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Abstract: Landslides are destructive geological hazards that occur all over the world. Due to the
periodic regulation of reservoir water level, a large number of landslides occur in the Three Gorges
Reservoir area (TGRA). The main objective of this study was to explore the preference of machine
learning models for landslide susceptibility mapping in the TGRA. The Wushan segment of TGRA was
selected as a case study. At first, 165 landslides were identified and a total of 14 landslide causal factors
were constructed from different data sources. Multicollinearity analysis and information gain ratio
(IGR) model were applied to select landslide causal factors. Subsequently, the landslide susceptibility
mapping using the calculated results of four models, namely, support vector machines (SVM),
artificial neural networks (ANN), classification and regression tree (CART), and logistic regression
(LR). The accuracy of these four maps were evaluated using the receive operating characteristic
(ROC) and the accuracy statistic. Results revealed that eliminating the inconsequential factors can
perhaps improve the accuracy of landslide susceptibility modelling, and the SVM model had the best
performance in this study, providing strong technical support for landslide susceptibility modelling
in TGRA.

Keywords: landslides; susceptibility mapping; support vector machines; Three Gorges Reservoir
area (TGRA)

1. Introduction

Landslides are destructive geological hazards that may result in serious economic damage and
human losses all over the world [1]. Thousands of landslides occurred in January 2011 in Rio de Janeiro
causing more than 1500 people to die [2]. China has suffered much from natural hazards in the past
decade. On 24 June 2017, a rocky landslide occurred in Maoxian County, Sichuan Province, China,
causing the whole village to be buried and the death of 83 people [3]. On 7 August 2010, catastrophic
debris flows occurred in Zhouqu, China, leading to 1765 deaths [4]; among these geohazards, landslides
occurred most widely and accounted for the highest proportion. In 2018, 1613 landslides occurred,
accounting for 55% of the total geological disasters [5], and the economic loss exceeded 2 billion CNY.

Three Gorges Project, the largest hydropower station in the world, has formed a 660 km long
backwater area after impoundment. The highest water level in the Three Gorges Reservoir area (TGRA)
has risen to 175 m since 2009, with an annual variation of 30 m. The frequent changes of water level
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have significantly changed the geological environment of the TGRA. This has led to the reactivation of
certain old landslides and the occurrence of new landslides. These landslides seriously threaten the
safety of local residents and their property. For instance, Qianjiangping landslide and its associated
30 m impulse wave occurred shortly after the initial impoundment of TGRA in July 2003, causing
24 deaths, destroying 346 houses, and capsizing many ships [6]. Shanshucao landslide occurred in
September 2014, which was triggered by both the rising water level of the TGRA at high speed and
rainfall, causing the Daling Power Station and part of the G348 national highway (about 200 meters
long) to slide into the river [7]. Hence, considering the number of disasters and the damage they
caused, it is crucial and urgent to monitor the TGRA.

Landslide susceptibility modelling can be considered as the initial step towards a landslide
hazard and risk assessment, and can notably improve land-use planning [8]. At present, the landslide
susceptibility models can be divided into qualitative models and quantitative models. Qualitative
models include inventory-based models and knowledge-driven models, whereas quantitative models
mainly include data-driven models and physically based methods [9]. Qualitative models are based
on simple expert knowledge, which is easier to obtain but greatly affected by subjective factors.
Physically based models can simulate the failure process of landslides, but it is not practical for
large-scale areas in terms of its necessary of plenty of parameters [10]. At present, data-driven models
have been widely used, the accuracy of which have been greatly improved because of the high data
quality. The data-driven models include information value model [11], weight-of-evidence [12], logistic
regression (LR) [13], artificial neural network (ANN) [14–16], support vector machine (SVM) [17–19],
decision tree [20], and classified and regression tree (CART) [21], among others. Among those models,
machine learning methods have become popular in landslide susceptibility modelling because of their
good non-linear prediction ability. The performance of machine learning models may vary in different
cases. In the TGRA or other landslide-prone areas, there is no universal agreement for the selection of
landslide susceptibility models until now. Therefore, it is necessary to analyze and compare landslide
susceptibility models.

Landslide development is jointly influenced by many factors, and different causal factors have
different ways of influence [10]. Some inconsequential factors may contribute less to improving the
accuracy of susceptibility modelling than the errors caused by noise, thus reducing the accuracy of
modelling. The important causal factors should be selected and the less important causal factors should
be eliminated to improve the modelling accuracy of landslide susceptibility [22,23]. The information
gain ratio (IGR) is an effective method used to calculate the factor contribution for model accuracy.
It provides a powerful technique to quantitatively identify and select significant causal factors for
landslide susceptibility modelling.

In this paper, the Wushan segment of TGRA was selected as a study area. Multicollinearity
analysis and IGR were applied to select landslide causal factors. Then, three machine learning models
(SVM, ANN, CART) and a multivariate statistical model (LR) were utilized to conduct landslide
susceptibility modelling. Finally, the accuracy of the four models was evaluated and compared using
the receiver operating characteristic (ROC) and the accuracy statistic methods. The authors hoped
that it would find the model that can generate a landslide susceptibility map with higher accuracy in
the TGRA.

