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Abstract: In this study, we demonstrate a one-step method for fabricating a novel sodium
alginate-polyacrylamide (Alg–PAM) composite aerogel, which exhibits a very high affinity and
selectivity towards Pb2+. The as-prepared Alg–PAM composite aerogel can uptake 99.2% of Pb2+ from
Pb2+-containing aqueous solution (0.1 mM) and the maximum adsorption capacity for Pb2+ reaches
252.2 mg/g, which is higher than most of the reported Pb2+ adsorbents. Most importantly, the prepared
Alg–PAM adsorbent can be regenerated through a simple acid-washing process with only a little loss
of the adsorption performance after five adsorption–desorption cycles. In addition, the influence of
the experimental conditions, such as the solution pH, contact time, and temperature, on the adsorption
performance of the Alg–PAM adsorbent was studied. It is clear that the low-cost raw materials, simple
synthesis, regeneration ability, and highly efficient removal performance mean that the designed
Alg–PAM aerogel has broad application potential in treating Pb2+-containing wastewater.
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1. Introduction

Lead is widely used as a raw material in industrial production. Lead ions (Pb2+) are often found
in lead storage batteries, lead ore smelting, and recycled lead industrial wastewater [1]. Pb2+ in
wastewater can be absorbed and enriched by aquatic animals and plants and then enter the human body
through the food chain, thereby posing serious damage to the nerves, digestive systems, kidneys, and
endocrine systems of humans [2,3]. Children are more sensitive to Pb2+ than adults, and excessive Pb2+

can cause mental decline and behavioral abnormalities among children [4,5]. Therefore, new methods
and materials for effectively and selectively removing Pb2+ from wastewater must be developed.

Previously, many synthesized materials, such as one-dimensional (1D) nanofibers [6,7],
two-dimensional (2D) films or membranes [3,8,9], and three-dimensional (3D) scaffolds [10–12],
have been utilized as effective absorbents for treating Pb2+-containing water systems. 1D and 2D
nano-adsorbents have a high adsorption capacity and adsorption rate for Pb2+ due to their high specific
surface area and chemical activity, but the preparation of these nanomaterials usually requires stringent
conditions, such as a high temperature, high pressure, high purity reagents, etc. In addition, these
nano-adsorbent materials are difficult to recollect because of their small size. Macroscopic 3D porous
material can overcome the above shortcomings. It not only provides a high surface area, but also
facilitates solid–liquid separation. To achieve an economical use of the synthesized absorbents, an
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important aspect is to find low-cost and source-rich natural materials for fabricating various functional
nanomaterials [13,14].

Sodium alginate is a natural polysaccharide with an excellent biocompatibility and biodegradability.
This molecule contains a large amount of carboxyl and hydroxyl functional groups that can complex
metal ions [15]. Therefore, sodium alginate can also be used as a medical antidote for treating heavy
metal ion poisoning [16]. However, alginate aerogels have poor mechanical properties. After repeated
use, the aerogel structure can be easily destroyed, thereby resulting in an unstable adsorption capacity
for heavy metal ions [17]. This kind of material shows improved mechanical properties given its
special adhesion. In addition, the polyacrylamide molecule contains a large amount of amino groups
that can chelate with metal ions, thereby adsorbing heavy metal ions in water [18,19].

In this work, to improve the mechanical properties of alginate-based aerogel, we modified
polyacrylamide on alginate salt by applying a simple chemical grafting technique and then prepared
a novel sodium alginate/polyacrylamide (Alg–PAM) composite aerogel by applying the vacuum
freeze-drying technique. We then used this aerogel to remove Pb2+ from wastewater, characterized
its morphology and chemical composition, and studied its adsorption effect on Pb2+ under different
experimental conditions.

2. Materials and Methods

2.1. Chemicals and Materials

Sodium alginate (low viscosity), polyacrylamide, nitric acid (HNO3), sodium hydroxide
(NaOH), metal salts, 1-Ethyl-3-(3-dimethyllaminopropyl)carbodiimide hydrochloride, and
N-hydroxysuccinimide were purchased from the Shanghai Aladdin Reagent Company (Shanghai,
China). All metal salt solutions were prepared by using ultrapure water. The pH value of the solution
was adjusted with 1.0 M HNO3 or NaOH. Lake water was taken from the Anqing Lianhu Lake
(Anqing, China), whereas river water was collected from the Anqing section of the Yangtze River
(Anqing, China).

