
applied
sciences

Article

Multi-Task Learning for Multi-Dimensional
Regression: Application to Luminescence Sensing

Umberto Michelucci 1,* and Francesca Venturini 1,2

1 TOELT LLC, Birchlenstr. 25, 8600 Dübendorf, Switzerland; vent@zhaw.ch
2 Institute of Applied Mathematics and Physics, Zurich University of Applied Sciences, Technikumstrasse 9,

8401 Winterthur, Switzerland
* Correspondence: umberto.michelucci@toelt.ai

Received: 30 September 2019; Accepted: 3 November 2019; Published: 7 November 2019 ����������
�������

Featured Application: Multi-task learning; multi-parameter luminesce sensing.

Abstract: The classical approach to non-linear regression in physics is to take a mathematical model
describing the functional dependence of the dependent variable from a set of independent variables,
and then using non-linear fitting algorithms, extract the parameters used in the modeling. Particularly
challenging are real systems, characterized by several additional influencing factors related to specific
components, like electronics or optical parts. In such cases, to make the model reproduce the data,
empirically determined terms are built in the models to compensate for the difficulty of modeling
things that are, by construction, difficult to model. A new approach to solve this issue is to use
neural networks, particularly feed-forward architectures with a sufficient number of hidden layers
and an appropriate number of output neurons, each responsible for predicting the desired variables.
Unfortunately, feed-forward neural networks (FFNNs) usually perform less efficiently when applied
to multi-dimensional regression problems, that is when they are required to predict simultaneously
multiple variables that depend from the input dataset in fundamentally different ways. To address
this problem, we propose multi-task learning (MTL) architectures. These are characterized by
multiple branches of task-specific layers, which have as input the output of a common set of layers.
To demonstrate the power of this approach for multi-dimensional regression, the method is applied to
luminescence sensing. Here, the MTL architecture allows predicting multiple parameters, the oxygen
concentration and temperature, from a single set of measurements.

Keywords: multi-task learning; non-linear regression; neural networks; luminescence; luminescence
quenching; oxygen sensing; phase fluorimetry; temperature sensing

1. Introduction

The classical use of regression in physics, sometimes also referred to as non-linear fitting, is to try
to determine d quantities y ∈ Rd from a set of n measurements x ∈ Rq with q ∈ N, using a theoretical
mathematical model y = f (x, w) that depends on a certain number p of parameters w ∈ Rp. Typically,
this is achieved by choosing the parameters w to minimize a selected error function, like the mean
square error (MSE), with specific algorithms. To find the best solution for f is a classical optimization
problem [1–3]. This method, however, fails to deliver stable and accurate results, for example, when the
quantities yi with i = 1, ..., d have different physical meanings and, consequently, depend on different
components of the parameter vector w in fundamentally distinct ways. As a result, the mathematical
model may be an insufficient approximation, may be too complex for a stable implementation or may
be simply unknown [3].

Appl. Sci. 2019, 9, 4748; doi:10.3390/app9224748 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/22/4748?type=check_update&version=1
http://dx.doi.org/10.3390/app9224748
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 4748 2 of 15

An example where the usual multi-dimensional regression approach fails is in the determination
of a substance from changes in its luminescence when several environmental conditions vary in
an unknown and uncontrolled way. Luminescence quenching for oxygen detection represents a
widespread application relevant in many fields like biomedical imaging, environmental monitoring,
or process control [4] (see Section 4 for details). In this application, the quantity of interest is the
concentration of molecular oxygen [O2]. The measured quantity, either the luminescence intensity or
luminescence intensity decay time of a special molecule (luminophore), is however, equally strongly
dependent on the concentration [O2] and the temperature T. As a result, it is difficult to extract
two different physical quantities, namely, [O2] and T, from the same set of data. Usually, T is
measured separately with another device and given as an input to a mathematical model describing the
dependency of those two quantities from the input data. The complexity increases further if more than
one luminophore is present, and several parameters (e.g., [O2], [CO2], pH) have to be determined [5–9].

A possible method, which recently attracted great interest, is the use of feed-forward neural
network (FFNN) architectures, with a certain number of hidden layers and an appropriate number of
output neurons, each responsible for predicting the desired variables yi with i = 1, ..., d. In the example
of oxygen sensing, the output layer would have a neuron for the oxygen concentration [O2] and one
for the temperature T. This work shows that, since the output neurons must use the same features (the
output of the last hidden layer) for all variables [10,11], FFNNs are insufficiently flexible. For the cases
when the variables depend on fundamentally different ways from the inputs, this approach will give a
result that is at best acceptable, and at worst unusable.

This work proposes a new approach, which is based on multi-task learning (MTL) neural network
architectures. This type of architectures are characterized by multiple branches of layers, that get
their input from a common set of layers. This type of network can improve the model prediction
performance by jointly learning correlated tasks [10–14]. In particular, the proposed MTL architectures
are applied to the problem of luminescence quenching for oxygen sensing. Their performance in the
prediction of oxygen concentration and temperature is analyzed and compared to that of a classical
feed-forward neural network.

In general, the proposed MTL approach may be of particular relevance in all those cases where
the mathematical model y = f (x, w) is not known, too complex or not really of interest and the only
goal of the regression problem is to build a system that is able to determine y as accurately as possible.

The paper is organized as follows: Section 2 describes non-linear regression and MTL with neural
networks. Section 3 describes the implementation of MTL and the different neural network studied in
this work. Section 4 reviews luminescence quenching for oxygen sensing. The results are discussed
in Section 5.

