
applied
sciences

Article

A Novel Approach to Short-Term Stock Price
Movement Prediction using Transfer Learning

Thi-Thu Nguyen and Seokhoon Yoon *

Department of Electrical and Computer Engineering, University of Ulsan, Ulsan 680-749, Korea;
hathu.bk56@gmail.com
* Correspondence: seokhoonyoon@ulsan.ac.kr; Tel.: +82-52-259-1403

Received: 20 October 2019; Accepted:4 November 2019; Published: 7 November 2019
����������
�������

Abstract: Stock price prediction has always been an important application in time series predictions.
Recently, deep neural networks have been employed extensively for financial time series tasks.
The network typically requires a large amount of training samples to achieve high accuracy. However,
in the stock market, the number of data points collected on a daily basis is limited in one year, which
leads to insufficient training samples and accordingly results in an overfitting problem. Moreover,
predicting stock price movement is affected by various factors in the stock market. Therefore,
choosing appropriate input features for prediction models should be taken into account. To address
these problems, this paper proposes a novel framework, named deep transfer with related stock
information (DTRSI), which takes advantage of a deep neural network and transfer learning. First,
a base model using long short-term memory (LSTM) cells is pre-trained based on a large amount of
data, which are obtained from a number of different stocks, to optimize initial training parameters.
Second, the base model is fine-tuned by using a small amount data from a target stock and different
types of input features (constructed based on the relationship between stocks) in order to enhance
performance. Experiments are conducted with data from top-five companies in the Korean market
and the United States (US) market from 2012 to 2018 in terms of the highest market capitalization.
Experimental results demonstrate the effectiveness of transfer learning and using stock relationship
information in helping to improve model performance, and the proposed approach shows remarkable
performance (compared to other baselines) in terms of prediction accuracy.

Keywords: stock price movement prediction; long short-term memory; transfer learning

1. Introduction

Forecasting stock prices has been a challenging problem, and it has attracted many researchers
in the areas of economic market financial analysis and computer science. Accurate forecasts of the
direction of stock price movement help investors make decisions in buying and selling stocks, and
reducing unexpected risks. However, financial time series data are not only noisy and non-stationary
in nature, but they are also easily affected by many factors, such as news, competitors, and natural
factors [1]. Therefore, accurately predicting a stock price is highly difficult.

There are several stock market prediction models based on statistical analysis of data and machine
learning techniques. The earliest studies tended to employ statistical methods, but these approaches
did not perform well, and had limitations when applied to real-world stock data [2]. Recently, various
machine learning algorithms, such as artificial neural networks (ANNs) [3], support vector machines
(SVMs) [4], and random forests (RFs) [5], have been widely used in financial time series prediction
tasks because these approaches can effectively learn the non-linear relationships between historical
signals and future stock prices.

Appl. Sci. 2019, 9, 4745; doi:10.3390/app9224745 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2425-7356
https://orcid.org/0000-0003-1384-3405
http://www.mdpi.com/2076-3417/9/22/4745?type=check_update&version=1
http://dx.doi.org/10.3390/app9224745
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 4745 2 of 16

Over the past few decades, recurrent neural networks (RNNs) [6,7] have been used particularly
for time series prediction because this type of network includes states that can capture historical
information from an arbitrarily long context window. In our study, we use long short-term memory
(LSTM) cells for sequence learning of financial market predictions. LSTM is a part of RNNs, and using
LSTM cells can alleviate the problem of vanishing (and exploding) gradients [8]. However, in order to
train LSTM cells effectively, the overfitting problem from an insufficient number of training samples
should be considered [9]. Particularly, in stock price prediction, the number of data points that we can
collect on a daily basis is only about 240 in a year. That is not sufficient, considering the number of
model parameters. Currently, several methods have been found to avoid the overfitting problem, such
as regularization techniques (i.e., L1 and L2 regularization [10]), dropout [11], data augmentation [12],
and early stopping [13].

In recent years, transfer learning has been popularly used in training deep neural networks
(DNNs) owing to the effectiveness of this technique in helping to reduce training time and to enhance
prediction accuracy, despite a small amount of training data [14–19]. However, transfer learning has
not been used much in time series prediction tasks. In this paper, we propose a framework called
deep transfer with related stock information (DTRSI) to predict stock price movement, to mitigate the
overfitting problem caused by an insufficient number of training samples, and to improve prediction
performance by using the relationships between stocks. Specifically, our framework has two phases.
First, a base model using LSTM cells is pre-trained with a large amount of data (which were obtained
from a number of different stocks) to optimize initial training parameters. Secondly, the base model is
fine-tuned with a small amount of the target stock data to predict the target stock’s price movement.
The fine-tuned model is called a prediction model. For convenience, the target stock is called the
company of interest (COI) stock. In addition, the prediction model is trained by using the different
sets of input features that are constructed based on information about stocks related to the COI
stock. In detail, we first calculate a one-day return, which shows the change of a stock’s closing price
between two consecutive days. The first set of input features includes only one-day returns of the
COI stock. The second set is the combination of one-day returns of COI stock and the index (e.g.,
Korea Composite Stock Price Index 200 (KOSPI 200) and Standard&Poor’s 500 (S&P 500)). The third
set is the combination of one-day returns of the COI stock, the index, and stocks related to the COI
stock (i.e., the highest cosine similarity to the COI stock, similar field to the COI, and the highest
market capitalization).

In this study, to validate the proposed framework, as COI stocks, we choose top-five companies
on the KOSPI 200 and top-five companies from five popular sectors in the S&P 500 in terms of market
capitalization. The KOSPI 200 represents the benchmark indicator of the Korean capital market, and
the S&P 500 is a globally important benchmark indicator for the United States (US) market.

