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Abstract: Residual shear stresses and normal stresses induced by machining affect the fatigue
performance of components. Thus, residual shear and normal stresses should be considered
simultaneously when evaluating the influence of residual stress on fatigue performance. In the
present paper, the influences of residual shear and normal stresses on the fatigue life and stress
intensity factor (SIF) of turned Inconel 718 were investigated. Firstly, the cos α measurement method
was utilized to calculate the residual shear stress and residual normal stress of turned Inconel 718.
Then, the combined effects of residual shear and normal stresses on fatigue life were evaluated
through uniaxial tension–tension fatigue tests. Thirdly, a prediction model for the SIF was proposed
by taking the residual shear and normal stresses into account. Finally, the predicted SIF was validated
by the published experimental data from the literature. The predicted results of the proposed model
generally agreed well with the available experimental data.

Keywords: residual normal stress; residual shear stress; fatigue; threshold stress intensity factor;
Inconel 718

1. Introduction

Inconel 718 has good mechanical properties such as high yield and high ultimate tensile strength,
fatigue resistance as well as good corrosion resistance at a high temperature of 650 ◦C. Thus, it has
been widely employed in the aerospace industry for parts in turbine engines such as turbine disks,
turbine shafts, and high-pressure compressor blades [1]. Turbine engines work with maximum speed
in a harsh environment with high pressure, high load, and high temperature. Once a failure is caused
by a fatigue fracture occurring on the turbine disk, turbine shaft, or compressor blade, a larger amount
of high-energy debris will be generated. These debris will break through the turbine casing to threaten
the aircraft safety and may cause catastrophic failure of the turbine.

The surface integrity factors including surface roughness, residual stress, micro-hardness, and
microstructure are considered the most relevant factors that will result in a failure of the turbine disk
or shaft according to statistics [2]. It is noteworthy that, among the surface integrity factors, residual
stress plays a key role in affecting the fatigue performance of components [3–6]. Compressive residual
stress (CRS) is beneficial to improving fatigue performance [7–9], whereas induced tensile residual
stress is usually detrimental to the fatigue life of components [10,11].

Several researchers have undertaken to study the influence of residual stress on the fatigue
performance of Inconel 718. Chen et al. [12] investigated the influence of the broaching process on the
bending fatigue behavior of Inconel 718. They pointed out that the CRS in a longitudinal direction at the
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surface induced by broaching could extend the bending fatigue life of Inconel 718. Kattoura et al. [13]
analyzed the effect of CRS produced by ultrasonic nanocrystal surface modification on the fatigue
behavior of Inconel 718 plus superalloy. The experimental results showed that the presence of CRS in
longitudinal direction and transverse direction improved fatigue life. They explained that the CRS at the
surface layer could inhibit the crack initiation and propagation. Fleury et al. [14] evaluated the influence
of residual stress in a longitudinal direction on the fatigue life of machined nickel-based superalloy.
They found that higher fatigue life could be obtained due to the presence of CRS. The negative effect of
notch on fatigue life could be canceled by the positive effect of CRS. Martin-Meizoso et al. [15] carried
out machining and fatigue experiments to correlate residual stress with the fatigue life of Inconel 718
at high temperature. They suggested that the maximum residual stress at the machined surface and
the area of CRS were related to fatigue life. Similar work on titanium alloy Ti6Al4V was performed by
Moussaoui et al. [16,17]; they assumed that the maximum residual stress in a longitudinal direction on
the machined surface could be a good indicator for evaluating fatigue life.

There is extensive literature focusing on the residual stresses in longitudinal or transverse
directions on a machined surface. However, the residual stresses in these two directions are residual
normal stresses, and the residual shear stress produced during machining has not been taken into
account. Indeed, both the residual normal and shear stresses were induced during the machining
process. The residual shear stress induced by machining should be taken into account to obtain the
equivalent stress that can determine the fatigue life of a component. Hence, the induced residual shear
stress is not negligible, and it is necessary to study its effect on fatigue performance of Inconel 718.
In addition, the effect of residual stress on the stress intensity factor (SIF) has not been entirely explored
and reported in the literature. Therefore, the purpose of this paper was to determine the residual shear
and normal stresses simultaneously and to establish the correlation between the residual stress and the
SIF of Inconel 718. The residual normal stress was obtained using X-ray diffraction and the residual
shear stress was calculated based on the cosα method. Uniaxial tension–tension fatigue tests were
carried out to evaluate their effect on fatigue life. Moreover, a prediction model of the stress intensity
factor was proposed by taking the residual shear and normal stresses into account. The proposed
model is validated by the published experimental data from the literature.

