are used as the basis for
projecting the mistuned physical model into a modal domain, which can be represented as

u = Φtq, (3)

where Φt denotes the mode matrix of the tuned assembly in static condition, where the matrices
due to rotation are not included during eigenvalue analysis, and q represents the modal coordinate
vector. The effectiveness of this coordinate transformation for mistuned blade–disc–shaft assemblies is
validated in the next section.

In the vibration analysis of bladed discs, the cyclic symmetry properties are often employed to
reduce the computation requirements [31,32]. A tuned blade–disc–shaft assembly is also cyclically
symmetric if the shaft is axially symmetric. In the analysis of a rotating blade–disc–shaft assembly, the
rotordynamic effects should not be neglected. However, few relative investigations considered these
effects. As the rotordynamic matrices are all speed-dependent, the Coriolis matrix is skew-symmetric,
and the centrifugal stiffening matrix depends on the stress distributions due to centrifugal forces,
whether these matrices can be included in cyclic symmetry analysis should be rigorously verified. It
can be proven that one matrix could be incorporated in cyclic symmetry analysis if such a matrix of the
sector model has the following relationship with that of its adjacent sector.

_
Ms = [Rs(θ0)]

T_Ms+1Rs(θ0), (4)
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where
_
Ms and

_
Ms+1 denote the matrices of sth and (s + 1)th sectors, respectively, and Rs(θ0) represents

a rotation transformation matrix in term of the sector angle.

Rs(θ0) = INn ⊗Re(θ0), (5)

where INn denotes an identity matrix of dimensions Nn, where Nn is the number of nodes in a sector
model, the symbol ⊗ denotes the Kronecker product, and Re(θ0) is an elementary matrix. Taking the
rotation axial along the z-axis as an example, Re(θ0) can be expressed as

Re(θ0) =


cosθ0 sinθ0 0
− sinθ0 cosθ0 0

0 0 1

. (6)

Detailed proof of this proposition, for brevity, is presented in Appendix A. According to the
explanation in Appendix A, the Coriolis, centrifugal stiffening, and spin softening matrices can all be
incorporated in cyclic symmetry analysis. In this circumstance, the mode matrix Φt represented in
terms of cyclically symmetric modes can be used as the projecting basis during model order reduction.
Then, Φt can be explicitly expressed as

Φt = (E⊗ INs) Bdiag
h=1,2,··· ,N

(
Φ̃

s
h

)
, (7)

where E denotes the complex Fourier matrix with emn = e j(m−1)(n−1)θ0 /
√

N for m, n = 1, 2, · · · , N, INs

denotes an identity matrix, Φ̃
s
h is the mode matrix of hth nodal diameter (ND), and Bdiag

h=1,2,··· ,N

(
Φ̃

s
h

)
denotes a pseudo-block diagonal matrix with Φ̃

s
h in its diagonal. Then, the governing equation in

Equation (1) can be reduced by using the coordinate transformation in Equation (3) as

M̃
..
q +

[
C̃d + C̃c(Ω)

] .
q +

[
K̃e + K̃c(Ω) − K̃s(Ω) + K̃δ

]
q = f̃, (8)

where
M̃ = Bdiag

h=1,2,··· ,N

[(
Φ̃

s
h

)T
M̃

h
Φ̃

s
h

]
C̃d = Bdiag

h=1,2,··· ,N

[(
Φ̃

s
h

)T
C̃

h
dΦ̃

s
h

]
C̃c = Bdiag

h=1,2,··· ,N

[(
Φ̃

s
h

)T
C̃

h
c Φ̃

s
h

]
K̃e = Bdiag

h=1,2,··· ,N

[(
Φ̃

s
h

)T
K̃

h
e Φ̃

s
h

]
K̃c = Bdiag

h=1,2,··· ,N

[(
Φ̃

s
h

)T
K̃

h
c Φ̃

s
h

]
K̃s = Bdiag

h=1,2,··· ,N

[(
Φ̃

s
h

)T
K̃

h
s Φ̃

s
h

]
f̃ = Bdiag

h=1,2,··· ,N

[(
Φ̃

s
h

)T]
(E∗ ⊗ INs)f

, (9)

where
M̃

h
= M̃2e j(h−1)θ0 + M̃1 + M̃3e− j(h−1)θ0

C̃
h
d = C̃d,2e j(h−1)θ0 + C̃d,1 + C̃d,3e− j(h−1)θ0

C̃
h
c = C̃c,2e j(h−1)θ0 + C̃c,1 + C̃c,3e− j(h−1)θ0

K̃
h
e = K̃e,2e j(h−1)θ0 + K̃e,1 + K̃e,3e− j(h−1)θ0

K̃
h
c = K̃c,2e j(h−1)θ0 + K̃c,1 + K̃c,3e− j(h−1)θ0

K̃
h
s = K̃s,2e j(h−1)θ0 + K̃s,1 + K̃s,3e− j(h−1)θ0

, (10)
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where the subscripts of “1”, “2” and “3” in the above matrices represent the terms in the corresponding
block-circulated matrices in Equation (A10) shown in Appendix A.