2. Materials and Methods

2.1. Description of the Study Area

The study area is located in the southwest of China, a mountainous region in southwest Chongqing.
It is in the middle reaches of the TGRA, with a longitude of 109◦36′57”E~110◦55′4”E and latitude of
30◦58′12”N~31◦6′36”N (Figure 1). The regional altitude range is from 145 to 1800 m. The study area
belongs to the subtropical monsoon region with high air humidity and high average temperature.
Rainfall mainly occurs from May to September, which accounts for 69% of the total annual rainfall.
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Average annual rainstorm days are 3 to 7 days, with the maximum daily rainfall of 243 mm, and the
continuous rainfall of 488 mm.
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Due to the Yanshan movement at the end of the Jurassic, the structure in the study area is mainly 
wrinkled, and the fracture is relatively rare. In addition to the absence of upper Silurian, lower 
Devonian, upper Carboniferous, part of Cretaceous, and Neogene, the strata in the study area are 
exposed from pre-Simian to Quaternary. The weak interlayer inducing landslides in this area are 
mainly Quaternary clay layers, mudstone layers in Jurassic sandstone–mudstone interbed, shale–coal 
layers in Triassic Xujiahe formation, mudstone sandstone–mudstone in Badong formation, and 
carbonaceous shale-coal layers in Permian, among others.  
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Figure 1. (a) The location of Three Gorges Reservoir area (TGRA) in China. (b) The location of the
study area. (c) Elevation map of the study area with landslide distribution (the landslides polygons
were obtained from historical landslide data, field investigation, and high-resolution remote sensing
image data).

Due to the Yanshan movement at the end of the Jurassic, the structure in the study area is mainly
wrinkled, and the fracture is relatively rare. In addition to the absence of upper Silurian, lower
Devonian, upper Carboniferous, part of Cretaceous, and Neogene, the strata in the study area are
exposed from pre-Simian to Quaternary. The weak interlayer inducing landslides in this area are mainly
Quaternary clay layers, mudstone layers in Jurassic sandstone–mudstone interbed, shale–coal layers in
Triassic Xujiahe formation, mudstone sandstone–mudstone in Badong formation, and carbonaceous
shale-coal layers in Permian, among others.

2.2. Methodology

2.2.1. Information Gain Ratio

Information gain ratio was applied to select important causal factors for modelling. In the IGR
method, the landslide causal factor with high information gain rate means that it has good prediction
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ability in modelling. Assuming that the training data T contains n samples, Ci (landslide, non-landslide)
is a classification set of sample data, and the following formula can obtain the information entropy of
the factors:

In f o(T) = −
2∑

i=1

n(Ci, T)
|T|

log2
n(Ci, T)
|T|

(1)

the amount of information (T1, T2, . . . , Tm) split from T regarding the causal factor F is estimated as:

In f o(T, F) = −
m∑

j=1

T j

|T|
log2 In f o(T) (2)

then, the IGR of the landslide causal factor F can be written as follows:

IGR(T, F) =
In f o(T) − In f o(T, F)

SplitIn f o(T, F)
(3)

where SplitInfo represents the potential information generated by dividing the training data T into m
subsets. The formula of SplitInfo is shown as follows:

SplitIn f o(T, F) = −
m∑

j=1

∣∣∣T j
∣∣∣
|T|

log2

∣∣∣T j
∣∣∣
|T|

(4)

2.2.2. Support Vector Machines

Support vector machine is a recently developed nonlinear classification method, which is based
on statistical learning theory. It transforms original input space into a higher-dimensional feature space
to find optimal separating hyperplane. The hyperplane has the largest distance to the nearest training
data point of any class [24].

Assuming samples (xi, xj) = 1, 2 . . . , n, the following function can solve the optimal
separating hyperplane: 

Min
(

1
2‖
⇀
w‖

2
+ C

n∑
i=1

ξi

)
yi
(⇀
w ·

⇀
xi + b

)
− 1 + ξi ≥ 0

ξi ≥ 0, i = 1, 2 · · · , n

(5)

where w is the weight vector that determines the orientation of the hyperplane, b is the bias, ξi is the
positive slack variables for the data points that allow for penalized constraint violation, and C is the
penalty parameter that controls the trade-off between the complexity of the decision function and the
number of training examples misclassified. The function can be converted into an equivalent dual
problem based on the Wolf duality theory:

Max

∑
i
αi −

1
2
∑
i j
αiα jyiy j

(⇀
xi ·

⇀
x j

)∑
i
αiyi = 0, 0 ≤ αi ≤ C

(6)

where αi are Lagrange multipliers and C is the penalty. Then, the decision function, which will be used
for the classification of new data, can be written:

f (x) = sgn

 n∑
i=1

yiαiK
(
xi, x j

)
+ b

 (7)

where K(xi, xj) is the kernel function. The radial basis kernel was adopted as kernel function for the
SVM model in this study.
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2.2.3. Artificial Neural Networks

Artificial neural networks have been widely used in many fields, including landslide research [25,26].
ANNs are a series of statistical learning models inspired by biological neural networks and are used
to estimate or approximate unknown function depending on a large number of inputs. So far, many
kinds of neural network algorithms have been proposed all over the world, and back propagation
neural network (BPNN) is one of the most widely used artificial neural network models in landslide
susceptibility modelling, one that was adopted in this study.

The learning process of BPNN includes two phases: forward propagation and backward
propagation. In forward propagation, the input values act on the output values through the hidden
layer, and the state of neurons in each layer only affect the state of neurons in the next layer. If
the actual output value is not expected, the output error will be transferred back to the input layer,
which is the backpropagation. After many times of “learning” by adjusting the weights between the
neurons, the neural network provides a model that should be able to predict a target value from a
given input value.