2. Theoretical Background

This section briefly reviews the theoretical justification for non-linear regression with neural
networks, as well as the multi-task learning approach implemented in this work.

2.1. Neural Networks for Non-Linear Regression Problems

In general, a neural network model is always composed of three parts [15]:

• network architecture (number of layers, activation functions, etc.),
• cost function,
• optimizer (a method or algorithm used to minimize the cost function).

The neural networks considered in this work have a feed-forward architecture, as it is typical in
regression problems. The details of the networks are described in Section 3. The cost function needs to
be chosen depending on the problem to be solved. For example, the cross-entropy is a common choice

Appl. Sci. 2019, 9, 4748 3 of 15

when solving classification problems [15]. For regression problems, as the one studied in this work,
the most common cost function is the mean square error (MSE), which is defined as

MSE =
1
n

n

∑
j=1

d

∑
k=1

(y[j]k − ŷ[j]k)2 (1)

where n is the number of observations in the input dataset; y[j] ∈ Rd is the measured value of
the desired quantity for the jth observation (indicated as a superscript between square brackets),
with j = 1, ..., n; ŷ[j] ∈ Rd is the output of the network, when evaluated on the jth observation.
The optimizer affects the learning performance of the network but does not determine the type of
problems the network can solve and therefore will not be discussed here.

A regression problem consists of minimizing the cost function, in this case the MSE (Equation (1)),
with respect to the learnable parameters of the network, which are defined in the architecture.
The implicit assumption done is that there is an underlying albeit unknown function that describes
the relationship between the y[j] and the input observations (the measurements x[j]). Assuming
its existence, the neural networks try to approximate it, by composing a big number of non-linear
functions. This approach relies on the implicit assumption that a network can approximate any function.
For FFNN, this assumption is legitimate since it was proved mathematically [16–23]. This mathematical
proof thus justifies the use of neural networks for regression problems. Unfortunately, not being a
constructive proof, it provides neither the number of layers nor the number of neurons per layer needed
to approximate this unknown function. It just tells that, with enough neurons, a neural network is able
to approximate any function.

2.2. Multi-Task Learning

Multi-task learning is a machine learning techniques in which nT learning tasks are solved at the
same time, using commonalities and differences across tasks. This approach may result in improved
learning efficiency and prediction accuracy [12–14,24], although the possibility of improvement
depends on how information is encoded in the data. In this work, MTL will be applied, for the
first time, to luminescence sensing, where the luminescence data are dependent on two quantities,
oxygen concentrations and temperature, which are otherwise hard to extract separately.

An example of a simple MTL network architecture, which reflects the architectures later used in
the paper, is shown in Figure 1. This network consists of a series of common hidden layers, followed
by two branches (nT = 2) each consisting of several task-specific hidden layers.

The layers marked in Figure 1 as “common hidden layers” generate an output, that is typically
called a “shared representation”. The name comes from the fact that the output of those layers is used
to evaluate both y1 and y2. The shared representation is then the input of a set of “task-specific hidden
layers”, that learn how to predict y1 and y2 better. Note how the common hidden layers are shared
with both the tasks of predicting y1 and y2, while the task-specific hidden layers are specific to each
task separately. The MTL network of Figure 1 uses the common hidden layers to find common features
beneficial to each of the two tasks. During the training phase, learning to predict y1 will influence the
common hidden layers and therefore, the prediction of y2, and vice-versa. A set of task-specific hidden
layers will then learn specific features to each output and therefore improve the prediction accuracy.
The implicit assumption here is that the tasks have something in common; otherwise this approach
will not produce the desired result.

Appl. Sci. 2019, 9, 4748 4 of 15

Figure 1. Example of a MTL network architecture with two tasks and two outputs.

Multiple cost functions Li with i = 1, ..., nT , with nT the number of tasks, are required to use this
network architecture. In the training phase, a global cost function L, defined as a linear combination of
the task-specific cost functions with weights αi will be minimized

L =
nT

∑
i=1

αiLi. (2)

The parameters αi have to be determined during the hyper-parameter tuning phase to optimize
the network predictions. In this paper, being the cost function the MSE (Equation (1)), the global cost
function of Equation (2) is

L =
nT

∑
i=1

αi
1
n

n

∑
j=1

d

∑
k=1

(y[j]k − ŷ[j]k)2 (3)

where nT is the number of tasks; n is the number of observations in the input dataset; y[j] ∈ Rd is the
measured value of the desired quantity for observation j, with j = 1, ..., n; ŷ[j] ∈ Rd is the output of the
network, when evaluated on the jth observation.

3. Neural Network Architectures and Implementation

In this paper, three architectures, one classical FFNN and two MTL, were investigated and
compared in the simultaneous prediction of oxygen concentration and temperature. To make
the comparison meaningful, the parameters, which are not architecture-specific, were not varied.
The details of the architectures are described in the next subsections.

In the three architectures investigated the sigmoid activation functions was used for all the neurons

σ(z) =
1

1 + e−z . (4)

All the results were obtained with a training of 4000 epochs. The target variables y were
normalized to vary between 0 and 1. Thus, the sigmoid activation function was used also for the

Appl. Sci. 2019, 9, 4748 5 of 15

output neurons y1 and y2. The input measurement, as will be explained in detail in Section 4, is a
vector in Rq with q = 16.

To minimize the cost function, the optimizer Adaptive Moment Estimation (Adam) [15,25] was
used. The training was performed with a starting learning rate of 10−3 and using batch-learning,
which means that the weights were updated only after the entire training dataset has been fed to the
network. Batch-learning was chosen because of its stability and speed since it reduces the training
time of a few orders of magnitude in comparison to, for example, stochastic gradient descent [15].
Therefore, it makes experimenting with different networks a feasible endeavor. The implementation
was performed using the TensorFlowTM library.