The reduced-order mistuning matrix K̃δ is also generated via the coordinate transformation in
Equation (3), giving

K̃δ = (Φt)
TKδΦt. (11)

In most available investigations, only the mistuning in blades was taken into account. This may
partly have been because the blade tends to be more flexible and less structurally coupled than the
disc. Actually, mistuning in discs is also inevitable due to manufacturing tolerances and deteriorations
during operation. The mistuning in discs may not play that significant a role as blades in the vibration of
bladed discs. Nevertheless, it may be non-negligible for blade–disc–shaft assemblies, as the flexibilities
in the shaft may lead to significant coupling motions between the shaft and disc. Therefore, the
mistuning in blades and discs is considered and dealt with independently in this paper. Then, K̃δ can
be further expanded, without loss in accuracy, into blade and disc parts as

K̃δ =
(
Φb

t

)T
Kb
δΦ

b
t +

(
Φd

t

)T
Kd
δΦ

d
t = K̃

b
δ + K̃

d
δ, (12)

where Φb
t and Φd

t denote the mode matrices corresponding to the blade and the disc parts, respectively,
and Kb

δ and Kd
δ represent the corresponding mistuning matrices of the two parts. Despite the simple

expressions, K̃
b
δ and K̃

d
δ are difficult to determine, as the mistuning matrices Kb

δ and Kd
δ of a realistic

bladed disc are highly random and difficult to measure. For this reason, frequency mistuning models
were more often employed in available investigations for mistuning quantization. In this paper, such a

model is also used. Detailed deductions on obtaining the reduced-order mistuning matrices K̃
b
δ and K̃

d
δ

are presented in the sections below.

3.2. Parametric Projection of Blade Mistuning

The mistuning projection method proposed by Lim et al. [30] is employed in this section to include
blade mistuning in the reduced-order model. The core idea of this method is to project the mistuning
matrix onto the normal modes of a tuned blade cantilevered at its root. The main procedures of
this method are briefly reviewed herein. Firstly, the blade part mode Φb

t is represented by cyclically
symmetric modes as shown in Equation (7).

Φb
t =

(
E⊗ INb

)
Bdiag

h=1,2,··· ,N

(
Φ̃

b
h

)
, (13)

where Φ̃
b
h denotes the blade part of Φ̃

s
h, and INb is an identity matrix of dimensions Nb, where Nb

denotes the number of DOFs in a sector model of blade.
Then, the blade part’s cyclically symmetric modes are represented by the normal modes of the

tuned blade cantilevered at its root.
Φ̃

b
h = Φb

f ixp̃b
h, (14)

where Φb
f ix is the normal mode matrix of the tuned cantilevered blade, and p̃b

h denotes the participation

factor. By the above transformation, Φb
t =

(
IN ⊗Φb

f ix

)
p̃b, where p̃b =

(
E⊗ INb

)
Bdiag

h=1,2,··· ,N

(
p̃b

h

)
. As the

blades are not directly coupled, Kb
δ has a block-diagonal form as Kb

δ = Bdiag
h=1,2,··· ,N

(
Kb
δ,h

)
. Then, the blade

part’s reduced-order mistuning matrices K̃
b
δ can be expressed as

K̃
b
δ =

(
p̃b)T

Bdiag
h=1,2,··· ,N

(
K̃

b
δ,h

)
p̃b, (15)
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where K̃
b
δ,h =

(
Φb

f ix

)T
Kb
δ,hΦb

f ix. As K̃
b
δ,h tends not to be diagonal, it is often approximately processed in

frequency mistuning models by keeping only the diagonal elements, which can be represented as

K̃
b
δ,h ≈ diag

m=1,2,··· ,M

(
δb

h,mλ
b
m

)
, (16)

where M is the number of retained modes of the tuned cantilevered blade, λb
m represents the mth

eigenvalue of the tuned cantilevered blade, and δb
h,m denotes the deviation ratio, which is often set to

be a random parameter during analysis.

3.3. Parametric Projection of Disc Mistuning

Unlike the projection of blade mistuning, the coordinates between adjacent sectors of the disc
are directly coupled, and the disc mistuning matrix cannot be expressed in block-diagonal form.
Therefore, the mistuning projection method in the previous section cannot be directly employed.
Nevertheless, the idea of representing the overall modes by normal modes of a relatively simple
component and projecting the mistuning matrix onto these normal modes can be utilized. Of course,
some modifications to the formulations are needed to account for the coupling issue of the disc model.

Firstly, the disc part mode Φd
t is represented by cyclically symmetric modes.

Φd
t =

(
E⊗ INd

)
Bdiag

h=1,2,··· ,N

(
Φ̃

d
h

)
, (17)

where Φ̃
d
h denotes the disc part of Φ̃

s
h, and INd is an identity matrix of dimensions Nd, where Nd is the

number of DOFs in a sector model of the disc with the left cyclic symmetry surface eliminated.
As mentioned above, the mistuning matrices of adjacent sectors of the disc are crossed and

coupled. Proper processes are needed to make the matrix block-diagonal. It can be found that adjacent
sector models can be made independent in form by coordinate expansion, where the original and
expanded coordinates with respect to the disc model are expressed as

ud
t =



ud
1

ud
2
...

ud
s
...

ud
N


, ud

s =

 ud
s,R

ud
s,I

, ûd
t =



ûd
1

ûd
2
...