2. Theoretical Analysis

2.1. Residual Shear and Normal and Stresses Calculation

Figure 1a depicts the schematic diagram of non-uniform plastic deformation generation during the
turning process. It is observed from Figure 1a that compressive, tensile, and shear plastic deformations
were produced on the workpiece material ahead of the cutting tool during the turning process. On
the other hand, a larger amount of heat was produced during machining which would lead to the
compressive plastic deformation on the machined surface [1,5]. The interaction of these non-uniform
plastic deformations determined the final state of residual stress as shown in Figure 1b. It should be noted
that the x and y axes in Figure 1b correspond to the longitudinal and transverse directions, respectively.
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Figure 1. (a) Residual stress generation during machining, (b) space stress state, and (c) plane stress state.

The traditional X-ray diffraction based on the sin2ψ method was used to determine the residual
stress according to Hooke’s law of an isotropic solid material [18]:

εϕψ =
1 + ν

E
σϕ sin2 ψ−

ν
E

(
σxx + σyy

)
(1)

σϕ =
E

1 + ν

∂εϕψ

∂ sin2 ψ
(2)

where εϕψ is the strain at (ϕ, ψ) direction, E and ν are the Young’s modulus and Poisson’s ratio of
material, and σxx and σyy are the stress components (normal stress). σϕ is the normal stress in the
ϕ direction.

In the above two equations, it is noteworthy that only the residual normal stress σϕ can be
determined by using the sin2ψmethod. In order to obtain the residual shear stress, the cosαmeasurement
technology proposed by Taria et al. [19] and modified by Sasaki et al. [20] was utilized. The relationship
between the strain εα and the stress components in x−y−z coordinates can be expressed by Equation (3):

εα =
1 + ν

E

(
σxn2

1 + σyn2
2 + σzn2

3 + 2τxyn1n2 + 2τyzn2n3 + 2τzxn3n1
)
−
ν
E

(
σx + σy + σz

)
(3)

where τxy, τyz, and τzx represent the shear stresses. n1, n2, and n3 are the components of diffraction
vector n as shown in Figure 2 and can be obtained by Equation (4) [20]:

n1 = cos η sinψ cosϕ− sin η cosψ cosϕ cosα− sin η sinψ sinα
n2 = cos η sinψ sinϕ− sin η cosψ sinϕ cosα+ sin η cosψ sinα
n3 = cos η cosψ+ sin η sinψ cosα

(4)

where α is a central angle that can vary from 0 to 90◦ in order to cover the whole ring, ψ is the tilt angle
between the incident beam and axial z, 2η is a complementary angle of diffraction angle, and ϕ is the
rotation angle in the x−y plane as shown in Figure 2.



Appl. Sci. 2019, 9, 4750 4 of 17

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 18 

where α is a central angle that can vary from 0 to 90° in order to cover the whole ring, ψ is the tilt 
angle between the incident beam and axial z, 2η is a complementary angle of diffraction angle, and φ 
is the rotation angle in the x−y plane as shown in Figure 2. 

 

Figure 2. Residual stress determination by using cosα method. 

According to the Equation (3), a set of four strains εα, επ+α, ε−α, and επ−α can be obtained which are 
used to calculate the following two strains: εα1 and εα2. 

( ) ( )[ ] 2/1 απααπαα εεεεε −−+ −+−=  (5) 

( ) ( )[ ] 2/2 απααπαα εεεεε −−+ −−−=  (6) 

The X-ray diffraction measurements should be carried out at four rotation angles φ (0, 90, 180, 
and 270° as illustrated in Figure 2) to determine the normal stress and shear stress.  