3.1. Network A

The first type of neural network investigated has a classical feed-forward architecture, consisting
of an input layer, three hidden layers, and an output layer with two neurons [O2]pred and Tpred.
This architecture, labeled here as Network A, is schematically shown in Figure 2. The number of
neurons of each hidden layer ni = n̂ is the same.

Figure 2. Architecture of the feed-forward network A.

Each neuron in each layer gets as input the output of all neurons in the previous layer, and feeds
its output to each neuron in the subsequent layer. To test the performance network A hyperparameter
tuning was performed by varying the number of neurons in each of the four layers (n̂). The number of
neurons that was tested is n̂ = 10, 30, 50, 80. Additional hyperparameters, like the learning rate, were
not optimized and the mentioned values were kept constant.

3.2. Network B

The first MTL network studied is depicted in Figure 3. It consists of three common hidden layers
with 50 neurons each, followed by two branches, one with two additional task-specific hidden layers
used to predict [O2], and one branch without hidden layers used to predict both [O2] and T at the same
time. The number of neurons of each task-specific hidden layer is 5. The idea behind this network is to
have a system that learns to predict [O2] well, thanks to the further task-specific layers. The predicted
T is not expected to be exceptionally good since the common hidden layers must learn to predict
[O2]pred and Tpred at the same time. This architecture can be of applied when one of the outputs yi, here
[O2], needs to be predicted with higher accuracy than the other ones. For this network, the global cost
function weights used were α1 = 0.3 and α2 = 5.

Appl. Sci. 2019, 9, 4748 6 of 15

Figure 3. Architecture of the feed-forward MTL network B.

3.3. Network C

The last MTL network, depicted in Figure 4, consists again of three common hidden layers with 50
neurons each, followed by three branches, two with each two additional task-specific layers to predict
respectively [O2] and T, and then one without additional layers to predict [O2] and T at the same time.
The number of neurons of each task-specific hidden layer is 5, as in the network B. The global cost
function weights used for the plots were α1 = 0.3, α2 = 5 and α3 = 1. Those values were chosen
because they result in the lowest MAEs (see discussion in Section 5).

Figure 4. Architecture of the feed-forward MTL network C.

This network is of interest because of the additional task-specific layers, which are expected to
improve the ability of predicting the temperature compared to the network B.

3.4. Metrics

The metric used to compare results from different network models is the absolute error (AE)
defined as the absolute value of the difference between the predicted and the expected value for a
given observation. For the oxygen concentration of the jth observation [O2]

[j] the AE is

AE[j]
[O2]

= |[O2]
[j]
pred − [O2]

[j]
meas|. (5)

Appl. Sci. 2019, 9, 4748 7 of 15

The further quantity used to analyze the performance of the network is the mean absolute error
(MAE), defined as the average of the absolute value of the difference between the predicted and the
expected oxygen concentration or temperature. For example, for the oxygen prediction using the
training dataset Strain, MAE[O2]

is defined as

MAE[O2]
(Strain) =

1
|Strain| ∑

j∈Strain

|[O2]
[j]
pred − [O2]

[j]
real | (6)

where |Strain| is the size (or cardinality) of the training dataset. For example, in this work |Strain| =
20,000. The AET and MAET are similarly defined.

4. Luminescence Quenching for Oxygen and Temperature Sensing

To demonstrate its advantages, the MTL approach was applied to the simultaneous determination
of the oxygen concentration and temperature of a medium. There are different optical methods used to
determine oxygen concentration since this is of great relevance for numerous research and application
fields, ranging from biomedical imaging, packaging, environmental monitoring, process control, and
chemical industry, to mention only a few [26]. Among the optical methods, a well-known approach is
based on luminescence quenching [27–29].

The measuring principle is based on the quenching of the luminescence of a specific molecule
(luminophore) by oxygen molecules. Because of the collisions of the luminophore with oxygen, both the
luminescence intensity and decay time are reduced. Sensors based on this principle rely on approximate
empirical models to parametrize the dependence of the sensing quantity (e.g., luminescence intensity
or intensity decay time) on influencing factors. The most relevant parameter, which can be a major
source of error in sensors based on luminescence sensing, is the temperature of the luminophore, since
both the luminescence and the quenching phenomena are strongly dependent on temperature [26].

The conventional approach consists in relating the change of the luminescence decay time from the
oxygen concentration through a multi-parametric model, called Stern–Volmer equation [28]. The value
of the device-specific constants is then determined through calibration. The decay time can be easily
measured by modulating the intensity of the excitation. The emitted luminescence is also modulated
but shows a phase shift θ which depends on the decay time. Without going into the details of the
analytical model, the measured quantity, the phase shift θ, is most frequently related to the oxygen
concentration [O2] and temperature T through the approximate equation [30]

tan θ(ω, T, [O2])

tan θ0(ω, T)
=

(
f (ω, T)

1 + KSV1(ω, T) · [O2]
+

1− f (ω, T)
1 + KSV2(ω, T) · [O2]