2.2. Apparatus

Macroscopic and microscopic images of the materials were taken using a D600 Canon digital
camera and Quanta 250FEG scanning electron microscopes (SEM, FEI Company, Hillsboro, Oregon,
USA), respectively. The chemical composition of the adsorbent and the functional groups contained
therein were determined using an Avatar 360 infrared spectrometer (Thermo Nicolet Corporation,
Waltham, Massachusetts, USA) and Axis Ultra DLD X-ray photoelectron spectrometer (XPS, Shimadzu
Corporation, Tokyo, Japan). A JJ-1 electric agitator (Changzhou Guohua Company, Changzhou, China)
and MS7-H550-Pro agitator (Dragon Laboratory Instruments Limited, Beijing, China) were used for
mechanical and magnetic stirring, respectively. A PHS-3E acidity meter (Shanghai Leici Company,
Shanghai, China) was used to determine the pH value of the solution. Each adsorption/desorption
experiment was conducted three times in parallel, and the concentration of each metal ion in the
solution was measured by an Optima 8000 inductively coupled plasma optical emission spectrometer
(ICP–OES, PerkinElmer Instrument Co., Ltd, Waltham, MA, USA).

2.3. Preparation of the Sodium Alginate-polyacrylamide (Alg–PAM) Composite Aerogel

First, 2.0 g of sodium alginate was weighed and dissolved in 98.0 mL of ultrapure water.
Second, 0.15 g of 1-Ethyl-3-(3-dimethyllaminopropyl)carbodiimide hydrochloride and 0.12 g of
N-hydroxysuccinimide were added to the solution and mechanically stirred for 3 hours. Third, 2.0 g of
polyacrylamide was added to the mixture, and stirring was continued for 12 hours at room temperature.
Fourth, under magnetic stirring, the mixture was dropped into a calcium nitrate solution (when the
mixture was in contact with the Ca2+ solution (0.5 M), an oval hydrogel was immediately formed),
and the hydrogels were then collected by filtration and washed thrice with ultrapure water. Fifth, the
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hydrogels were immersed in ultrapure water, placed in a vacuum freeze-drying apparatus, frozen for
4 hours, and vacuum dried for 20 hours to obtain the sodium alginate-polyacrylamide (Alg–PAM)
composite aerogel.

2.4. Adsorption and Desorption Tests

In an adsorption experiment, about 100 mg of Alg–PAM was weighed and added to 40 mL of the
0.1 mM Pb2+ (or other metal ions) solution, stirred at room temperature for 24 hours, and eventually
filtered through filter paper and a funnel at atmospheric pressure. The amount of Pb2+ remaining in
the filtrate was measured using the ICP–OES.

In a desorption experiment, Pb2+-loaded Alg–PAM was immersed in 40 mL of the 0.05 M HNO3

solution for 30 minutes, filtered, and washed thrice with ultrapure water, and the amount of Pb2+ in
the eluate was then determined using ICP–OES.

3. Results and Discussion

3.1. Material Characterization

In order to determine the components and functional groups contained in the prepared Alg–PAM,
we characterized the raw sodium alginate, polyacrylamide, and Alg–PAM composite aerogel by
infrared spectroscopy. As shown in Figure 1, in the three spectra, the absorption peaks around 2925
cm−1 are aliphatic C–H stretching vibrations. In the spectrum of sodium alginate, the broad absorption
peak near 3400 cm−1 is –OH stretching vibration, and the absorption peak at 1412 cm−1 belongs to
the –COO– group [20]. In the spectrum of polyacrylamide, the absorption peak at 1650 cm−1 can be
assigned to the amide bond [21]. Compared with the spectrum of sodium alginate, a new peak of the
amide bond is observed near 1650 cm−1 in Alg–PAM, thereby suggesting that polyacrylamide was
successfully modified on the calcium alginate aerogel [20]. Furthermore, we also characterized the
XPS spectra of Alg–PAM before and after Pb2+ adsorption. As shown in Figure 2, after adsorption,
new Pb 4f peaks could be observed on the Alg–PAM adsorbent, thereby indicating that Pb2+ ions were
successfully loaded onto the Alg–PAM adsorbent [22].
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Figure 2. X-ray photoelectron spectrometer (XPS) spectra of sodium alginate-polyacrylamide (Alg–PAM)
(a) before and (b) after Pb2+ adsorption.