For the case of φ = 0°, by substituting Equation (3) into Equations (5) and (6), the following 
equations can be obtained: 

( )[ ] αηψτψσσνε ϕα cos2sin2cos2sin1
0,1 zxzzxxE

+−+−==  (7) 

[ ] αηψτψτνε ϕα sin2sincossin120,2 yzxyE
++==  (8) 

From Equation (7), a linear relationship between εα1 and cosα can be observed. Thus, the normal 
stress σφ=0 can be determined: 

( )
α

ε
ψην

ψτσσσ ϕα
ϕ cos2sin2sin

1
1

2cot2 0,1
0 ∂

∂
+

−=+−= =
=

E
zxzx  (9) 

From Equation (8), a linear relationship between εα1 and sinα can be observed. The shear stress 
τφ=0 can be determined: 

α
ε

ψην
ψτττ ϕα

ϕ sinsin2sin
1

)1(2
cot 0,2

0 ∂
∂

+
=+= =

=
E

yzxy  (10) 

 

ψ

φ=0°

φ=90°

φ=180°2η
n

2D detector

In cident 
beam

x

y

z

φ=270°

Diffracted 
beam

α

Figure 2. Residual stress determination by using cosα method.

According to the Equation (3), a set of four strains εα, επ+α, ε−α, and επ−α can be obtained which
are used to calculate the following two strains: εα1 and εα2.

εα1 = [(εα − επ+α) + (ε−α − επ−α)]/2 (5)

εα2 = [(εα − επ+α) − (ε−α − επ−α)]/2 (6)

The X-ray diffraction measurements should be carried out at four rotation angles ϕ (0, 90, 180,
and 270◦ as illustrated in Figure 2) to determine the normal stress and shear stress.

For the case of ϕ = 0◦, by substituting Equation (3) into Equations (5) and (6), the following
equations can be obtained:

εα1,ϕ=0 = −
1 + ν

E
[(σxx − σzz) sin 2ψ+ τzx cos 2ψ] sin 2η cosα (7)

εα2,ϕ=0 = 2
1 + ν

E

[
τxy sinψ+ τyz cosψ

]
sin 2η sinα (8)

From Equation (7), a linear relationship between εα1 and cosα can be observed. Thus, the normal
stress σϕ=0 can be determined:

σϕ=0 = (σx − σz) + 2τzx cot 2ψ = −
E

1 + ν
1

sin 2η sin 2ψ

∂εα1,ϕ=0

∂ cosα
(9)

From Equation (8), a linear relationship between εα1 and sinα can be observed. The shear stress
τϕ=0 can be determined:

τϕ=0 = τxy + τyz cotψ =
E

2(1 + ν)

1
sin 2η sinψ

∂εα2,ϕ=0

∂ sinα
(10)

Similarly, the normal stress and shear stress can be determined for the case of ϕ = 90◦, ϕ = 180◦,
and ϕ = 270◦, respectively.

For the case of ϕ = 90◦:

σϕ=90 =
(
σyy − σzz

)
+ 2τyz cot 2ψ = −

E
1 + ν

1
sin 2η sin 2ψ

∂εα1,ϕ=90

∂ cosα
(11)

τϕ=90 = −τxy − τzx cotψ =
E

2(1 + ν)

1
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For the case of ϕ = 180◦:

σϕ=180 = (σxx − σzz) − 2τzx cot 2ψ = −
E
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and for the case of ϕ = 270◦:

σϕ=270 =
(
σyy − σzz

)
− 2τyz cot 2ψ = −
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Consequently, stress components can be determined by the following equations:

σxx − σzz =
[
σϕ=0 + σϕ=180

]
/2 (17)

σyy − σzz =
[
σϕ=90 + σϕ=270

]
/2 (18)

τxy =
[
τϕ=0 + τϕ=180

]
/2 (19)

As the penetration depth of X-rays for Inconel 718 is about 5 µm during measurements [1,5], the
stress state is usually assumed to be a plane stress state as illustrated in Figure 1c. The normal stress in
the z-axis is zero. Therefore, the normal stress and shear stress can be determined by Equations (17)–(19).

2.2. Modeling for Stress Intensity Factor

In the existing literature, Moussaoui et al. [16,17] suggested that the maximum local stress σlocal,max

at the machined surface was considered a good indicator for evaluating fatigue life. They defined the
stress σlocal,max as the following Equation (20):

σlocal,max = σapplied,max + σRS,sur f ace (20)

where σapplied,max represents the maximum stress that is applied on a specimen during fatigue tests.
σRS,surface is the residual stress measured in the axial direction at the machined surface. They proposed
a new law that described the relationship between the maximum local stress σapplied,max and fatigue
life Nf:

σlocal,max = 1.535× 108
×N f

−1.105 + 362.2 (21)