)−1

(7)

where θ0 and θ, respectively, are the phase shifts in the absence and presence of oxygen, f and 1− f
indicate the fraction of the total emission of two components under unquenched conditions, KSV1
and KSV2 are associated (Stern–Volmer) constants for each component. Since the phenomena of
luminescence and luminescence quenching are strongly influenced by the temperature, the parameters
θ0, KSV1, KSV2, and f need to be modeled through different temperature dependencies [30]. The value
of the parametrisation quantities is determined through non-linear regression. ω is the angular
frequency of the modulation of the excitation light. Finally, Equation (7) must be inverted to obtain
[O2] as a function of θ, T, and ω. To be able to have more information as input to our network, we will
not use a single ω frequency value, but 16. Let’s define

r(ω, T, [O2]) ≡
tan θ(ω, T, [O2])

tan θ(ω, T, [O2] = 0)
. (8)

The goal of the network is to predict the oxygen concentration and temperature from an array
of values of r(ω, T, [O2]) evaluated at a discrete set of sixteen ωi, with i = 1, ...16, that have been

Appl. Sci. 2019, 9, 4748 8 of 15

used for the measurements. The jth measurement can be written as x[j] = (r[j]1 , r[j]2 , ..., r[j]16) with

r[j]i = r(ωi, T[j], [O2]
[j]) and i = 1, ...16. Each measurement j corresponds to a specific tuple of the

oxygen concentration and temperature (T[j], [O2]
[j]).

Summarizing, the conventional approach relies on the measurement of the temperature, which is
then used to correct the parameters of the analytical model used to calculate the oxygen concentration
[O2] from the measured quantity, the phase shift θ of Equation (7). The inadequate determination of
the luminophore temperature is one of the major sources of error in an optical oxygen sensor.

The neural network proposed in this work defies the difficulties described above by
simultaneously predicting both the oxygen concentration and the temperature using 16 values of
r(ω, T, [O2]) evaluated at a discrete set of sixteen values of ω.

4.1. Data Generation

To have a large enough dataset to train and test the neural networks, synthetic data were used.
The model described by Equation (7) was chosen to create the data, being as simple as possible but
still capable to describe experimental observations. The values of the parameters for the synthetic data
were determined from measurement performed under varying oxygen concentration and temperature
conditions. For details on the samples and setup used for the determination of all the parameters the
reader is referred to [30].

The synthetic data consist of a set S of m = 25,000 observations using oxygen concentration
values uniformly distributed between 0 % air and 100 % air and five temperatures 5, 15, 25, 35 and
45 ◦C. Please note that in the following, the concentration of oxygen is be given in % of the oxygen
concentration of dry air and indicated with % air. This means that 100 % air corresponds to 20 % vol
O2. The m data were split randomly in a training dataset containing 80 % of the data (|Strain| =20,000),
used to train the network, and a development dataset containing 20 % of the data (|Stest| = 5000), used
to test the generalization efficiency of the network when applied to unseen data.

Typically, when training neural network models, it is important to check if we are in a so-called
overfitting regime. The essence of overfitting is to have unknowingly extracted some of the residual
variation (i.e., the noise or errors) as if that variation represented an underlying model structure [31].
In the case discussed in this work, with increasing network complexity, the network will never go
into such a regime since the development dataset is a perfect representation of the training dataset.
This leads to almost identical metric values for the MAE for both Strain and Sdev, regardless of the
network architecture effective complexity. This is what we observed while checking the metrics
on the two different dataset Strain and Sdev. Overfitting becomes relevant when dealing with real
measurements and not synthetic data.

5. Results and Discussion

As described in Section 4, the applied problem investigated in this work is a complex one since
the two quantities to be extracted from the data ([O2] and T) depend from the input in different ways.
It is, therefore, not obvious that is possible to build a model which is able to predict both [O2] and T at
the same time with good accuracy.

The fist network investigated is the simple FFNN A described in Section 3.1. For this network,
the number of neurons was progressively increased (n̂ = 10, 30, 50, 80) to study how AE[O2]

and AET
are affected by an increasingly complex network and to determine if it is possible to obtain a good
prediction. The calculated AE[O2]

for different O2 concentrations were grouped in bins of 10% air for a
clearer illustration and are shown in Figure 5 as a box plot, where the median is visible as a red line.
In all the boxplots in this paper the central box is the interquartile range and contains the middle 50%
of the results, while the whiskers indicates the minimum and maximum of all the data [32].

As can be seen in Figure 5, the results are quite poor if n̂ = 30 (results for n̂ = 10 are comparable
to those with n̂ = 30 and are not shown here). AE[O2]

can assume values as big as 18% air, with a
broad distribution. Increasing the number of neurons in the hidden layers to n̂ = 50 improves the

Appl. Sci. 2019, 9, 4748 9 of 15

prediction, reducing both the median and the distribution. A further increase to n̂ = 80, however, does
not result in better a prediction, showing the limits of this architecture to capture the details of the
physical system.

The results for the prediction of the temperature for the same three networks are shown in Figure 6.
Also AET improves initially by increasing the number of neurons to n̂ = 50, but does not get any better
when the number of neurons is further increased to n̂ = 80. The boxplots of Figures 5 and 6 show that
AE[O2]

and AET can assume quite high values, therefore demonstrating how the model is not really
able to make a prediction with an accuracy that may be used in any commercial application.