ûd
s
...

ûd
N


, ûd

s =


ûd

s,R
ûd

s,I
ûd

s,L

, (18)

where ud
t denotes the original coordinate vector with respect to Φd

t , ûd
t is the expanded coordinate,

and the subscript “R”, “L” and “I” denote the right and left cyclic boundary DOFs and internal DOFs,
respectively. It can also be proven that the disc mistuning matrix Kd

δ can be obtained using an expanded

block-diagonal matrix K̂d
δ = Bdiag

h=1,2,··· ,N

(
K̂d
δ,h

)
, with

K̃
d
δ =

(
Φd

t

)T
Kd
δΦ

d
t =

(
Φ̂

d
t

)T
K̂d
δΦ̂

d
t , (19)
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where Φ̂
d
t denotes the expanded modes with respect to Φd

t . Detailed deductions on this proposition are
presented, for brevity, in Appendix B. Similar to the expression of Φd

t in Equation (17), the expanded

modes Φ̂
d
t with respect to ûd

t can also be expressed by cyclically symmetric modes.

Φ̂
d
t =

(
E⊗ INd

)
Bdiag

h=1,2,··· ,N

(
ˆ̃
Φ

d
h

)
, (20)

where ˆ̃
Φ

d
h denotes the expanded cyclic modes of Φ̃

d
h, and

Φ̃
d
h =

 Φ̃
d
h,R

Φ̃
d
h,I

, ˆ̃
Φ

d
h =


Φ̃

d
h,R

Φ̃
d
h,I

Φ̃
d
h,L

, (21)

where Φ̃
d
h,L is a matrix dependent on Φ̃

d
h,R; for hND modes,

Φ̃
d
h,L = e j(h−1)θ0Rd(θ0)Φ̃

d
h,R, (22)

where Rd(θ0) denotes a rotation transformation matrix, and Rd(θ0) = Icd ⊗Re(θ0), where Icd is an
identity matrix of dimensions Ncd, and Ncd is the number of nodes on cyclic symmetry interface.

Then, similar to that shown in Equation (14), the expanded cyclic modes ˆ̃
Φ

d
h are represented by

the normal modes of the disc component.

ˆ̃
Φ

d
h = Φd

f rep̃
d
h, (23)

where Φd
f re denotes the normal mode matrix of a tuned sector model of the disc with the left and right

interfaces, as well as the adjacent interface between the disc and shaft, being set to be free, and p̃d
h

denotes the participation factor. Herein, the free constraint is employed on the disc–shaft adjacent
interface instead of a fixed one, because the latter one may not accurately describe the 1ND coupling
modes between shaft and disc, leading to non-negligible errors in forced responses. The employment
of free modes avoids such issues and presents satisfactory results in both frequencies and forced
responses.

By substituting Equation (22) into the expression of K̃
d
δ and neglecting the non-diagonal terms,

the disc part’s reduced-order mistuning matrices K̃
d
δ can be expressed as

K̃
d
δ ≈

(
p̃d)T

Bdiag
h=1,2,··· ,N

 diag
w=1,2,··· ,W

(
δd

h,wλ
d
w

)p̃d, (24)

where p̃d =
(
E⊗ INd

)
Bdiag

h=1,2,··· ,N

(
p̃d

h

)
, W is the number of retained modes of the disc component, δd

h,w is

the deviation ratio, and λd
w denotes the wth eigenvalue of the tuned disc component.

On this basis, the free and forced vibration of tuned and mistuned blade–disc–shaft assemblies
can be analyzed by using the governing equation of motion in Equation (8) and the coordinate
transformation in Equation (3). As the mistuning in blade and disc is taken into account, the effects
of blade and disc mistuning on the vibration characteristics of blade–disc–shaft assemblies can
be investigated.
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4. Validation of Reduced-Order Models

Validation of the developed order reduction method is presented in this section. As the accuracy
of the reduced-order model in vibration analysis for practical structures relies on the accuracy of its
counterpart full-order model, the effectiveness of the developed method can be verified by comparing
the results of the reduced-order model with those of the full order model.

Figure 1 illustrates the finite element model of a blade–disc–shaft assembly, which is used as an
example in this section, where the DOFs of the whole model and the sector model are equal to 103,563
and 7179, respectively. The whole model contains 18 sectors. The reduced-order model contains 216
DOFs with 12 modes per ND. During the projection of blade and disc mistuning, the retained modes
of the cantilevered blade and free disc are 20 and 50, respectively. The excitation is applied at the tip of
the blades with an amplitude of 2 N. The structural damping is assumed to be Rayleigh damping and
Cd = βKe, where β is set to 3 × 10−6 in the subsequent analysis. The material of the blade and disc is
titanium alloy, and that of the shaft is steel, where the properties of these materials are listed in Table 1.