Moreover, we also characterized the morphology of Alg–PAM. As shown in Figure 3, the
as-prepared Alg–PAM takes the form of white aerogel balls in the shape of water droplets. When
amplified locally, many wrinkles can be seen on the Alg–PAM surface. This wrinkled surface can
increase the contact area between the adsorbent and adsorbate, thereby increasing the adsorption
capacity of Alg–PAM to the target metal ions.
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3.2. Effect of Solution pH

In order to investigate the effect of solution acidity on the adsorption performance of Alg–PAM,
~100 mg of Alg–PAM adsorbent was added to 40 mL pH = 1, 2, 3, 4, 5, or 6 of Pb2+ (0.1 mM) solution.
After stirring for 24 hours and filtration, the concentration of Pb2+ in the filtrate was measured by
ICP–OES. The experimental results are shown in Figure 4. When the pH value of the solution is 1,
Alg–PAM can only remove 17.7% of Pb2+ in wastewater, which may be ascribed to the fact that the
carboxyl and amino groups on Alg–PAM are protonated in the strongly acidic environment, thereby
reducing the functional groups bound to Pb2+ [23]. When the pH value of the solution is within the
range of 3 to 6, Alg–PAM can remove more than 99.0% of Pb2+ in wastewater. When the pH value of
the solution exceeds 6, according to the solubility product rule, the Pb2+ in the solution begins to form
a Pb(OH)2 precipitate. Therefore, the optimum pH value of the adsorbed solution ranges between 3
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and 6. Within this range, neither the amino group nor the carboxyl group is protonated, and the Pb2+
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3.3. Effect of Adsorption Time

Approximately 100 mg of Alg–PAM was weighed and added to 40 mL of the 0.1 mM Pb2+ solution;
stirred for 0.5, 1, 2, 3, 6, 12, 20, 24, 30, or 36 hours; and then filtered. The amount of Pb2+ remaining
in the filtrate was determined by ICP–OES. As can be seen in Figure 5, as the contact time increases,
the amount of Pb2+ adsorbed by Alg–PAM initially increases, followed by a gradual increase, and
eventually reaches stability. When the adsorption time is 12 hours, Alg–PAM can remove 97.6% of
Pb2+ in the solution. When the adsorption time is 24 hours, Alg–PAM can remove 99.2% of Pb2+ in the
solution. When the adsorption time is longer than 24 hours, the Pb2+ removal efficiency of Alg–PAM
remains stable. Therefore, the adsorption time we selected in this study was 24 hours, which is close to
the reported values in the literature [24,25].
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3.4. Influence of Temperature

We also studied the removal efficiency of Alg–PAM for Pb2+ at different ambient temperatures.
About 100 mg of Alg–PAM was weighed and added to 40 mL of the 0.1 mM Pb2+ solution, placed
at 0, 5, 15, 20, 30, 40, or 50 ◦C for 24 hours, and filtered, and the amount of Pb2+ remaining in the
filtrate was then measured by ICP–OES. Figure 6 shows that the Pb2+ removal efficiency of Alg–PAM
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gradually increases along with ambient temperature. When the ambient temperature is 15 ◦C, the
adsorption efficiency of Pb2+ by Alg–PAM is 94.9%. When the temperature increases to 40 ◦C, the
removal efficiency reaches 99.3%. These experimental results are similar to the reported literature and
indicate that the process by which Alg–PAM binds to Pb2+ is endothermic [26,27].Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 10 
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3.5. Adsorption Performance of Alg–PAM for Metal Ions

The adsorption abilities of Alg–PAM for different metal ions (such as Pb2+, Cu2+, Cr3+, Cd2+,
Zn2+, and Co2+) are shown in Table 1. It can be seen from Table 1 that Alg–PAM has a high affinity for
Pb2+, Cu2+, and Cd2+, and can remove more than 90% of the corresponding metal ions in the solution,
which may be attributed to the carboxyl, hydroxyl, and amino groups on Alg–PAM that bind the metal
ions via a coordination effect. In addition, despite the coexistence of Cu2+, Cr3+, Cd2+, Zn2+, or Co2+,
Alg–PAM can still remove more than 95% of Pb2+ in the mixed solution, and the relative selectivity
coefficients (k) are all over 8. This indicates that the prepared Alg–PAM has a higher selectivity for
Pb2+, and can selectively remove Pb2+ in the presence of other ions.

Table 1. Adsorption ability of the sodium alginate-polyacrylamide (Alg–PAM) for different metal ions.

Alg–PAM Initial Solution (mM) Removal Efficiency (%) Adsorption Capacity (mg/g) Kd k

In ultrapure
water

0.1 (Pb2+) - 99.2 - 8.2 - 49.6 - -
0.1 (Cu2+) - 91.6 - 2.3 - 4.4 - -
0.1 (Cr3+) - 92.4 - 1.9 - 4.9 - -
0.1 (Cd2+) - 90.2 - 4.1 - 3.7 - -
0.1 (Zn2+) - 76.9 - 2.0 - 1.3 - -
0.1 (Co2+) - 69.5 - 1.6 - 0.9 - -
0.1 (Pb2+) 0.1 (Cu2+) 95.3 71.8 7.9 1.8 8.1 1.0 8.0
0.1 (Pb2+) 0.1 (Cr3+) 96.5 67.7 8.0 1.4 11.0 0.8 13.2
0.1 (Pb2+) 0.1 (Cd2+) 96.7 66.0 8.0 3.0 11.7 0.8 15.1
0.1 (Pb2+) 0.1 (Zn2+) 97.8 61.9 8.1 1.6 17.8 0.6 27.3
0.1 (Pb2+) 0.1 (Co2+) 97.1 43.2 8.0 1.0 13.4 0.3 44.0