[0
,1

0]
[1

0,
20

]
[2

0,
30

]
[3

0,
40

]
[4

0,
50

]
[5

0,
60

]
[6

0,
70

]
[7

0,
80

]
[8

0,
90

]
[9

0,
10

0]

[O2] ranges (% air)

0

5

10

15

20

Ab
so

lu
 e

 E
rro

r (
%

 a
ir)

Ne work A (n̂̂30)

[0
,1

0]
[1

0,
20

]
[2

0,
30

]
[3

0,
40

]
[4

0,
50

]
[5

0,
60

]
[6

0,
70

]
[7

0,
80

]
[8

0,
90

]
[9

0,
10

0]
[O2] ranges (% air)

0

5

10

15

20
Ne work A (n̂̂50)

[0
,1

0]
[1

0,
20

]
[2

0,
30

]
[3

0,
40

]
[4

0,
50

]
[5

0,
60

]
[6

0,
70

]
[7

0,
80

]
[8

0,
90

]
[9

0,
10

0]

[O2] ranges (% air)

0

5

10

15

20
Ne work A (n̂̂80)

Figure 5. Absolute error AE[O2] in the prediction of the O2 concentration for the different concentration
ranges using network A. Left: 30 neurons per hidden layer; middle: 50 neurons per hidden layer, right:
80 neurons per hidden layer.

5.
0

15
.0

25
.0

35
.0

45
.0

T (∘C)

0

10

20

30

40

50

Ab
so

lu
te

∘E
rro

r∘(
∘
C)

Network∘A∘(n̂= 30)

5.
0

15
.0

25
.0

35
.0

45
.0

T (∘C)

0

10

20

30

40

50
Network∘A∘(n̂= 50)

5.
0

15
.0

25
.0

35
.0

45
.0

T (∘C)

0

10

20

30

40

50
Network∘A∘(n̂= ̂0)

Figure 6. Absolute error AET in the prediction of T for the different temperatures using network A.
Left: 30 neurons per hidden layer; middle: 50 neurons per hidden layer, right: 80 neurons per
hidden layer.

The performance of the three FFNN of type A can be summarized calculating the MAE as defined
in Equation (6). The results are listed in Table 1. Consistently with what previously observed for the
absolute error, the best network performance is obtained with n̂ = 50, achieving a mean absolute error
of MAE[O2]

= 1.7% air and MAET = 3.3 ◦C.

Table 1. Summary of the performance for the FFNNs A.

n̂ MAE[O2] MAE[T]

30 6.0% air 9.3 ◦C
50 1.7% air 3.3 ◦C
80 2.3% air 4.3 ◦C

Appl. Sci. 2019, 9, 4748 10 of 15

For a practical application, the probability density distributions of the AEs for both parameters
represent a much fundamental quantity since it carries information on the probability of the network
to predict the expected value. For this reason, the kernel density estimate (KDE) of the distributions
of the AEs was used for analysis. KDE is a non-parametric algorithm to estimate the probability
density function of a random variable by inferring the population distribution based on a finite data
sample [33]. For the plots we have used a Gaussian Kernel and a Scott bandwidth estimation using the
seaborn Python package [34]. The results for AE[O2]

and AET for the three variations of FFNN A are
shown in Figures 7 and 8, respectively.

0 5 10 15 20
AE[O2] (% air)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Co
 n
ts
 (n

or
m
al
ize

d)

Network A (n̂=10)

0 5 10 15 20
AE[O2] (% air)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Network A (n̂=50)

0 5 10 15 20
AE[O2] (% air)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Network A (n̂=̂0)

Figure 7. Kernel density estimation for AE[O2] with network A. Left: 30 neurons per hidden layer;
middle: 50 neurons per hidden layer, right: 80 neurons per hidden layer.

0 5 10 15 20 25 30
AET (∘C)

0.00

0.05

0.10

0.15

0.20

0.25

Co
un

ts
∘(n

or
m

al
ize

d)

Network∘A∘(n̂= 30)

0 5 10 15 20 25 30
AET (∘C)

0.00

0.05

0.10

0.15

0.20

0.25
Network∘A∘(n̂= 50)

0 5 10 15 20 25 30
AET (∘C)

0.00

0.05

0.10

0.15

0.20

0.25
Network∘A∘(n̂= ̂0)

Figure 8. Kernel density estimation for AET for network A. Left: 30 neurons per hidden layer; middle:
50 neurons per hidden layer, right: 80 neurons per hidden layer.

From Figures 7 and 8 can clearly be seen that increasing the number of neurons helps at the
beginning. A further increase in n̂ does not produce an improvement in prediction quality, on the
contrary it gets worse. These results indicate that this simple FFNN can extract at the same time the
two quantities with an accuracy which is at best poor and at worst unusable.

Networks B and C try to address this problem by adding, as described in previous sections,
respectively one and two branches after the last hidden layer in network A. The results of the prediction
from the networks B and C are then compared to those from network A with n̂ = 50. Figure 9 shows
the calculated AE[O2]

for the three networks for the same [O2] intervals as before as a box plot, where
the median is visible as a red line.

As it can be seen from Figure 9, the error in the prediction of network B is similar to that of
network A. However, AE[O2]

is significantly improved when using network C. The additional branch
in network C compared to network B clearly make the predictions much more accurate and, more
importantly, much less spread around the median.

Appl. Sci. 2019, 9, 4748 11 of 15

[0
,1

0]
[1

0,
20

]
[2

0,
30

]
[3

0,
40

]
[4

0,
50

]
[5

0,
60

]
[6

0,
70

]
[7

0,
80

]
[8

0,
90

]
[9

0,
10

0]

[O2] anges (% ai)

0

2

4

6

8

10
Ab

so
lu

te
 E

 o
 (

%
 a

i)

Netwo k A (%n̂50)

[0
,1

0]
[1

0,
20

]
[2

0,
30

]
[3

0,
40

]
[4

0,
50

]
[5

0,
60

]
[6

0,
70

]
[7

0,
80

]
[8

0,
90

]
[9

0,
10

0]

[O2] anges (% ai)

0

2

4

6

8

10
Netwo k B

[0
,1

0]
[1

0,
20

]
[2

0,
30

]
[3

0,
40

]
[4

0,
50

]
[5

0,
60

]
[6

0,
70

]
[7

0,
80

]
[8

0,
90

]
[9

0,
10

0]

[O2] anges (% ai)

0

2

4

6

8

10
Netwo k C

Figure 9. Absolute error in the prediction of the O2 concentration for the different concentration ranges
using network A, B, and C. Left: Network A with 50 neurons per hidden layer; middle: network B,
right: network C.