Appl. Sci. 2019, 9, x FOR PEER REVIEW  8  of  19 

retained modes of the cantilevered blade and free disc are 20 and 50, respectively. The excitation is 

applied at the tip of the blades with an amplitude of 2 N. The structural damping is assumed to be 

Rayleigh damping and  =d eC K , where     is set to 3 × 10−6 in the subsequent analysis. The material 

of the blade and disc is titanium alloy, and that of the shaft  is steel, where the properties of these 

materials are listed in Table 1.   

Table 1. Material properties of the blade, disc, and shaft. 

Properties  Blade and Disc  Shaft 

Density  7850 kg/m3  4420 kg/m3 

Poisson’s ratio  0.3  0.31 

Young’s modulus  210 GPa  210 GPa 

   

Figure 1. The finite element model of a blade–disc–shaft assembly and its sector model. 

Generally,  the mistuning  in  the  blade  and  disc  is  random  and  hard  to measure. Herein,  a 

simpler mistuning model,  the commonly used proportional mistuning model,  is used  to validate 

the developed method. Small random variations in Young’s modulus are introduced as 

 
 

0

0

1
, 1,2, ,

1

b b
n n

d d
n n

E E
n N

E E





   
 

 ,  (25) 

where  b
nE   and  d

nE   denote  the Young’s modulus of  the nth sector models of  the blade and disc, 

0E   represents the nominal Young’s modulus, and  b
n   and  d

n   are random variables representing 

the small variations. Specifically,  the employed proportional mistuning patterns of  the blade and 

disc in the subsequent analysis are listed in Table 2. 

Table 2. The mistuning parameters of the blade and disc. 

Blade 
b
n  (%)  Disc Sector  d

n  (%) 

1  1.351  1  0.675 

2  −2.342  2  −0.632 

3  1.070  3  1.561 

4  1.246  4  −1.614 

5  −1.553  5  −0.211 

6  1.763  6  −0.412 

7  1.447  7  0.921 

8  1.009  8  1.026 

9  −0.377  9  −1.088 

10  −0.070  10  −0.035 

11  −2.1667  11  −0.184 

Figure 1. The finite element model of a blade–disc–shaft assembly and its sector model.

Table 1. Material properties of the blade, disc, and shaft.

Properties Blade and Disc Shaft

Density 7850 kg/m3 4420 kg/m3

Poisson’s ratio 0.3 0.31
Young’s modulus 210 GPa 210 GPa

Generally, the mistuning in the blade and disc is random and hard to measure. Herein, a simpler
mistuning model, the commonly used proportional mistuning model, is used to validate the developed
method. Small random variations in Young’s modulus are introduced as Eb

n =
(
1 + δb

n

)
E0

Ed
n =

(
1 + δd

n

)
E0

, n = 1, 2, · · · , N, (25)

where Eb
n and Ed

n denote the Young’s modulus of the nth sector models of the blade and disc, E0

represents the nominal Young’s modulus, and δb
n and δd

n are random variables representing the small
variations. Specifically, the employed proportional mistuning patterns of the blade and disc in the
subsequent analysis are listed in Table 2.
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Table 2. The mistuning parameters of the blade and disc.

Blade δb
n (%) Disc Sector δd

n (%)

1 1.351 1 0.675
2 −2.342 2 −0.632
3 1.070 3 1.561
4 1.246 4 −1.614
5 −1.553 5 −0.211
6 1.763 6 −0.412
7 1.447 7 0.921
8 1.009 8 1.026
9 −0.377 9 −1.088

10 −0.070 10 −0.035
11 −2.1667 11 −0.184
12 2.053 12 0.509
13 1.842 13 0.728
14 −0.825 14 0.886
15 −0.421 15 −0.772
16 −3.228 16 0.623
17 3.123 17 0.535
18 −1.272 18 −1.167

Figure 2 illustrates the natural frequencies versus nodal diameters of the tuned blade–disc–shaft
assembly in a static condition. Some of the 0ND and 1ND modes are shaft-dominated and not involved
in the lines. With this diagram, the excited modes can be easily obtained by comparing the exciting
frequency and the natural frequencies.
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Figure 2. Natural frequencies versus nodal diameters of the tuned blade–disc–shaft assembly in a
static condition.

Figure 3 shows the comparisons of the forced responses of the mistuned blade–disc–shaft assembly
using the normal modes of the mistuned case and those of its tuned counterpart. The presented results
are the responses of the excitation nodes, which are located at the tip of each blade. In the subsequent
analysis, the results of these nodes are also employed. It can be seen in the figures that the results agree
very well. The maximum relative error in amplitude is less than 0.1%. Therefore, the normal modes of
the tuned blade–disc–shaft assembly can accurately represent the modes of mistuned assembly.
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Figure 3. Comparisons of the forced responses of the excitation nodes of the assembly using the normal
modes of the mistuned case and those of its tuned counterpart with excitations of (a) one engine order
(1EO), (b) 2EO, and (c) 3EO.