However, the residual shear stress is not taken into account to evaluate the effect of residual
stress on fatigue life in Equations (20) and (21). As analyzed in Section 1, residual shear stress is
produced during machining, and it should be considered when determining the equivalent stress.
When the stress σapplied is applied in the axial direction of a machined specimen during fatigue tests,
the equivalent stress can be calculated following the von Mises equation:

σv =
1
√

2

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2 (22)
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where σv is the equivalent stress. σ1, σ2, and σ3 are the principal stresses which can be determined by
Equation (23) for a plain stress condition:

σ1,2 =
(σxx+σapplied)+σyy

2 ±

√(
(σxx+σapplied)−σyy

2

)2

+ τ2
xy

σ3 = 0

(23)

Once the equivalent stress is calculated by the Equation (22), the stress intensity factor (SIF) can
be determined according to the facture of the specimen. Figure 3 exhibits the schematic diagram of the
fracture surfaces for surface failure. The region with small facets is generally regarded as a rough area
where the crack is prone to initiate. Hence, the region with small facets is defined as the initiation area
and the crack shape is assumed to be semi-elliptical. For the crack initiation area, the value of the SIF
range, ∆Kini, determines whether the crack propagates or not. Consequently, the value of ∆Kini can be
considered as the threshold for crack propagation ∆Kth [21]. For a cylinder specimen, the value of the
SIF range ∆Kini under tension–tension fatigue test can be given [21]:

∆Kini = ∆Kth = n · ∆σ ·
√
π ·
√

area (24)

where n is the correction factor which is related to the geometry of the crack. For a crack initiated at
the surface, n = 0.65 [21].

√
area is the equivalent size of the projected area which includes facets. ∆σ is

the applied stress range and can be expressed by Equation (25):

∆σ = σapplied,max − σapplied,min (25)

Due to the presence of residual stress, the effective stress ∆σeff can be obtained according to
Equation (19) [16,17].

∆σe f f =
(
σapplied,max + σRS,sur f ace

)
−

(
σapplied,min + σRS,sur f ace

)
= ∆σ (26)
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Based on the description of Equations (25) and (26), it is interesting to find that Equation (26)
is equal to Equation (25). It is indicated that the presence of residual stress has no influence on the
effective stress that acted on the specimen. It can be deduced that fatigue life will not be changed when
residual stress is introduced by machining. Thus, Equation (20), proposed by Moussaoui et al. [16,17],
may not be suitable to describe the effect of residual stress on the SIF range. Consequently, in this
paper, a new effective stress range ∆σ’

eff is introduced by Equation (27):
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∆σ′e f f = σv,max − σv,min (27)

Thus, Equation (24) can be rewritten as:

∆Kth = n · ∆σ′e f f ·

√
π ·
√

area = n · (σv,max − σv,min) ·

√
π ·
√

area (28)

where the maximum and minimum equivalent stress can be calculated by Equations (29) and (30).

σv,max =

√(
σxx + σapplied,max − σyy

)2
+

(
σxx + σapplied,max

)
σyy + 3τ2

xy (29)

σv,min =

√(
σxx + σapplied,min − σyy

)2
+

(
σxx + σapplied,min

)
σyy + 3τ2

xy (30)

3. Materials and Methods

3.1. Workpiece Material and Specimen Preparation

Inconel 718 was employed as the workpiece material in this paper. The as-received material was a
wrought cylinder bar with a diameter of 130 mm and a length of 300 mm. The material was solution
heat treated and age treated. The recommended solution heat treatment was performed on a furnace
at 960 ◦C for 1 h and then air cooled to room temperature. After the solution heat treatment, the age
treatment was conducted on a furnace at 720 ◦C for 8 h and then furnace cooled to 620 ◦C with a
cooling rate of 50 ◦C/h, held at 620 ◦C for 8 h, and finally air cooled to room temperature. The material
was divided into Φ14 mm × 140 mm cylinder bars using wire cutting electrical discharge machining
(WEDM). The chemical compositions of the material are summarized in Table 1 [22]. The mechanical
properties of the material at room temperature are shown in Table 2 [22].

Table 1. Chemical composition of the material (% wt) [22].