The distribution of the AE[O2]
is better illustrated by plotting the KDE (Figure 10). The results

indicate that the distribution assumes much smaller values and is peaked around zero for network C,
in contrast with network A and B that have a quite wide tail that propagates toward higher values,
reaching values as high as 10% air for network A and 8% air for network B.

0 2 4 6 8 10
AE[O2] (% air)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Co
 n
ts
 (n

or
m
al
ize

d)

Network A (n̂=̂0)

0 2 4 6 8 10
AE[O2] (% air)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Network B

0 2 4 6 8 10
AE[O2] (% air)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Network C

Figure 10. Kernel density estimation for AE[O2] for networks A (left), B (middle), and C (right).

Finally, the results of the same analysis for the prediction of the temperature are shown in
Figure 11. Here the calculated AET for the same three networks is shown as a box plot, where the
median is visible as a red line.

5.
0

15
.0

25
.0

35
.0

45
.0

T (∘C)

0

10

20

30

40

50

Ab
so

lu
te

∘E
rro

r∘(
∘
C)

Network∘A∘(n̂̂ 50)

5.
0

15
.0

25
.0

35
.0

45
.0

T (∘C)

0

10

20

30

40

50
Network∘B

5.
0

15
.0

25
.0

35
.0

45
.0

T (∘C)

0

10

20

30

40

50
Network∘C

Figure 11. Absolute error in the prediction of the temperature using network A, B, and C. Left: Network
A with 50 neurons per hidden layer; middle: network B, right: network C.

Appl. Sci. 2019, 9, 4748 12 of 15

As it can be seen from Figure 11, AET is much more concentrated around the median when using
network C. These results indicate that the prediction of the temperature is substantially improved
when using this network.

The distribution of the AET using the KDE is shown in Figure 12. Thanks to the additional
task-specific hidden layer of the network C compared to network B, the KDE is higher and peaked
around zero, with practically no contributions above 5 ◦C.

0 5 10 15 20 25 30
AET (∘C)

0.0

0.1

0.2

0.3

0.4

0.5

Co
un

ts
 (n

or
m
al
ize

d)

Network A (n̂=50)

0 5 10 15 20 25 30
AET (C)

0̂0

0̂1

0̂2

0̂3

0̂∘

0̂5
Network B

0 5 10 15 20 25 30
AET (C)

0̂0

0̂1

0̂2

0̂3

0̂∘

0̂5
Network C

Figure 12. Kernel density estimation for AET for networks A (left), B (middle), and C (right).

Finally, the performance of the three neural networks are be summarized by calculating the MAE
as defined in Equation (6) for the oxygen concentration and the temperature prediction. The results are
listed in Table 2. The network C outperforms all the other networks analyzed in predicting both [O2]

and T, achieving a mean absolute error of only 0.5% air for the oxygen concentration and of 2.2 ◦C for
the temperature.

Table 2. Summary of the performance for the three types of neural networks.

Network MAE[O2] MAE[T]

Network A (n̂ = 30) 6.0% air 9.3 ◦C
Network A (n̂ = 50) 1.7% air 3.3 ◦C
Network A (n̂ = 80) 2.3% air 4.3 ◦C

Network B 1.5% air 6.5 ◦C
Network C 0.5% air 2.2 ◦C

The results of Table 2 show that a simple FFNN as network A is not suitable to extract the two
quantities of interest at the same time with good accuracy, since it is not flexible enough. The reason is
that the two predicted quantities will depend on the same set of features generated by the hidden layers
of network A. When network A tries to learn better weights to predict, for example, the temperature,
these will, however, influence also the [O2] prediction and vice-versa. So the common set of weights
that are learned can not be optimized for each quantity separately at the same time. The MTL network
B tries to address this problem with a separate branch of task-specific layers for [O2]. The tests show
however that this architecture is only marginally better for the prediction of [O2] and even worse for
the prediction of T. This is probably due an insufficient flexibility of the network and shows that
even if only one parameter were of interest, e.g., [O2] one single additional branch is not sufficient.
A significant improvement is achieved with the MTL network C: the two task-specific branches give
the network the flexibility of learning a set of weights (the ones in the branches) specific to each
quantity, therefore achieving exceptionally good predictions on both [O2] and T. Note that in this work
the hyper-parameter tuning [15] for each network was not performed since the goal is not to achieve
the lowest possible MAEs but rather to demonstrate the advantages and potential of MTL compared
to classical FFNN approaches. For the implementation in a measuring instrument, therefore, a further
phase of parameter tuning specifically dependent on the application would be needed.

Appl. Sci. 2019, 9, 4748 13 of 15

An interesting question is what is the mutual influence of the branches in network C when the
loss weights αi are varied. To answer this question, a study was performed with various values of the
global cost function weights. The results are shown in Table 3.

Table 3. Summary of the performance for network C with various loss weights.