Figure 4 shows the comparisons of the first 100 natural frequencies of the tuned assembly using
the full-order model and cyclic symmetric sector model. It can be seen in the figure that the two cases
agree well, with the maximum relative error in natural frequency being less than 0.01%. Therefore,
cyclic symmetry analysis is also feasible for bladed discs mounted on flexible shafts.
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Figure 4. Comparisons on the first 100 natural frequencies of the tuned blade–disc–shaft assembly
using the full-order model and cyclic symmetry sector model.

Figure 5 shows the relative errors in eigenvalues of the reduced-order model at different rotating
speeds, where the first 20 are included and the mistuning in the blade and disc is considered. It can be
seen in the figure that the relative error grows with rotating speed but within a relatively small range.
Although the relative errors increase for higher-order eigenvalues, the overall maximum relative error
is still less than 0.1% when the rotating speed is less than 2000 rad/s. Thus, the presented model order
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reduction technique can give accurate results in eigenvalues for a mistuned blade–disc–shaft assembly
in spite of the significant reduction in model order.
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Figure 5. The relative errors in eigenvalues of the reduced-order model of a mistuned blade–disc–shaft
assembly at different rotating speeds.

Figures 6 and 7 illustrate the comparisons of forced responses of the assembly between the
full-order model (FOM) and reduced-order model (ROM) with mistuning in the blade and disc,
respectively, where the 1EO, 2EO, and 3EO excitations are presented. As can be seen in the figures, for
both cases of blade and disc mistuning, the two models give quite similar results in the entire speed
range with different EOs of excitations. Thus, it can be concluded that the reduced-order model can
give quite accurate results in forced responses compared with those of the full-order model.Appl. Sci. 2019, 9, x FOR PEER REVIEW  12  of  19 
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Figure 6. Comparisons of the forced responses of the excitation nodes of the assembly with blade
mistuning between the full-order model and reduced-order model with excitations of (a) 1EO, (b)
2EO, and (c) 3EO. The full- and reduced-order models contain 103,563 and 7179 degrees of freedom
(DOFs), respectively.
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Figure 7. Comparisons of the forced responses of the excitation nodes of the assembly with disc
mistuning between the full-order model and reduced-order model with excitations of (a) 1EO, (b) 2EO,
and (c) 3EO. The full- and reduced-order models contain 103,563 and 7179 DOFs, respectively.

In order to illustrate the efficiency of the presented method, the computational time of the
reduced-order model in computing natural frequencies and forced responses is compared with that of
the full-order model, which is listed in Table 3. The specifications of the employed computer during
the analysis were as follows: Intel Core i7-8700 central processing unit (CPU) with 3.20 GHz; size and
speed of the cache memory = 32 GB and 2666 MHz, respectively; size of the solid-state drive (SSD) hard
disk = 512 GB. The presented values are all the averages of 100 analysis cases. It can be seen that the
presented model order reduction technique could significantly increase the computational efficiency.

Table 3. Comparison on the computational efficiency between full-order model (FOM) and
reduced-order model (ROM).

Analysis Type FOM (s) ROM (s) Ratio

First 100 natural frequencies 31.79 0.135 235
Forced response at a rotating speed 8.94 0.00895 999

Based on the results presented in this section, the effectiveness and efficiency of the presented
method can be validated. With this method, the coupling vibrations between bladed disc and shaft, as
well as the effects of the shaft’s flexibility on the vibration of a mistuned bladed disc, can be studied.
Nevertheless, these issues are not the focus of this paper and can be addressed in further studies.

5. Conclusions

In this paper, an effective reduced-order model was presented for the vibration analysis of a
mistuned blade–disc–shaft assembly. Three-dimensional finite element models, which can provide
accurate modeling and quantitative analysis for complex structures, were introduced to obtain the
governing equations of motion, where the Coriolis force, centrifugal stiffening, and spin softening effects
due to rotation were all taken into account. An efficient model order reduction technique, based on the
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coordinate projection by normal modes of tuned assembly and cyclic symmetry analysis, was developed
for a mistuned blade–disc–shaft assembly. As the basis for employing cyclic symmetry analysis, the
criterion of whether one matrix could be incorporated in the analysis, as well as rigorous proof, was
given. It was shown that the Coriolis, centrifugal stiffening, and spin softening matrices satisfy this
criterion and can be converted into block-circulated forms in cyclically symmetric coordinates. In
the presented model order reduction method, the mistuning in the blade and disc was taken into
account and dealt with independently to reflect the realistic conditions of blade–disc–shaft assemblies.
Regarding the coupling issue of the disc mistuning matrix, an effective mistuning projection approach
was developed by using coordinate expansion and projecting the mistuning matrix onto a free tuned
sector model of the disc. Detailed deductions on the theoretical basis of coordinate expansion were
presented. The employed example of a blade–disc–shaft assembly illustrates the effectiveness of the
presented method in free and forced vibration analysis in both static and rotating conditions.