Cr Nb Al Ni Mn Mo Cu Ti Co Si
18.05 5.43 0.50 53.51 0.062 2.98 0.035 1.02 0.31 0.074

Sn Ta N C P B Ca Mg S Fe
0.00091 0.0085 0.0079 0.025 0.010 0.0042 0.0032 0.0014 0.00078 Bal

Table 2. Tensile mechanical properties of the material at room temperature [22].

Elastic Modulus E
(GPa)

Ultimate Tensile
Strength σb (MPa)

Yield Strength σ0.2
(MPa)

Elongation
(%)

Hardness
(HBW)

205 1502 1360.5 19.3 439

Four different turning processes were carried out to evaluate the influence of residual shear and
normal stress on fatigue life and SIF. The turning tool VBMT 110308-1105 with a tool nose radius of
0.8 mm was employed. All experiments were performed on a CNC machining center with a fixed feed
per revolution at f = 0.075 mm/rev and a depth of cut at ap = 0.2 mm under various cutting speeds
(Vc) as summarized in Table 3. The geometry of the fatigue specimens in the present study is shown
in Figure 4.
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Table 3. Turning conditions.

Condition Cutting Speed Vc
(m/min)

Feed Rate f
(mm/rev)

Depth of Cut ap
(mm)

Tool Nose Radius
r (mm)

SI 50

0.075 0.2 0.8
SII 60
SIII 70
SIV 80
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3.2. Residual Stress Measurements

The X-ray diffraction equipment Pulstec µ-X360n was used to measure residual stress based on
the cosα method. All measurements were conducted on the crystallographic plane {311} using the Kβ
wavelength. All measurements were conducted with the same parameters, which are summarized in
Table 4, in order to guarantee the accuracy of the measurements. As mentioned in Section 2, residual
stress in four rotation angles (ϕ = 0, 90, 180, and 270◦) should be measured to determine the shear
stress and normal stress.

Table 4. X-ray diffraction parameters of residual stress measurements.

Specimen Tube target Crystallographic plane Diffraction angle (2θ)

Inconel 718 Cr {311} 150.89◦

Tube voltage Tube current X-ray slit Exposure time

30 kV 1 mA 2 mm 90 s

3.3. Fatigue Tests

Uniaxial tension–tension fatigue tests were carried out to study the influence of residual stress on
the fatigue performance of Inconel 718. All the turned specimens were polished by hand to reduce
the influence of surface roughness (Ra) on fatigue life even though the experimental results in the
literature [16,17,22] concluded that, compared with residual stress, the surface roughness had a less
significant role on fatigue life. All fatigue tests were performed on a fatigue testing machine PLG-100
with a maximum frequency of 250 Hz at room temperature. A dynamic sinusoidal load was applied
on the fatigue specimen with a maximum stress of 1131 MPa during the fatigue tests. The frequency of
the fatigue test was approximately 110 Hz, and the stress ratio was R = σmin/σmax = 0.1. Six fatigue
specimens were tested for each cutting condition to eliminate random error. The fracture surface of the
fatigue specimen was analyzed using scanning electron microscopy (SEM).

4. Results and Discussion

4.1. Residual Shear and Normal Stress Analysis

The residual stresses at the surface in four rotation angles (i.e., σϕ = 0, σϕ = 90, σϕ = 180, and σϕ
= 270) were measured using an X-ray diffractometer for each machined specimen. The surface residual
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normal stresses σxx and σyy, calculated by Equations (17) and (18), and the residual shear stress, τxy,
calculated by Equation (19), are summarized in Figure 5.
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Figure 5. Residual normal and shear stresses calculated using the cosα method.

From Figure 5, it is observed that the residual normal stresses σxx were tensile and the values
varied within the range of 199~275 MPa, the residual normal stresses σyy were tensile and the values
within ranges of 320~370 MPa, and the residual shear stresses τxy were negative with the value changes
in a range of −265~−211.5. The value of residual shear stress calculated by Equation (19) supported the
previous statement that the machining process induced the residual shear stress. A similar phenomenon
was found by Hananbusa et al. [23]. Kamura et al. [24] reported that residual shear stress had been
observed on a bearing surface fatigued by rolling contact.