The learning rate is an essential parameter of ANN model, which may affect its performance.
In this study, the learning rate will be automatically calculated using the following formula:

η(n) = η(n− 1) ∗ exp(log(ηmin/ηmax)/d) (8)

where η(n) is the learning rate in the nth times training, ηmin is the minimum value of the learning rate,
ηmax is the maximum value of the learning rate, and d is the delay rate. In this study, the initial rate,
the maximum and minimum learning rate, and the delay rate are 0.3, 0.1, 0.01, and 30, respectively.

2.2.4. Classification and Regression Tree

Classification and regression tree is a non-parametric and non-linear classification regression
method proposed by Breiman [21], and its main idea is to recursively partition the data space to
generate a decision tree and prune the tree by the validation data. The CART model does not need to
presuppose the relationship between dependent variables and independent variables, but on the basis
of dependent variables it uses recursive partitioning method to divide the space defined by independent
variables into categories as homogeneous as possible. CART is composed of a classification tree and
a regression tree; the former is used to predict discrete data, whereas the latter is used to predict
continuous data.

Assuming F is an attribute of data set Xm,p, we sorted all samples by these attributes, and the
average value of two adjacent values was taken as the separating points, which was called ηs(s = 1, 2
. . . , m−1). The data set Xm,pwas divided into two subsets according to the value taken on attribute F,
the subset X1 larger than ηs and the subset X2 smaller than or equal to ηs. The GINI coefficients of this
classification method can be expressed as:

Gηs
F (X) =

|X1|

p
I(X1) +

|X2|

p
I(X2) (9)

where p is the number of all samples, |X1| is number of samples of subset X1, |X2| is number of samples
of subset X2, and I(X) can be calculated using the following formula:

I(X) = 1−
2∑

i=1

(
|Ci|∣∣∣X j

∣∣∣ )2( j = 1, 2) (10)

where |Xj| is the number of samples in dataset Xj, and |Cj| is the number of samples belonging to Cj in
data set Xj.



Appl. Sci. 2019, 9, 4756 6 of 19

If the dataset Xm,p contained m data and p attributes, each attribute corresponded to m-1 partition
points, and the GINI coefficient of each partition point was Gηs

F (X), then the point, which had minimum
GINI coefficient, was selected to partition the dataset Xm,p.

According to this method, the sub-nodes of the tree were constructed, and this process was
repeated until all the samples of the sub-nodes belonged to the same class of splitting attractors.

2.2.5. Logistic Regression

Logistic regression is a common model in landslide susceptibility assessment [27], which is a
multivariate data analysis model similar to multiple linear regression analysis. The dependent variables
of LR can be bi-categorized or multi-categorized. In this study, the occurrences of landslides were
taken as dependent variables of the model, which could be expressed as 0 for non-landslide and 1 for
landslide. The factors of landslide susceptibility, such as altitude, slope, and aspect, were selected as
independent variables of the model. The application of LR model in landslide susceptibility assessment
was to find the optimal fitting function, which can quantitatively describe the relationship between the
occurrence of landslide and causal factors. The advantage of the LR model is that the independent
variables can be either continuous, discrete, or any combination of both types. They do not necessarily
have normal distributions. The formula can be expressed as:

y =
1

1 + e−(α+β1x1+β2x2+···+βnxn)
(11)

where α is a constant, n is the number of independent variables, xi(i = 1, 2 . . . , n) is the predictor
variables, and βi(i = 1, 2 . . . , n) is the coefficient of the LR model.

2.3. Data Preparation and Analysis

2.3.1. Landslide Inventory Map

The most crucial step in the landslide susceptibility mapping is to identify landslide locations and
determine when the landslide occurs. Therefore, a detailed and reliable landslide inventory map is the
premise of an accurate assessment of landslide susceptibility. This study constructed the landslide
inventory map from high-resolution remote sensing image data, field investigation, and historical
landslide data, and a total of 165 landslides were identified in the study area (Figure 1). The total
disaster area of the study area was 12.65 km2, and the area of single landslide ranged from 1664 m2

to 1.06 km2. Most of the landslides in this study area occurred on the bank of the Yangtze River and
the gully.

2.3.2. Landslide Causal Factors

The occurrence of a landslide is caused by the combination of the basic geological conditions
of the slope and the external environmental factors. The former are factors that play a controlling
role in the occurrence of a landslide, including topography and geological structures, among other
factors. The latter are triggering factors for the occurrence of a landslide, such as hydrogeological
environment, earthquake, and human engineering activities, among others [28]. According to the field
survey and preliminary research results in TGRA [29–31], 14 causal factors were initially selected as
the factors for landslide susceptibility modelling, including altitude, slope, aspect, curvature, plan
curvature, profile curvature, stream power index (SPI), topographic wetness index (TWI), terrain
roughness index (TRI), lithology, bedding structure, distance to faults, distance to rivers, and distance
to gully. The factors were prepared using a digital elevation model (DEM) with a spatial resolution of
25 m, and geological and geomorphology maps, which were collected from the Chongqing Natural
Resources Bureau. In this study, ArcGIS 10.2 (http://www.esrichina.com.cn/) was applied to process
geodata, and slope and aspect was obtained by Three Dimensions spatial analysis function; SPI and
TWI were calculated by hydrological analysis function and the Raster calculator, respectively. TRI was

http://www.esrichina.com.cn/
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also calculated using the Raster calculator, and distance to rivers, distance to gully, and distance to
faults were calculated using the Euclidean distance method. The continuous causal factors, such as
altitude, should be discretized before modelling. The discretization method of continuous landslide
causal factors proposed by Zhou et al [32] was utilized in this study.