As cyclic symmetry analysis was employed in this paper, the presented method required the
rotating systems to be cyclically symmetric. In some circumstances, such requirements may not be
satisfied due to the anisotropy in supports, such as the anisotropy in bearings and foundations, which
may lead to periodically time-variant terms and more complicated vibration characteristics. Then,
further development of this method should be done, which was not included in this paper and remains
to be conducted in the future.
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Appendix A

In this section, detailed proof of the proposed proposition in Section 3.1 is presented. Regarding the
issue of including the rotordynamic matrices in cyclic symmetry analysis, the determination factors are
whether the matrices can be transferred into block-circulated form in cyclically symmetric coordinates.
Thus, the core content of the proposition is that one matrix can be transferred into block-circulated
form in a cyclically symmetric coordinate system if it satisfies the relationship shown in Equation (4).
As an example, a block-circulated matrix is shown herein as follows:

Z =



Z1 Z2 0 0 · · · 0 Z3

Z3 Z1 Z2 0 · · · 0 0
0 Z3 Z1 Z2 · · · 0 0
0 0 Z3 Z1 · · · 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 Z3 Z1 Z2

Z2 0 0 · · · 0 Z3 Z1


, (A1)

where Z1, Z2, and Z3 are the sub-blocks of Z.
Without loss of generality, an N-sector finite element model is used as an example for detailed

deduction. For brevity, the DOFs on the right and left cyclic boundaries are represented by “R” and “L”

and the others as “I”, and the left part of the sth sector
_
u
(s)
L is equal to the right part of the (s + 1)th

sector
_
u
(s+1)
R . Then, the coordinates of this model in a global Cartesian coordinate system can be

represented as
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_
u =



_
u
(1)

_
u
(2)

...
_
u
(s)

...
_
u
(N)


,

_
u
(s)

=


_
u
(s)
R

_
u
(s)
I

, s = 1, 2, 3, · · · , N. (A2)

Then, a certain structural matrix
_
Y of this model in a global Cartesian coordinate system has the

following form:

_
Y =



_
Y
(N)

LL + Y(1)
RR

_
Y
(1)

RI
_
Y
(1)

RL 0 0 0 0 · · ·
_
Y
(N)

LR
_
Y
(N)

LI
_
Y
(1)

IR
_
Y
(1)

II
_
Y
(1)

IL 0 0 0 0 · · · 0 0
_
Y
(1)

LR
_
Y
(1)

LI
_
Y
(1)

LL +
_
Y
(2)

RR
_
Y
(2)

RI
_
Y
(2)

RL 0 0 · · · 0 0

0 0
_
Y
(2)

IR
_
Y
(2)

II
_
Y
(2)

IL 0 0 · · · 0 0

0 0
_
Y
(2)

LR
_
Y
(2)

LI
_
Y
(2)

LL +
_
Y
(3)

RR
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RI
_
Y
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0 0 0 0
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Y
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IR
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0 0 0 0
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Y
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(3)
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(3)

LL +
_
Y
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RR · · · 0 0
...

...
...

...
...

...
...

. . .
...

...
_
Y
(N)

RL 0 0 0 0 0 0 · · ·
_
Y
(N−1)

LL +
_
Y
(N)

RR
_
Y
(N)

RI
_
Y
(N)

IL 0 0 0 0 0 0 · · ·
_
Y
(N)

IR
_
Y
(N)

II



. (A3)

For clarity, the above matrix is further expressed as block form as

_
Y =



_
Y
(1)

1
_
Y
(1)

2 0 0 · · · 0 0
_
Y
(N)

3
_
Y
(1)

3
_
Y
(2)

1
_
Y
(2)

2 0 · · · 0 0 0

0
_
Y
(2)

3
_
Y
(3)

1
_
Y
(3)

2 · · · 0 0 0

0 0
_
Y
(3)

3
_
Y
(4)

1 · · · 0 0 0

0 0 0
_
Y
(4)

3 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · ·
_
Y
(N−2)

3
_
Y
(N−1)

1
_
Y
(N−1)

2
_
Y
(N)

2 0 0 0 · · · 0
_
Y
(N−1)

3
_
Y
(N)

1



, (A4)

where
_
Y
(s)

1 ,
_
Y
(s)

2 , and
_
Y
(s)

3 for s = 1, 2, · · · , N denote 2× 2 block matrices, and

_
Y
(s)

1 =


_
Y
(s−1)

LL +
_
Y
(s)

RR
_
Y
(s)

RI
_
Y
(s)

IR
_
Y
(s)

II

, _
Y
(s)

2 =


_
Y
(s)

RL 0
_
Y
(s)

IL 0

, _
Y
(s)

3 =

 _
Y
(s)

LR
_
Y
(s)

LI
0 0

. (A5)
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The cyclically symmetric coordinate system is equivalent with several independent local Cartesian
coordinate systems attached to each sector. Thus, the coordinate transformation between the global
Cartesian coordinate system and the cyclically symmetric coordinate system can be expressed as

_
u =



_
u
(1)

_
u
(2)

_
u
(3)

_
u
(4)

...
_
u
(N)


=



IS 0 0 0 · · · 0
0 R(θ0) 0 0 · · · 0
0 0 R(2θ0) 0 · · · 0
0 0 0 R(3θ0) · · · 0
...

...
...