In lake water 0.1 (Pb2+) - 88.4 - 7.3 - 3.1 - -
In river water 0.1 (Pb2+) - 94.3 - 7.8 - 6.6 - -

In order to confirm the maximum adsorption capacity of the Alg–PAM adsorbent for Pb2+, we
added ~100 mg of Alg–PAM to 40 mL of different concentrations of Pb2+ solution, stirred for 24 hours,
filtered, and then measured the amount of Pb2+ remaining in the filtrate. It can be seen from Figure 7
that as the solution concentration increases, the adsorption capacity of Alg–PAM for Pb2+ gradually
increases. When the Pb2+ concentration increases from 0.1 to 50 mM, the adsorption capacity of
Alg–PAM for Pb2+ rapidly increases from 8.2 to 252.2 mg/g. However, when the concentration of Pb2+
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exceeds 50 mM, the adsorption capacity of Alg–PAM remains stable and shows no further increase.
Therefore, the maximum adsorption capacity of Alg–PAM for Pb2+ is 252.2 mg/g, which is higher than
that of most of the reported Pb2+ sorbents (Table 2) [28–41].
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Table 2. Adsorption capacities of the reported adsorbents for Pb2+.

Adsorbents Adsorbate Maximum Adsorption Capacity (mg/g) References

Polyampholyte hydrogel Pb2+, Cd2+ 216.1(Pb2+), 153.8(Cd2+) [28]
Nanohydroxyapatite Pb2+ 200.0 [29]

GO 1 Pb2+ 178.5 [30]
GO/chitosan/FeOOH Pb2+ 111.1 [31]

Thiol-functionalized GO Pb2+ 200.0 [32]
Dithiocarbamate-functionalized GO Pb2+ 132.0 [33]

Xanthate-modified thiourea
chitosan sponge Pb2+ 188.1 [34]

Biochar Pb2+, Cd2+, Cu2+ 153.1(Pb2+), 28.1(Cd2+), 34.2(Cu2+) [35]
Amino-functionalized wood flour Pb2+ 189.9 [36]

GO Pb2+ 125.0 [37]
Chitosan-poly(acrylic acid)

composite beads Pb2+ 138.9 [38]

Titanium-Tin oxide nanocomposite Pb2+ 70.0 [39]
Nitrogen-doped carbon

nanospheroids Pb2+ 99.8 [40]

Cysteine-functionalized lignin Pb2+, Cu2+ 55.5(Pb2+), 68.7(Cu2+) [41]
Alg–PAM 2 Pb2+ 252.2 Our work

1 GO: graphene oxide. 2 Alg–PAM: sodium alginate-polyacrylamide.

3.6. Regeneration of Alg–PAM

Under acidic conditions, H protons can displace Pb2+ ions that are attached to the carboxyl,
hydroxyl, and amino groups of the Alg–PAM [42]. To avoid introducing other impurity ions, we used
HNO3 as an eluent to regenerate the adsorbent in this study. In the adsorbent regeneration experiment,
the Pb2+-loaded Alg–PAM was immersed in 40 mL of the 0.05 M HNO3 solution for 30 minutes and
filtered, and the adsorbent was washed successively with ultrapure water, saturated Ca(OH)2 solution,
and ultrapure water. The adsorbent was then dried in an oven at 40 °C for 4 hours to obtain the
regenerated Alg–PAM. It can be seen from Figure 8 that the regenerated Alg–PAM adsorbent has stable
chemical properties, and its removal efficiency for Pb2+ is in the range of 97 ± 3%. In addition, the
physical morphology of Alg–PAM also remains stable after five adsorption–desorption cycles.
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4. Conclusions

We successfully prepared a novel sodium alginate-polyacrylamide composite aerogel (Alg–PAM)
by using a simple one-step synthesis method. The prepared Alg–PAM is a macroscopic adsorbent
that can be easily applied for solid–liquid separation. Alg–PAM also exhibits a high affinity and
selectivity for Pb2+ due to the carboxyl, hydroxyl, and amide groups and can remove 99.2% of Pb2+

from wastewater with a maximum adsorption capacity up to 252.2 mg/g. This adsorbent can be
regenerated by simple acid washing, and its adsorption performance remains stable after repeated
use. Given its use of low-cost and green raw materials, its simple preparation process, and its high
efficiency removal performance, Alg–PAM has broad application potential in treating heavy metal ions
in wastewater.
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