It is noted that the residual normal stresses σxx and σyy decreased slightly as the cutting speed
increased. This drop in residual normal stresses was mainly due to the increased chip flow rate.
The increased cutting speed resulted in a higher chip flow rate and reduced the contact time between
the tool and the workpiece material. Consequently, the amount of thermal energy was taken away by
the chip increase [25]. It is supposed that the heat generated in the primary shear zone, tool-chip contact
zone, and tool-workpiece friction zone diffused into the workpiece surface decreased. Therefore, the
residual normal stress decreased with the increase in cutting speed. The residual shear stresses τxy had
no obvious and orderly variation as the cutting speed increased. A similar phenomenon was found by
Devillez et al. [26] who concluded that the maximum value of tensile residual stress in longitudinal
and transverse directions decreased when the cutting speed increased under dry cutting conditions.
They explained that this phenomenon was attributed to the reduction of heat generated due to the
increased cutting speed. Nevertheless, Moussa et al. [27] point out that tensile residual stress increased
significantly in longitudinal and transverse directions as the cutting speed increased under a low
cutting speed (Vc < 100 m/min). They explained that the low cutting speed (Vc < 100 m/min) would
lead to a low material removal rate (MRR). This resulted in a decrease in the thermal dissipation by the
chip. Therefore, more heat generation would be transmitted to the surface of the workpiece resulting
in a higher tensile residual stress at the surface.

4.2. Fatigue Life Analysis

Once the residual shear stress and residual normal stress were determined, fatigue tests were
performed to explore the effect on fatigue life. Under the same fatigue testing condition, the fatigue life
of a specimen with different levels of residual shear stress and residual normal stress are presented in
Figure 6a–c. The fatigue test results illustrated that no evident fatigue life evolution tendencies were
observed with the increase in the residual normal and shear stresses. It is suggested that the fatigue life
of a specimen was not directly dependent upon only residual shear stress or residual normal stresses.
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Consequently, it can be deduced that residual stress in only one direction would not be a suitable
indicator for evaluating the effect of residual stress on fatigue life.

Figure 6d illustrates the relationship between the equivalent stress and fatigue life. Compared with
the residual shear stress and residual normal stress, the equivalent stress significantly influenced the
fatigue life of the specimen. It is clear from Figure 6d that there was a linear relationship between the
equivalent stress and fatigue life. The longest and shortest fatigue lives (mean value) of the machined
specimens were 59,765 cycles and 36,236 cycles which correspond to the equivalent stress at the levels
of 1248 MPa and 1317 MPa, respectively. As the equivalent stress decreased from 1317 to 1248 MPa,
the fatigue life tended to increase from 36,236 cycles to 59,765 cycles, a 39.4% increase (see Figure 6d).Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 19 
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To further understand the effect of residual stress on fatigue life, a comparison was made between
the equivalent stress calculated by Equation (22) and the total stresses calculated by Equation (20)
according to Moussaoui et al. [16,17]. The relationship between the calculated total stresses and the
fatigue life were plotted in Figure 7. It is observed that the results of the total stresses were depicted as
a function of fatigue life. The maximum total stress calculated by Equation (20) was nearly 1400 MPa,
which exceeded the yield strength (σ0.2 = 1360.5 MPa) of the material. However, the maximum total
stress calculated by the proposed model was less than the yield strength, which corresponded to a
fatigue life of 3.6 × 104 cycles. From Figure 7, it is noted that the higher total stress calculated by
Equation (22) gave rise to the lower fatigue life of the machined specimen. However, as the total
stress calculated by Equation (20) increased, there was no evident tendency of the fatigue life to
diminish gradually. This phenomenon was not consistent with Moussaoui et al. [16,17] who reported
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that the maximum value of residual stress at the surface was a good indicator for evaluating fatigue
performance as summarized in Figure 8. In the figure, it can be found that the fatigue life increased
with the decrease in the maximum local stress. Nevertheless, it was found in detail that the longest
fatigue life did not occur at the largest compressive residual stress. (e.g., the fatigue life induced by the
compressive stress of Specimen 4 was much shorter than that induced by Specimen 1, and Specimen 17
generated a longer fatigue life than Specimen 3). Thus, this indicated that the residual stress at the
surface in only one direction might not be enough to accurately evaluate fatigue performance. In the
present work, the fatigue tests revealed that there was no clear and orderly tendency of the residual
stress at the surface to directly impact on fatigue life. The residual stress at the surface in one direction
could not fully describe the effect of residual stress on fatigue life. Therefore, it can be inferred that
the equivalent stress that incorporated residual shear and normal stresses might be more suitable for
describing the fatigue life of machined components.Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 18 
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4.3. Evaluation of SIF