...
. . .

...
0 0 · · · 0 · · · R[(N − 1)θ0]





ũ(1)

ũ(2)

...
ũ(n)

...
ũ(N)


= Rcũ, (A6)

where R(sθ0) for s = 1, 2, · · · , N − 1 represents the rotation transformation matrix in terms of the angle
sθ0, and IS is an identity matrix. It can be easily understood that the rotation transformation matrix
R(sθ0) is equal to the products of R(θ0) s times, i.e., R(sθ0) = [R(θ0)]

s. For brevity in expression,

R(θ0) is simply represented by R0, and (R0)
N = IS. By applying this coordinate transformation to

_
Y,

such a matrix in a cyclically symmetric coordinate system becomes Ỹ = RT
c
_
YRc, and

Ỹ =



_
Y
(1)

1
_
Y
(1)

1 R0 0 · · · 0
_
Y
(N)

1 (R0)
N−1

RT
0

_
Y
(1)

3 RT
0

_
Y
(2)

1 R0 RT
0

_
Y
(2)

2 (R0)
2

· · · 0 0

0 (RT
0 )

2_
Y
(2)

3 R0 (RT
0 )

2_
Y
(3)

1 (R0)
2
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · ·

(
RT

0

)N−2_
Y

N−(1)

1 (R0)
N−2

(
RT

0

)N−2_
Y

N−(1)

2 (R0)
N−1(

RT
0

)N−1_
Y
(N)

2 0 0 · · ·

(
RT

0

)N−1_
Y

N−(1)

3 (R0)
N−2

(
RT

0

)N−1_
Y
(N)

1 (R0)
N−1


. (A7)

If such a matrix satisfies the relationship in Equation (4), the following equation can be obtained
for s = 1, 2, · · · , N − 1:

_
Y
(s)

RR
_
Y
(s)

RI
_
Y
(s)

RL
_
Y
(s)

IR
_
Y
(s)

II
_
Y
(s)

IL
_
Y
(s)

LR
_
Y
(s)

LI
_
Y
(s)

LL

 =


R0
R 0 0

0 R0
I 0

0 0 R0
L


T

_
Y
(s+1)

RR
_
Y
(s+1)

RI
_
Y
(s+1)

RL
_
Y
(s+1)

IR
_
Y
(s+1)

II
_
Y
(s+1)

IL
_
Y
(s+1)

LR
_
Y
(s+1)

LI
_
Y
(s+1)

LL




R0
R 0 0

0 R0
I 0

0 0 R0
L

. (A8)

With this equation, it can be inferred that

(
RT

0

)N−1_
Y
(N)

1 (R0)
N−1 = · · · =

(
RT

0

)s−1_
Y
(s)

1 (R0)
s−1 = · · · =

_
Y
(1)

1(
RT

0

)N−1_
Y
(N)

2 (R0)
N = · · · =

(
RT

0

)s−1_
Y
(s)

2 (R0)
s = · · · =

_
Y
(1)

2 R0
_
Y
(N)

3 (R0)
N−1 = · · · =

(
RT

0

)s_
Y
(s)

3 (R0)
s−1 = · · · = RT

0

_
Y
(1)

3

. (A9)
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Thus, the matrix Ỹ can be expressed as a block-circulated form as follows:

Ỹ =



Ỹ1 Ỹ2 0 0 · · · 0 Ỹ3

Ỹ3 Ỹ1 Ỹ2 0 · · · 0 0
0 Ỹ3 Ỹ1 Ỹ2 · · · 0 0
0 0 Ỹ3 Ỹ1 · · · 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 Ỹ3 Ỹ1 Ỹ2

Ỹ2 0 0 · · · 0 Ỹ3 Ỹ1


, (A10)

where Ỹ1 =
_
Y
(1)

1 , Ỹ2 =
_
Y
(1)

2 R0, and Ỹ3 = RT
0

_
Y
(1)

3 .
According to the physical meaning of Coriolis force, the Coriolis and spin softening matrices

satisfy the proposition in Equation (4), as these two matrices can be directly generated by finite element
models. On the other hand, the centrifugal stiffening matrix depends on the stress distributions due
to centrifugal forces. Fortunately, the centrifugal force is a 0ND excitation, which leads to identical
deformations and stresses in the local cylindrical coordinate systems of each sector. As a result, the
centrifugal stiffening matrices of each sector are also identical in local coordinate systems. Then, the
overall centrifugal stiffening matrix possesses also the block-circulated form in a cyclically symmetric
coordinate system. Therefore, the Coriolis, centrifugal stiffening, and spin softening matrices can all be
expressed as block-circulated forms and be included in cyclic symmetry analysis.

Appendix B

Verification of the proposition K̃
d
δ =

(
Φd

t

)T
Kd
δΦ

d
t =

(
Φ̂

d
t

)T
K̂d
δΦ̂

d
t is presented in this section. It

should be mentioned that Kd
δ, K̂d

δ, Φd
t , and Φ̂

d
t are all expressed in a cyclically symmetric coordinate

system, rather than in the global Cartesian one. Corresponding to these matrices, four new matrices

K
d
δ, K̂

d
δ, Φ

d
t , and Φ̂

d
t in a global Cartesian coordinate system are introduced, where

Φ
d
t =



Φ
d
1

Φ
d
2

...