α1 α2 α3 MAE[O2] MAE[T]

0.3 5.0 5.0 0.54% air 2.2 ◦C
0.3 5.0 15.0 0.61% air 2.35 ◦C
0.3 5.0 25.0 0.89% air 2.32 ◦C
0.3 1.0 5.0 0.58% air 2.25 ◦C
0.3 15.0 5.0 0.94% air 2.67 ◦C
0.3 25.0 5.0 0.96% air 2.55 ◦C

By increasing progressively the weight for the temperature branch, α3, the MAE[T] is not reduced
further and appears rather insensitive to α3. However, MAE[O2]

increases slightly, since the higher
values of α3 shift the relative importance of the tasks the network is trying to learn. Increasing the
weight for the oxygen branch α2 negatively affects the oxygen prediction since MAE[O2]

increases
slightly. The reason why this is happening is that the α2 is becoming much bigger than α1. This shows
that for the prediction of the oxygen concentration both the branches predicting T and [O2] at the
same time and the one predicting [O2] are important: neglecting one will make the other works less
efficiently. The temperature, on the other had, is predicted almost with the same kind of accuracy
independently of the weights α2, indicating that the temperature branch is not dependent from the
[O2] branch.

6. Conclusions

In this work, different neural networks architectures were investigated to solve the problem of
extracting multiple separate physical quantities at the same time from a single dataset. This type of
multi-dimensional regression problems in physics can be challenging or impossible to solve if the
mathematical models describing the functional dependence of the dependent variable from a set
of independent variables are too complex or unknown. The proposed approach consists in using
neural network MTL architectures, which are characterized by a common set of layers and then
task-specific layers for each quantity to be determined. Thanks to the additional task-specific hidden
layers, this type of networks can be trained to perform better than conventional FFNNs when the
quantities to be predicted are characterized by a significant difference in physical behavior.

The approach is demonstrated by applying it to an oxygen luminescence sensing application.
The conventional methods rely on a separate temperature determination which is then used as input
to correct the extraction of the oxygen concentration from a dataset. This work demonstrates how it is
possible to extract from a single dataset of phase shift measurements both the oxygen concentration
and the temperature of the medium. The distributions of AE[O2]

and AET are significantly narrower
and much more concentrated around zero with the proposed MTL network (type C), as compared
to FFNNs without specific and dedicated layers for each [O2] and T. With the latter network the
predictions are only based on common features (the ones generated by the common layers) that fail to
be flexible enough to describe both [O2] and T. The results indicate that from one single measurement,
it is possible to determine two physically different quantities, one of which is dependent from the
other. To the best of the authors’ knowledge, this is the first time that more than one parameter (here
[O2] and T) are extracted using a single luminophore by a single measurement channel under constant
conditions. The implication is that a sensor using the proposed approach could be able to extract much
more information from the measurements than one based on conventional analytical modeling.

This work aimed to open the road to new ways of extracting multiple physical quantities from
a common set of data at the same time to achieve consistent results that are both accurate and

Appl. Sci. 2019, 9, 4748 14 of 15

stable. The described approach is relevant for many practical applications in sensor science and
demonstrates that MTL architectures have the potential of revolutionizing the approach to non-linear
multi-dimensional regression.

Author Contributions: Conceptualization, U.M. and F.V.; methodology, U.M. and F.V.; software, U.M.; writing,
U.M. and F.V.; physics model and examples, F.V.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

FFNN Feed-forward neural networks
MTL Multi-task learning
MSE Mean square error
AE Absolute error
MAE Mean average error
KDE Kernel density estimate

References

1. Nocedal, J.; Wright, S.J. Numerical Optimization; Glynn, P., Robinson, S.M., Eds.; Springer: New York, NY,
USA, 1999.

2. Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2019; p. 129.
3. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY,

USA, 2013.
4. Borisov, S.M. Fundamentals of Quenched Phosphorescence O2 Sensing and Rational Design of Sensor

Materials. In Quenched-phosphorescence Detection of Molecular Oxygen, 1st ed.; Papkovsky, D.B., Dmitriev, R.I.,
Eds.; Royal Society of Chemistry: Oxford, UK, 2018; pp. 1–18.

5. Baleizão, C.; Nagl, S.; Schäferling, M.; Berberan-Santos, M.N.; Wolfbeis, O.S. Dual Fluorescence Sensor for
Trace Oxygen and Temperature with Unmatched Range and Sensitivity. Anal. Chem. 2018, 80, 6449–6457.
[CrossRef] [PubMed]

6. Collier, B.B.; McShane, M.J. Simultaneous, accurate lifetime determination of two luminophores using
time-domain techniques. Sensors 2011, 943–946. [CrossRef]

7. Pérez de Vargas-Sansalvador, M.; Martinez-Olmos, A.; Palma, A.J.; Fernández-Ramos, M.D.;
Capitán-Vallvey, L.F. Compact optical instrument for simultaneous determination of oxygen and carbon
dioxide. Microchim. Acta 2011, 172, 455–464. [CrossRef]

8. Lam, H.; Rao, G.; Loureiro, J.; Tolosa, L. Dual Optical Sensor for Oxygen and Temperature Based on the
Combination of Time Domain and Frequency Domain Techniques. Talanta 2011, 84, 65–70. [CrossRef]
[PubMed]

9. Borisov, S.M.; Seifner, R.; Klimant, I. A novel planar optical sensor for simultaneous monitoring of oxygen,
carbon dioxide, pH and temperature. Anal. Bioanal. Chem. 2011, 400, 2463–2474. [CrossRef] [PubMed]

10. Zhang, Y.; Yang, Q. A Survey on Multi-Task Learning. arXiv 2018, arXiv:1707.08114.
11. Thung, K.H.; Wee, C.-Y. A brief review on multi-task learning. Multimed. Tools Appl. 2018, 77, 29705–29725.