1. Altitude

The altitude range of the study area is 145–1800 m (Figure 1), which is divided into four levels by
the discretization method of continuous causal factors: [145, 300), [300, 450), [450, 750), [750, 1800].
As shown in Table 1, landslides in this study area mainly developed within the altitude from 145 to
300 m, its information value is the highest of 1.752. In the area where the altitude is higher than 750 m,
there has been no landslide occurrence, and its information value is −∞.

2. Slope

The slope of the study area varied greatly, mainly from 0◦ to 75◦ (Figure 2a), the slope is divided
into six levels: [0,6◦), [6◦,15◦), [15◦,24◦), [24◦,33◦), [33◦,51◦) and [51◦,75◦]. Nearly 55% of the landslides
were located in the [6◦,15◦) and [15◦,24◦) areas, and their information values were 1.102 and 0.572,
respectively. When the slope becomes steep, landslides do not easily occur in this area, with the
information value in the [51◦,75◦] area being −6.306 (Table 1).

3. Aspect

In this study area, aspect can be divided into eight categories (Figure 2b). According to the
statistical data, the probability of landslide occurrence on the southeast slope was the largest (Table 1).
Its information value was 0.297.

4. Curvature

The curvature of the study area ranged from −24 to 27 (Figure 2c), and it was divided into four
categories: [−24,−1), [−1,3), [3,7), and [7,27], their information value being −2.849, 3.668, 2.561, and
−0.032, respectively. It can be seen from the calculation results that the information values of the
curvatures [1,3) and [3,7) were relatively larger (Table 1), having a promoting effect on the development
of a landslide.

5. Plan curvature

The variation range of plan curvature in the study area was −13.0 ~ 10.5 (Figure 2d); it was
divided into outward slope [−13, −1.5), straight slope [−1.5,1.5), and inward slope [1.5,10.5], and their
information values were −0.566, 0.035, and −0.795, respectively (Table 1).

6. Profile curvature

The variation range of profile curvature in the study area was −18 ~ 18 (Figure 2e); according
to the profile curvature, the slope pattern can be divided into convex [−18,−1.5), flat [−1.5,1.5), and
concave [1.5,18], and the information values were −0.907, 0.041, and −0.737, respectively (Table 1).

7. SPI

Stream power index can quantitatively describe the relationship between water erosion and land
performance [33]. It is usually considered as one of the factors affecting slope stability. The calculation
formula is as follows:

SPI = AS tan β (12)

where As is the catchment area of the basin and β is the slope. The SPI can be divided into four
categories (Figure 2f): [0,2), [2,4), [4,8), [8, +∞); their information values were 0.262, −0.020, −0.327,
and −0.436, respectively (Table 1).
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8. TWI

Topographic wetness index can quantitatively simulate the dry and wet conditions of topography
and soil moisture in the watershed [33]. The calculation formula is as follows:

TWI = In
(
α

tanβ

)
(13)

where α is the upstream convergence area and β is the slope. The TWI can be divided into four
categories (Figure 2g): [0,4.5), [4.5,6.5), [6.5,8), and [8, +∞); their information values were 0.047, −0.158,
0.069, and −0.292, respectively (Table 1).

9. TRI

Terrain roughness index (TRI) is an index reflecting the change of surface fluctuation. TRI ranges
from 1 to 3.9, and the main range is 1 to 1.2, which accounts for about 70% of the total area of the
study area. The continuous factors classified method was applied to classify TRI into four categories
(Figure 2h): [1,1.2), [1.2,1.4), [1.4,1.6), and [1.6,3.9]; their information values were 0.338, −1.167, −2.291,
and −6.780, respectively (Table 1).

10. Lithology

Lithology is the material basis for the development of a landslide. According to the lithological
characteristics of outcropping strata in the study area, they can be divided into seven categories
(Table 2), and their spatial distribution is shown in Figure 2i. Nearly 60% of the landslides in the study
area developed in category B, and its information value was 0.849 (Table 1).

11. Bedding structure

According to “Technical Requirements for Investigation and Evaluation of Collapse, Landslide,
Debris Flow” from the China Geological Survey [34], slope structure can be classified into eight
categories (Figure 2j; Table 3), and the statistical results of the information value of each slope structure
type are shown in Table 1.

12. Distance to faults

Usually, there are many cracks near the structure, and the rock mass is broken, which provides a
material basis for a landslide and is also the area where a landslide is more developed. Distance to
faults can be divided four categories (Figure 2k): [0,450), [450,900), [900,1750), and [1750, 4900]; their
information values were 0.575, 0.532, −0.611, and −4.311, respectively (Table 1).

13. Distance to rivers

The study area is situated on both sides of the Three Gorges Reservoir, and the river system is the
Yangtze River and its main tributaries. The influence intensity is expressed by the distance to rivers.
The distance to rivers was divided into six categories (Figure 2l): [0,150), [150,300), [300,650), [650,950),
[950,1550), and [1550,5300]. Statistical results showed that the development of landslides in the study
area was significantly affected by rivers; 62% of landslides are within 300 m of the Yangtze River, and
the farther away from rivers, the fewer landslides developed. When the ranges of the distance to rivers
were [0,150) and [150,300), the information values were the largest, being 1.910 and 1.333, respectively
(Table 1).