Φ
d
s

...

Φ
d
N


, Φ

d
s =

 Φ
d
s,R

Φ
d
s,I

, Φ̂
d
t =



Φ̂
d
1

Φ̂
d
2

...

Φ̂
d
s

...

Φ̂
d
N


, Φ̂

d
s =


Φ̂

d
s,R

Φ̂
d
s,I

Φ̂
d
s,L

. (A11)

Due to the coupling between sectors, the mistuning matrix K
d
δ contains crossed terms, where K̂

d
δ

has an block-diagonal form.
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K
d
δ =



K
(N)
δ,LL + K(1)

δ,RR K
(1)
δ,RI K

(1)
δ,RL 0 0 0 · · · K

(N)
δ,LR K

(N)
δ,LI

K
(1)
δ,IR K

(1)
δ,II K

(1)
δ,IL 0 0 0 · · · 0 0

K
(1)
δ,LR K

(1)
δ,LI K

(1)
δ,LL + K

(2)
δ,RR K

(2)
δ,RI K

(2)
δ,RL 0 · · · 0 0

0 0 K
(2)
δ,IR K

(2)
δ,II K

(2)
δ,IL 0 · · · 0 0

0 0 K
(2)
δ,LR K

(2)
δ,LI K

(2)
δ,LL + K

(3)
δ,RR K

(3)
δ,RI · · · 0 0

0 0 0 0 K
(3)
δ,IR K

(3)
δ,II · · · 0 0

...
...

...
...

...
...

. . .
...

...

K
(N)
δ,RL 0 0 0 0 0 · · · K

(N−1)
δ,LL + K

(N)
δ,RR K

(N)
δ,RI

K
(N)
δ,IL 0 0 0 0 0 · · · K

(N)
δ,IR K

(N)
δ,II



. (A12)

K̂
d
δ =



K̂
(1)
δ,RR K̂

(1)
δ,RI K̂

(1)
δ,RL 0 0 0 · · · 0 0 0

K̂
(1)
δ,IR K̂

(1)
δ,II K̂

(1)
δ,IL 0 0 0 · · · 0 0 0

K̂
(1)
δ,LR K̂

(1)
δ,LI K̂

(1)
δ,LL 0 0 0 · · · 0 0 0

0 0 0 K̂
(2)
δ,RR K̂

(2)
δ,RI K̂

(2)
δ,RL · · · 0 0 0

0 0 0 K̂
(2)
δ,IR K̂

(2)
δ,II K̂

(2)
δ,IL · · · 0 0 0

0 0 0 K̂
(2)
δ,LR K̂

(2)
δ,LI K̂

(2)
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...
...
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(N)
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(N)

δ,RI K̂
(N)

δ,RL

0 0 0 0 0 0 · · · K̂
(N)

δ,IR K̂
(N)

δ,II K̂
(N)

δ,IL

0 0 0 0 0 0 · · · K̂
(N)

δ,LR K̂
(N)

δ,LI K̂
(N)
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. (A13)

In a global Cartesian system, it can be easily obtained that Φ̂
d
s,L = Φ̂

d
s+1,R for s = 1, 2, · · · , N − 1.

Then, a transformation can be obtained between Φ̂
d
t and Φ

d
t , giving

Φ̂
d
t = TdΦ

d
t , (A14)

where

Td =



Ed1 Ed2 0 · · · 0 0

0 Ed1 Ed2
. . . 0 0

0 0 Ed1
. . . 0 0

...
...

...
. . . . . .

...
0 0 0 0 Ed1 Ed2

Ed2 0 0 0 0 Ed1


, Ed1 =


IR 0
0 II

0 0

, Ed2 =


0 0
0 0
IL 0

, (A15)

where IN, IR, II, and IL are all identity matrices. With this equation, it can be easily deduced that

K
d
δ = (Td)

TK̂
d
δTd. (A16)

Then, it can also be obtained that

(
Φ

d
t

)T
K

d
δΦ

d
t =

(
Φ̂

d
t

)T

K̂
d
δΦ̂

d
t . (A17)
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By transforming Φ
d
t and Φ̂

d
t into a cyclically symmetric coordinate system using similar

transformations in Equation (A6), Equation (A17) becomes

(
Φd

t

)T
[
RdK

d
δ

(
Rd

)T
]
Φd

t =

(
Φ̂

d
t

)T[
R̂dK̂

d
δ

(
R̂d

)T
]
Φ̂

d
t , (A18)

where Rd and R̂d have similar forms as the transformation matrix Rc in Equation (A6). As Kd
δ =

RdK
d
δ

(
Rd

)T
and K̂d

δ = R̂dK̂
d
δ

(
R̂d

)T
, the proposition K̃

d
δ =

(
Φd

t

)T
Kd
δΦ

d
t =

(
Φ̂

d
t

)T
K̂d
δΦ̂

d
t can be verified.
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