[CrossRef]
12. Thrun, S. Is learning the n-th thing any easier than learning the first? Adv. Neural Inf. Process. Syst. 1996,

8, 640–646.
13. Baxter, J. A model of inductive bias learning. J. Artif. Intell. Res. 2000, 12, 149–198. [CrossRef]
14. Caruana, R. Multi-task learning. Mach. Learn. 1997, 28, 41–75. [CrossRef]
15. Michelucci, U. Applied Deep Learning—A Case-Based Approach to Understanding Deep Neural Networks; Apress

Media, LLC: New York, NY, USA, 2018; pp. 374–375.
16. Irie, B.; Miyake, S. Capabilities of three-layered perceptrons. In Proceedings of the IEEE International

Conference on Neural Networks, San Diego, CA, USA, 24–27 July 1988; pp. 641–648.

http://dx.doi.org/10.1021/ac801034p
http://www.ncbi.nlm.nih.gov/pubmed/18651755
http://dx.doi.org/10.1109/ICSENS.2011.6127121
http://dx.doi.org/10.1007/s00604-010-0520-0
http://dx.doi.org/10.1016/j.talanta.2010.12.016
http://www.ncbi.nlm.nih.gov/pubmed/21315899
http://dx.doi.org/10.1007/s00216-010-4617-4
http://www.ncbi.nlm.nih.gov/pubmed/21221543
http://dx.doi.org/10.1007/s11042-018-6463-x
http://dx.doi.org/10.1613/jair.731
http://dx.doi.org/10.1023/A:1007379606734

Appl. Sci. 2019, 9, 4748 15 of 15

17. Hornik, K. Approximation Capabilities of Multilayer Feedforward Networks. Neural Netw. 1991, 4, 251–257.
18. Cybenko, G. Approximation by Superpositions of a Sigmoidal Function. Math. Control Signal Syst. 1989,

2, 303–314. [CrossRef]
19. Hanin, B. Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU

Activations. Mathematics 2019, 7, 992. [CrossRef]
20. Lu, Z.; Pu, H.; Wang, F.; Hu, Z.; Wang, L. The expressive power of neural networks: A view from the width.

In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA,
4–9 December 2017; pp. 6231–6239.

21. Rojas, R. Neural Networks—A Systematic Introduction; Springer: Berlin/Heidelberg, Germany, 1996;
pp. 267–271.

22. Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Norfolk, UK, 2005; pp. 139–140.
23. Sprecher, D. On the structure of Continuous Functions of Several Variables. Trans. Am. Math. Soc. 1964,

115, 340–355. [CrossRef]
24. Argyriou, A.; Evgeniou, T.; Pontil, M. Multi-task feature learning. In Proceedings of the 19th International

Conference on Neural Information Processing Systems (NIPS’06), Vancouver, BC, Canada, 4–7 December
2006; MIT Press: Cambridge, MA, USA, 2006; pp. 41–48.

25. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.

26. Wang, X.-D.; Wolfbeis, O.S. Optical methods for sensing and imaging oxygen: materials, spectroscopies and
applications. Chem. Soc. Rev. 2014, 43, 3666–3761. [CrossRef] [PubMed]

27. Wolfbeis, O.S. Optical Technology until the Year 2000: An Historical Overview. In Optical sensors: Industrial
Environmental and Diagnostic Applications, 1st ed.; Narayanaswamy, R., Wolfbeis, O.S., Eds.; Springer: Berlin,
Germany, 2004; pp. 28–30.

28. Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Singapore, 2006.
29. Demas, J.N.; DeGraff, B.A.; Coleman, P.B. Oxygen Sensors Based on Luminescence Quenching. Anal. Chem.

1999, 71, 793A–800A. [CrossRef] [PubMed]
30. Michelucci, U.; Baumgartner, M.; Venturini, F. Optical oxygen sensing with artificial intelligence. Sensors

2019, 19, 777. [CrossRef] [PubMed]
31. Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference, 2nd ed.; Springer, New York, NY,

USA, 2002.
32. McGill, R.; Tukey, J.W.; Larsen, W.A. Variations of Box Plots. Am. Stat. 1978, 32, 12–16.
33. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Science-Business Media,

LLC: New York, NY, USA, 2013; pp. 208–209.
34. Waskom, M.; Botvinnik, O.; O’Kane, D.; Hobson, D.; Lukauskas, S.; Gemperline, D.; Qalieh, A.

A Python Visualisation Library. Available online: http://doi.org/10.5281/zenodo.883859 (accessed on
21 October 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.3390/math7100992
http://dx.doi.org/10.1090/S0002-9947-1965-0210852-X
http://dx.doi.org/10.1039/C4CS00039K
http://www.ncbi.nlm.nih.gov/pubmed/24638858
http://dx.doi.org/10.1021/ac9908546
http://www.ncbi.nlm.nih.gov/pubmed/10596206
http://dx.doi.org/10.3390/s19040777
http://www.ncbi.nlm.nih.gov/pubmed/30769805
http://doi.org/10.5281/zenodo.883859
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theoretical Background
	Neural Networks for Non-Linear Regression Problems
	Multi-Task Learning

	Neural Network Architectures and Implementation
	Network A
	Network B
	Network C
	Metrics

	Luminescence Quenching for Oxygen and Temperature Sensing
	Data Generation

	Results and Discussion
	Conclusions
	References