14. Distance to gully
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Table 1. Spatial relationships between causal factors and landslides.

Causal Factor Category Pixels in Landslide Pixels in TD Proportion of LTL Proportion of DTD IV NC

Altitude (m)

<300 17,324 81,071 68.71 20.41 1.752 0.990
300–450 6049 86,452 23.99 21.76 0.141 0.663
450–750 1839 113,518 7.29 28.57 −1.970 0.337

>750 0 116,248 0 29.26 −∞ 0.01

Slope (◦)

<6 538 8342 2.13 2.10 0.023 0.598
6–15 4196 30,806 16.64 7.75 1.102 0.99

15–24 9711 102,948 38.52 25.91 0.572 0.794
24–33 7608 129,123 30.18 32.50 −0.107 0.402
33–51 3153 118,589 12.51 29.85 −1.255 0.206
51–75 6 7481 0.02 1.88 −6.306 0.01

Aspect (◦)

0–45 3427 45,388 13.59 11.42 0.251 0.849
45–90 2363 39,597 9.37 9.97 −0.089 0.283
90–135 3380 43,368 13.41 10.92 0.296 0.99

135–180 4067 60,128 16.13 15.13 0.092 0.707
180–225 2058 44,740 8.16 11.26 −0.464 0.01
225–270 1750 33,824 6.94 8.51 −0.295 0.141
270–315 3180 50,727 12.61 12.77 −0.018 0.424
315–360 4987 79,517 19.78 20.01 −0.017 0.566

Curvature

−24 to −1 3254 369,402 12.91 92.98 −2.849 0.01
−1 to 3 21,577 26,749 85.58 6.73 3.668 0.99

3–7 372 993 1.48 0.25 2.562 0.663
7–27 9 145 0.04 0.04 −0.032 0.337

Plan curvature
−13 to −1.5 562 13,106 2.23 3.30 −0.566 0.5
−1.5 to 1.5 24,231 372,725 96.11 93.82 0.035 0.99

1.5–10.5 419 11,458 1.66 2.88 −0.795 0.01

Profile curvature
−18 to −2 397 11,732 1.57 2.95 −0.907 0.01
−2 to 2 24,319 372,535 96.46 93.77 0.041 0.99

2–18 496 13,022 1.97 3.28 −0.736 0.5

Stream power index
(SPI)

0–2 13,724 180,391 54.43 45.41 0.262 0.99
2–4 4304 68,746 17.07 17.30 −0.020 0.663
4–8 3196 63,159 12.68 15.90 −0.327 0.337
>8 3988 84,993 15.82 21.39 −0.436 0.01

Topographic
wetness index (TWI)

0–4.5 18,990 289,614 75.32 72.90 0.047 0.663
4.5–6.5 4856 85,391 19.26 21.49 −0.158 0.337
6.5–8.5 954 14,335 3.78 3.61 0.069 0.99
>8.5 412 7949 1.63 2.00 −0.292 0.01

Terrain roughness
index (TRI)

1–1.2 22,324 278,274 88.55 70.04 0.338 0.99
1.2–1.4 2645 93,562 10.49 23.55 −1.167 0.663
1.4–1.6 239 18,431 0.95 4.64 −2.291 0.337

Distance to rivers
(m)

>1.6 4 7022 0.02 1.77 −6.800 0.01
0–150 9958 41,767 39.50 10.51 1.910 0.99

150–300 5659 35,396 22.45 8.91 1.333 0.794
300–650 5047 67,801 20.02 17.07 0.230 0.598
650–950 2259 47,096 8.96 11.85 −0.404 0.402
950–1550 1808 69,776 7.17 17.56 −1.292 0.206

>1550 481 135,453 1.91 34.09 −4.160 0.01

Distance to gully
(m)

0–150 15,036 194,536 59.64 48.97 0.284 0.99
150–350 7653 106,289 30.35 26.75 0.182 0.75
350–500 1553 30,901 6.16 7.78 −0.337 0.5
500–900 962 36,022 3.82 9.07 −1.249 0.26

>900 8 29,541 0.03 7.44 −7.872 0.01

Distance to faults
(m)

0–450 14,652 154,959 58.12 39.00 0.575 0.99
450–900 7121 77,607 28.24 19.53 0.532 0.663
900–1750 3155 75,914 12.51 19.11 −0.611 0.337

>1750 284 88,809 1.13 22.35 −4.311 0.01

Lithology (L)

L1 3890 47,612 15.43 11.98 0.365 0.598
L2 15,126 132,299 60.00 33.30 0.849 0.794
L3 1316 20,209 5.22 5.09 0.037 0.402
L4 2003 16,307 7.94 4.10 0.953 0.99
L5 0 11,826 0.00 2.98 −∞ 0.01
L6 2877 168,880 11.41 42.51 −1.897 0.206
L7 0 156 0.00 0.04 −∞ 0.01

Bedding structure
(BS)

BS1 206 509 0.82 0.13 2.673 0.99
BS2 1423 34,200 5.64 8.61 −0.609 0.173
BS4 3204 87,211 12.71 21.95 −0.789 0.337
BS5 4695 87,741 18.62 22.08 −0.246 0.01
BS6 8549 113,523 33.91 28.57 0.247 0.5
BS7 3721 39,376 14.76 9.91 0.574 0.663
BS8 3414 34,729 13.54 8.74 0.631 0.827

Note: TD = total domain, LTL = landslide in total landslide, DTD = domain in total domain, IV = information value,
NC = normalized class.
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to faults, (l) distance to rivers, (m) distance to gully.