The fatigue fracture morphologies of the specimens under different machining surface conditions
were observed using SEM as presented in Figure 9. From the figure, it was found that all specimens
exhibited a similar fracture surface pattern. The crack initiation occurred from the surface of the
specimens and then propagated into the interior of the machined surface. A similar phenomenon
was observed by Klotz et al. [28] who found that the crack initiated from the surface of machined
Inconel 718 and presented multiple crack sources. Figure 10a shows a typical crack initiation region
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under higher magnification of the SI surface condition. Figure 10b exhibits small facets in the crack
initiation region. The facet area, the maximum equivalent stress σv,max, the minimum equivalent stress
σv,min, and the effective stress range ∆σ’

eff for each machining condition are summarized in Table 5.
The threshold stress intensity factor ∆Kth was obtained according to Equation (28).
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Table 5. The facet area of specimen fracture surfaces under different machining conditions.

Machining
Conditions

No.
Facet
Area

(mm2)

Moussaoui’s Model [16,17] The Proposed Model

σlocal,max σlocal,min ∆σeff σv,max σv,min ∆σ′eff

Vc = 50
m/min

1 0.05854 1406 388.1 1017.9 1304 523.6 780.4

3 0.05526 1406 388.1 1017.9 1304 523.6 780.4

4 0.05148 1406 388.1 1017.9 1304 523.6 780.4

Vc = 60
m/min

7 0.03014 1374 356.1 1017.9 1317 579.9 737.1

9 0.04876 1374 356.1 1017.9 1317 579.9 737.1

12 0.04198 1374 356.1 1017.9 1317 579.9 737.1

Vc = 70
m/min

13 0.07619 1374 342.1 1017.9 1248 485 763

14 0.07061 1360 342.1 1017.9 1248 485 763

17 0.08001 1360 342.1 1017.9 1248 485 763

Vc = 80
m/min

19 0.06538 1330 312.1 1017.9 1264 521 743

21 0.06297 1330 312.1 1017.9 1264 521 743

24 0.05689 1330 312.1 1017.9 1264 521 743

The values of ∆Kth for the Moussaoui model and the proposed model can be calculated according
to Equations (26) and (28), respectively. Figure 11 shows the relationship between the fatigue life Nf
and SIF range ∆Kth. From the figure, it can be deduced that the ∆Kth calculated by both Moussaoui et
al. [16,17] and the proposed model maintained a constant regardless of fatigue life. It can be seen that
the values of ∆Kth, calculated by the Moussaoui’s model, were in the range of 15.45~19.72 MPa

√
m

regardless of fatigue life. The mean value of ∆Kth was 18.11 MPa
√

m approximately. Whereas the
values of ∆Kth, calculated by the proposed model, were in the range of 11.19~14.78 MPa

√
m regardless

of fatigue life. The mean value of ∆Kth was approximately 13.45 MPa
√

m, which is much lower than
the calculated result by Moussaoui’s model.
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Figure 12 shows the comparison of the crack propagation curves of Inconel 718 at the same stress
ratio R = 0.1. Mercer et al. [29] revealed that the threshold value of the SIF range was approximately
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13.25 MPa
√

m which coincides with the threshold value in the range of 13.21~13.89 MPa
√

m obtained
by Clavel et al. [30]. Nevertheless, the value of ∆Kth obtained by Osinkolu et al. [31] was approximately
21.39 MPa

√
m which is higher than that obtained by Mercer [29] and Clavel [30]. This could be

explained by the fact that the experiments were performed in vacuum and under the lower stress ratio
R = 0.05. Yamada and Newman [32,33] reported a threshold value ∆Kth that was approximately within
the range of 11~12 MPa

√
m at the stress ration R = 0.1 for Inconel 718. It can be noted that the yield

stress σ0.2 of Inconel 718 employed in References [32,33] was 1060 MPa which is much lower than
the Inconel 718 used in this paper (σ0.2 = 1360.5 MPa). Thus, the threshold value ∆Kth obtained by
Reference [32,33] is a little conservative. In the present work, the mean value of ∆Kth (13.45 MPa

√
m),

calculated by the proposed model agreed well with the threshold value that was demonstrated by
Mercer [29] and Clavel [30].

Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 19 

approximately 21.39 MPa m  which is higher than that obtained by Mercer [29] and Clavel [30]. 