Table 2. Lithological classification in the study area.

Category Main Lithology Geologic Group

A Siltstone, silty mudstone T2b2

B Siltstone, muddy limestone, dolostone with mudstone T2b3, T2b4

C Mudstone, muddy limestone T2b1

D Sandstone, silty shale T3xj1, T3e
E Muddy limestone with limestone T1d1, T1d2, T1d3, T1d4

F Limestone with dolostone, muddy limestone, dolomitic limestone T1j1, T1j2, T1j3, T1j4

G Limestone, silty shale with coal seam P3w, P3d

Table 3. Classification of bedding structure.

Category Definition (slope:θ, aspect:σ, bed dip angle:α, bed dip direction:β)

BS1 α < 10◦

BS2
((∣∣∣α− β∣∣∣ ∈ (0, 30◦]

)
‖

(∣∣∣α− β∣∣∣ ∈ [330◦, 360◦)
))

&&(α > 10◦)&&(θ > α)

BS3
((∣∣∣α− β∣∣∣ ∈ (0, 30◦]

)
‖

(∣∣∣α− β∣∣∣ ∈ [330◦, 360◦)
))

&&(α > 10◦)&&(θ = α)

BS4
((∣∣∣α− β∣∣∣ ∈ (0, 30◦]

)
‖

(∣∣∣α− β∣∣∣ ∈ [330◦, 360◦)
))

&&(α > 10◦)&&(θ < α)

BS5
(∣∣∣α− β∣∣∣ ∈ [30◦, 60◦)

)
‖

(∣∣∣α− β∣∣∣ ∈ [300◦, 330◦)
)

BS6
(∣∣∣α− β∣∣∣ ∈ [60◦, 120◦)

)
‖

(∣∣∣α− β∣∣∣ ∈ [240◦, 300◦)
)

BS7
(∣∣∣α− β∣∣∣ ∈ [90◦, 150◦)

)
‖

(∣∣∣α− β∣∣∣ ∈ [210◦, 240◦)
)

BS8
(∣∣∣α− β∣∣∣ ∈ [120◦, 180◦)

)
‖

(∣∣∣α− β∣∣∣ ∈ [180◦, 210◦)
)

The gully can erode the foot of the slope on the two banks. The distance to the gully was used
to characterize its action intensity, which was divided into five grades (Figure 2m): [0,150), [150,350),
[350,500), [500,900), and [900,3000]. The gully can promote the development of a landslide. When the
ranges of the distance to the gully were [0,150) and [150,350), the information values were 0.285 and
0.182, respectively (Table 1).
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2.4. Landslide Causal Factors Selection

2.4.1. Multicollinearity Analysis

Before susceptibility modelling, it is necessary to check whether there is collinearity between the
causal factors. In this study, the variance inflation factors (VIF) and the tolerances were used to test
the multicollinearity among these 14 factors. When the VIF was ≥5, or the tolerance was ≤0.2, the
factor had a collinearity problem. Otherwise, there was no collinearity. As shown in Table 4, the VIF
and tolerance of altitude were 0.176 and 5.687, respectively, and the VIF and tolerance of distance to
rivers were 0.235 and 4.259, respectively. This means that there was collinearity between altitude and
distance to rivers. Thus, it was necessary to remove altitude from the factor system. After removing
altitude, the minimum tolerance and maximum VIF were 0.522 and 1.914, respectively (Table 4). There
was no collinearity among the new landslide causal factors.

Table 4. Multicollinearity of the causal factors. VIF: variance inflation factors.

Factor
Original Factor System New Factor System

Tolerances VIF Tolerances VIF

Altitude 0.176 5.687 / /
Slope 0.535 1.870 0.536 1.867

Aspect 0.979 1.021 0.980 1.021
Curvature 0.846 1.183 0.849 1.178

Plan curvature 0.926 1.080 0.927 1.079
Profile curvature 0.876 1.142 0.876 1.142

TRI 0.522 1.916 0.522 1.914
Lithology 0.489 2.044 0.544 1.837

Bedding structure 0.939 1.065 0.941 1.063
Distance to faults 0.603 1.658 0.627 1.595
Distance to rivers 0.235 4.259 0.751 1.332
Distance to gully 0.769 1.300 0.802 1.247

2.4.2. Factor Selection Using Information Gain Ratio

After removing altitude, the importance of each factor in the modelling was quantitatively
calculated using IGR, and the results are shown in Figure 3. According to the methodology of IGR in
Section 3.1, the factor with larger average merit value made greater contributions to the accuracy of the
susceptibility model. The calculation results of IGR showed that distance to rivers was the dominant
causal factor in the study area, and its average merit value was 0.061.
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Support vector machine has many advantages, such as a stable result and fast operation speed;
thus, it was used to test the prediction accuracy of different factor combinations, and the accuracy
was calculated using receiver operating characteristic [35]. As shown in Table 5, when eliminating
TWI, curvature, plan curvature, and profile curvature, the accuracy of susceptibility modelling
was the highest of 0.922. However, when the aspect was excluded, the accuracy of susceptibility
modelling was significantly reduced to 0.908. The elimination of inconsequential factors can improve
the accuracy of susceptibility modelling. Finally, nine important causal factors were selected for
susceptibility modelling.

Table 5. The prediction accuracy with elimination of the less important factors.

Model Eliminating Less Important Factors Accuracy

Model 1 Without eliminating any factor 0.918
Model 2 TWI 0.918
Model 3 TWI, profile curvature 0.920
Model 4 TWI, profile curvature, plan curvature 0.919
Model 5 TWI, profile curvature, plan curvature, curvature 0.922
Model 6 TWI, profile curvature, plan curvature, curvature, aspect 0.908

3. Results and Accuracy Analysis

3.1. Landslide Susceptibility Modelling

In the susceptibility mapping, landslide susceptibility index was considered for the probability
of landslide occurrence (landslide: 1, non-landslide: 0). Before landslide susceptibility modelling,
the data of landslide causal factors should be normalized. In this study, we normalized the factors into
the range of [0.01, 0.99] on the basis of their information values. The normalized value was used as
input data, whereas the susceptibility index was used as output data.

In order to test the performance of the used methods, the landslide locations were randomly
divided into two parts. A total of 50% of the landslide locations were utilized for the training model,
and the remaining 50% were applied to verify the model performance. In the training process of
the models, too much or too little training data of any kind would lead to the imbalance of model
training. Therefore, the same number of data was randomly selected from the non-landslide area as
the training samples. Three machine learning models (SVM, ANN, and CART) and the multivariate
statistical model (LR) were used for landslide susceptibility modelling with nine important causal
factors. The modelling process of the four models was completed in Clementine 12.

Furthermore, the parameters of SVM and ANN were obtained by error and trial algorithm
(Table 6). The CART model did not need any parameter in modelling. In the LR model, the formula of
LR model for calculating the landslide susceptibility index (LSI) was as follows:

LSI = (−6.651) + (SPI ∗ (−0.055)) + (TRI ∗ 1.826) + (Lithology ∗ 1.417)
+(Slope ∗ 1.458) + (Gully ∗ 0.806) + (Aspect ∗ 0.384)
+(River ∗ 3.792) + (Faults ∗ 0.174)

(14)

Table 6. The parameters of support vector machine (SVM) and artificial neural network (ANN) models.

Models Parameters Notes

SVM c = 20, γ = 1.3 c is the penalty factor, γ is the parameter of the kernel function
ANN n = 5, α = 0.9 n is the neurons number, α is the momentum

The landslide susceptibility index was calculated by SVM, ANN, CART, and LR model, and then
was divided into four levels: high (20%), moderate (20%), low (20%) and very low (40%), respectively.
The results are shown in Figure 4.
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3.2. Accuracy Statistic

In order to validate the modelling accuracy of the used models, the landslide distribution in each
susceptibility level was statistically analyzed, and the results are shown in Table 7.

In the SVM model, 88.69% of landslides were located in areas of high susceptibility level, whereas
the results of ANN, LR, and CART models were 69.79%, 68.78%, and 62.51%, respectively. Furthermore,
the area of high level in SVM model accounted for 20.01% of the total area, but the area of landslide
accounted for 88.69% of the entire landslide area, and its frequency ratio was as high as 4.432. The
frequency ratios of the other three models were lower than that of the SVM model. ANN and LR
models were 3.517 and 3.503, respectively, and the CART model was the lowest of 3.309.

Table 7. Accuracy statistics of the SVM, ANN, LR, and CRAT models.

Susceptibility Level Pixels in Landslide Pixels in Domain Proportion of LD Proportion of LTL Proportion of DTD Frequency Ratios

SVM
Very low 6 154,275 0.00% 0.02% 38.83% 0.001

Low 210 83,697 0.25% 0.83% 21.07% 0.040
Moderate 2636 79,817 3.30% 10.46% 20.09% 0.520

High 22,360 79,500 28.13% 88.69% 20.01% 4.432
ANN

Very low 409 160,378 0.26% 1.62% 40.37% 0.040
Low 1741 79,155 2.20% 6.91% 19.92% 0.347

Moderate 5479 78,975 6.94% 21.73% 19.88% 1.093
High 17,583 78,781 22.32% 69.79% 19.83% 3.517

LR
Very low 393 161,746 0.24% 1.56% 40.71% 0.038

Low 1838 79,127 2.32% 7.29% 19.92% 0.366
Moderate 5640 78,411 7.19% 22.37% 19.74% 1.133

High 17,341 78,005 22.23% 68.78% 19.63% 3.503
CART

Very low 491 160,378 0.31% 1.95% 40.37% 0.048
Low 1341 79,419 1.69% 5.32% 19.99% 0.266

Moderate 7621 82,440 9.24% 30.23% 20.75% 1.457
High 15,759 75,052 21.00% 62.51% 18.89% 3.309

Note: LD = landslide in domain, LTL = landslide in total landslide, DTD = domain in total domain.

In practical engineering applications, if the area of very low level is misclassified into the area of
high level, it will limit effective land-use. However, if the area of high level is misclassified into the
area of very low level, it may bring economic losses and casualties in the area. However, the effects of
these two cases on the accuracy statistics are the same. Further analysis showed that the area of very
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low level of SVM model accounted for 40% of the total study area, but its landslide only accounted for
0.02% of the entire landslide area. Its frequency ratio was the lowest of 0.001, which was much lower
than those of ANN, LR, and CART models, with those being 0.040, 0.038, and 0.048, respectively.

By comparing the accuracy statistics of the four models, we can see that the SVM model had the
highest classification accuracy in the area of high level and the lowest misclassification in the area of
very low level, showing better prediction performance.