This could be explained by the fact that the experiments were performed in vacuum and under the 

lower stress ratio R = 0.05. Yamada and Newman [32,33] reported a threshold value ΔKth that was 

approximately within the range of 11~12 MPa m  at the stress ration R = 0.1 for Inconel 718. It can 

be noted that the yield stress σ0.2 of Inconel 718 employed in References [32,33] was 1060 MPa which 

is much lower than the Inconel 718 used in this paper (σ0.2 = 1360.5 MPa). Thus, the threshold value 

ΔKth obtained by Reference [32,33] is a little conservative. In the present work, the mean value of ΔKth 

(13.45 MPa m ), calculated by the proposed model agreed well with the threshold value that was 

demonstrated by Mercer [29] and Clavel [30]. 

1 10 100
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 Osinkolu [31], R=0.05

 Clavel     [30], R=0.1

 Mercer    [29], R=0.1

d
a/

d
N

 (
m

m
/c

y
cl

e)

ΔK (MPa√m)

Inconel 718

 

Figure 12. Fatigue crack growth rate at a stress ratio of 0.1 for Inconel 718. 

The calculated results showed that the mean value of ΔKth was much higher than the 

experimental results when the residual shear stress was not considered. However, the mean value of 

ΔKth had good agreement with the experimental data when the residual shear stress was taken into 

account. This phenomenon supported the previous analysis that the residual shear stress was not 

negligible and should be considered in analyzing the effect of residual stress on fatigue behavior. 

Therefore, it can be concluded that the effect of residual shear stress on the threshold stress intensity 

factor is significant and ignoring it can cause considerable deviation from the experimental results. 

5. Conclusions 

From the results obtained in this work, the following conclusions can be derived: 

• The residual normal stresses σxx and σyy were tensile, while the residual shear stresses τxy were 

negative with the value changes in a range of −265~−211.5 MPa which demonstrated that the 

residual shear stress was not negligible. 

• No clear and orderly tendency was found to conclude that the residual normal and shear stresses 

influenced the fatigue life. It was demonstrated that the residual stress in only one direction was 

not a suitable indicator for evaluating fatigue life. It is suggested that the fatigue life of a 

specimen was not directly dependent upon the surface shear and normal stresses. 

• A linear relationship between the equivalent stress and the fatigue life was observed. The fatigue 

life increased by 39.4% as the equivalent stress decreased by 5.2% in this research. It was 

indicated that the equivalent stress which considered residual shear and normal stress 

simultaneously was the dominate factor affecting fatigue life. 

• The mean values of ΔKth calculated by the proposed model had good accordance with the 

Figure 12. Fatigue crack growth rate at a stress ratio of 0.1 for Inconel 718.

The calculated results showed that the mean value of ∆Kth was much higher than the experimental
results when the residual shear stress was not considered. However, the mean value of ∆Kth had
good agreement with the experimental data when the residual shear stress was taken into account.
This phenomenon supported the previous analysis that the residual shear stress was not negligible and
should be considered in analyzing the effect of residual stress on fatigue behavior. Therefore, it can be
concluded that the effect of residual shear stress on the threshold stress intensity factor is significant
and ignoring it can cause considerable deviation from the experimental results.

5. Conclusions

From the results obtained in this work, the following conclusions can be derived:

• The residual normal stresses σxx and σyy were tensile, while the residual shear stresses τxy were
negative with the value changes in a range of −265~−211.5 MPa which demonstrated that the
residual shear stress was not negligible.

• No clear and orderly tendency was found to conclude that the residual normal and shear stresses
influenced the fatigue life. It was demonstrated that the residual stress in only one direction
was not a suitable indicator for evaluating fatigue life. It is suggested that the fatigue life of a
specimen was not directly dependent upon the surface shear and normal stresses.

• A linear relationship between the equivalent stress and the fatigue life was observed. The fatigue
life increased by 39.4% as the equivalent stress decreased by 5.2% in this research. It was indicated
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that the equivalent stress which considered residual shear and normal stress simultaneously was
the dominate factor affecting fatigue life.

• The mean values of ∆Kth calculated by the proposed model had good accordance with the
experimental data that were demonstrated by Mercer [29] and Clavel [30].

• The effect of residual shear stress on the threshold stress intensity factor was significant and
ignoring it could cause a considerable deviation from the experimental results.
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