3.3. Using ROC Curve

Receiver operating characteristic (ROC) curve can effectively analyze the performance of the
landslide susceptibility models [36], which can overcome the error caused by setting breakpoints in
advance to reclassify the susceptibility index. ROC curves are plotted by taking the false positive rate
(sensitivity) of different cut-off thresholds as the y-axis and the real positive rate (specificity) as the
x-axis. The area under the ROC curve (AUC) is the area between the curve and the axis, and its value is
between 1.0 and 0.5; the closer the value of AUC is to 1, the better the classification effect of the model.
The ROC curves of training and verifying performance of the used models are shown in Figure 5.
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Figure 5. The receiver operating characteristic (ROC) curves of the SVM, ANN, LR, and CART models
in landslide susceptibility assessment: (a) training and (b) verifying.

In model training, the AUC of the SVM model was 0.927, which was better than the ANN, LR, and
CART models of 0.866, 0.860, and 0.842 (Table 8), respectively. It was indicated that the SVM model
can more accurately fit the nonlinear relationship between landslide occurrence and its causal factors.
In model verifying, the predictive performance of the SVM model was also superior, with the highest
AUC of 0.922, which was better than the ANN, LR, and CART of 0.875, 0.863, and 0.837, respectively
(Table 8).

Table 8. The prediction performance comparison.

Models
Area Under the

ROC Curve (AUC) Standard Error
95% Confidence Interval

Lower Limit Upper Limit

Training group
SVM 0.927 0.002 0.923 0.930
ANN 0.866 0.002 0.962 0.871

LR 0.860 0.002 0.855 0.864
CART 0.842 0.003 0.837 0.847

Prediction group
SVM 0.922 0.001 0.920 0.923
ANN 0.875 0.001 0.873 0.877

LR 0.863 0.001 0.860 0.865
CART 0.837 0.001 0.835 0.840
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From the above two methods of accuracy analysis, we can see that the SVM model had the best
prediction performance in the susceptibility modelling of the study area, followed by ANN and LR
models, and CART had the worst prediction performance.

4. Discussion

In this study area, landslides mainly occurred along the Yangtze River, with an elevation from 145
to 300 m. When the altitude was higher than 750 m, there were no landslides. The distance to rivers
(<300 m) and lithology (T2b3, T2b4) had a positive effect on landslides in this area, and their average
merit values were 0.061 and 0.029, respectively (Figure 3). A total of 62% of the landslides were within
300 m from the Yangtze River, and nearly 60% of the landslides were with the stratigraphic lithology of
T2b3 and T2b4, which were regarded as the main stratum of landslide in the TGRA [37].

The landslide development laws vary in different landslide-prone areas, hence the susceptibility
models often perform in varied ways in different regions. In this study, we wanted to find an effective
model in TGRA, and thus three machine learning models (SVM, ANN, and CART) and one multivariate
statistical model (LR) were utilized. The results showed that the SVM model performed the best
(Table 8). At the same time, the SVM performance behavior for susceptibility modelling in other
regions were collected. As shown in the literature (Table 9), the accuracy of SVM was always larger
than 0.8. We could see that SVM performed acceptably in different regions, and thus it can be used as a
recommended model in TGRA and other landslide-prone regions.

Table 9. The accuracy of SVM model in different areas.

Authors Study Area Accuracy of SVM

An et al. [38] The Wangzhou segment of the TGRA 0.814
Marjanovic et al. [20] The Fruška Gora Mountain (Serbia) 0.842
Marjanovic et al. [39] NW (Northwest) slopes of Fruška Gora Mountain, Serbia 0.880

Chen et al. [40] Hanyuan county, China 0.875
Bui et al. [10] The Son La hydropower basin (Vietnam) 0.887

Note: The accuracy refers to the proportion of historical landslide hazard points in high to very high prone areas.

In this study, 14 causal factors were preliminarily selected for susceptibility modelling. On the
basis of the analysis of the IGR model, the factors could be grouped into the noise factors and the crucial
factors. When the noise factors (TWI, curvature, plan curvature, and profile curvature) were removed,
the accuracy of the model was gradually improved, but when the crucial factor was eliminated, the
accuracy of the model was greatly reduced (Table 5). In this study area, distance to rivers was the most
important factor, and the impoundment of the TGRA impacted the landslide development in three
aspects: (1) the long-term immersion of reservoir water gradually reducing the strength of rock (soil)
at the saturated zone (mostly near the Yangtze river), reducing the resistance force of landslide; (2) the
strong dynamic action of water enhancing the lateral erosion on the bank slope, changing the slope
shape, and thus reducing the slope stability; (3) the periodic fluctuation of the reservoir water making
the self-weight, static, and dynamic water pressure of the landslide change, which could increase
the resistance force or reduce the sliding force of the landslide and even cause overall instability and
damage [41–44]. Hence, in order to reduce the losses caused by landslides in TGRA, we should pay
more attention to the early warning of reservoir bank landslides.

5. Conclusions

This paper takes Wushan segment in the TGRA as a case study, contributing to a systematic
comparison and evaluation of four models for landslide susceptibility modelling. According to this
case study, the following results can be noticed: (1) landslide development in the study area is mainly
affected by distance to rivers and stratum lithology (T2b3 and T2b4); (2) IGR is an effective method
for evaluating the importance of landslide indicators, and eliminating the less important factors can
effectively improve the prediction accuracy in landslide susceptibility modelling; and (3) the SVM
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model shows the best performance in this study area, and thus it can be recommended for susceptibility
modelling in TGRA and other landslide-prone regions.
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