The main contributions of our work can be summarized as follows:

• First, our work considers the overfitting problem caused by an insufficient amount of data in
forecasting stock price movements. To address this challenge, a deep transfer-based framework is
proposed in which transfer learning is used to effectively train the prediction model using only a
small amount of COI stock data.

• Second, to enhance the prediction model performance, various types of input features are
designed. The objective is to find suitable input features that may affect the quality and
performance of a classifier. In our work, for a given COI stock, stocks that have relationships
with the COI stock are first selected, and then, model inputs are formed based on features
of the COI stock, the index (i.e., the KOSPI 200 or the S&P 500), and selected stocks. Three
relationships are proposed: the highest cosine similarity (CS), similar field (SF), and the highest
market capitalization (HMC). Specifically, CS selects stocks that have a direction in closing price
movement that is most similar to the COI stock; SF finds stocks that have similar industrial
products to the COI, even though there may be no direct closing price movement correlation
between them; and HMC aims at choosing the largest companies in each stock market. The

Appl. Sci. 2019, 9, 4745 3 of 16

companies that are selected based on HMC may affect the COI’s closing price movements.
Moreover, model inputs formed based on features of the COI stock and the index are called CI.

• Third, various experiments are conducted to validate our framework’s performance. Results
show that the proposed approach outperforms four baselines: RF, SVM, K-nearest neighbors
(KNN), and a recent model that used LSTM cells [20]. Specifically, our approach achieves a 60.70%
average accuracy, compared to a 51.49% average accuracy from RF, a 51.57% average accuracy
from SVM, a 51.77% average accuracy from KNN, and a 57.36% average accuracy from the
existing model. Moreover, the performance of the SF selection method substantially dominates
other considered methods in terms of average prediction accuracy. In addition, the number of
similar-field companies in the input features can affect the prediction performance dramatically.

The rest of this paper is organized as follows: Section 2 summarizes the existing literature related
to stock price prediction. Preliminaries, including base knowledge about long short-term memory and
transfer learning, are presented in Section 3. Then, Sections 4 and 5 describe dataset and preprocessing
and our proposed framework, respectively. In Section 6, we analyze the evaluation results of the
proposed model with different types of input, and we compare the performance of our approach with
other benchmark models. Finally, the conclusions from this work are drawn in Section 7.

2. Related Works

2.1. Stock Market Prediction

Several studies have attempted financial time series predictions. Specifically, most early studies
tended to employ statistical methods, such as the weighted moving average (WMA) [21], the
generalized autoregressive conditional heteroskedasticity (GARCH) model [22], and the autoregressive
integrated moving average (ARIMA) [23]. However, these approaches made many statistical
assumptions, such as linearity and normality, whereas the financial time series is non-linear. Therefore,
these approaches are not suitable for forecasting a stock price. Apart from the statistical models,
machine learning techniques have been extensively applied to financial time series prediction
tasks due to their capability in nonlinear mapping and generalization [3,4,24–27]. For instance,
Adebiyi et al. [25] presented the performance of a multi-layer perceptron (MLP) model and compared
it to the performance of an ARIMA model in forecasting stock prices on the New York Stock Exchange
(NYSE). They concluded that the MLP model performed better than the ARIMA model in terms of the
mean squared error (MSE). Kara et al. [27] used MLP and SVM to predict the direction of movement in
the daily Istanbul Stock Exchange (ISE) National 100 Index. Experimental results indicated that their
models outperformed the ordinary least square (OLS) regression model in terms of prediction accuracy.
Although MLP can be used in financial time series prediction, several studies showed that MLP has
some limitations in learning the patterns, as stock data have tremendous amounts of noise, and a high
dimension. MLP often exhibits inconsistent and unpredictable performance on noisy data [28,29].

In recent years, with the significant advances in deep learning techniques, recurrent neural
networks have emerged as a promising model for handling sequential data in various tasks such as
natural language processing, speech recognition, and computer vision. Moreover, several studies
proved that RNN including LSTM cells is the most useful model in the financial time series prediction
problem [30–36]. For example, Chen et al. [30] introduced a stock price movement prediction model
based on LSTM. A lot of basic variables for stocks (e.g., high price, low price, closing price, volume, and
adjusted closing price) are considered as input features. The model was trained on 900,000 samples and
tested using another 311,361 samples. They concluded that LSTM could attain satisfactory performance
in predicting China’s index price movements. Chung and Shin [34] employed an LSTM network to
predict KOSPI index prices in the next day. They tested their method on KOSPI index data from 2000
to 2016 and found that the method achieved satisfactory performance. In [33], the authors integrated
wavelet transforms (WTs) and recurrent neural network based on an artificial bee colony algorithm.
The closing price values of the Dow Jones Industrial Average Index (DJIA), the London FTSE-100 Index

Appl. Sci. 2019, 9, 4745 4 of 16

(FTSE), Tokyo Nikkei-225 Index (Nikkei), and Taiwan Stock Exchange Capitalization Weighted Stock
Index (TAIEX) were predicted. Results showed that their proposed approaches can maximize profits.
Bao et al. [35] employed a denoising approach using WTs as data-preprocessing, and then applied
stack autoencoders (SAEs) to extract deep daily features. Their proposed framework outperformed
their baseline methods in terms of MSE. However, most of the previous studies aimed at finding a
suitable framework that can learn from non-linear and noisy stock data based on assumptions about
sufficient data, whereas, in fact, collecting more stock data is difficult with only about 240 data points
available in a year. Meanwhile, our work aims at finding a novel approach that can effectively train an
LSTM network despite having an insufficient amount of data.

2.2. Feature Selection for Stock Price Prediction

Stock prices are dramatically affected by many factors [1]. Some basic factors (financial ratios,
technical indicators, macroeconomic indices, and competitors) should be used as important factors
affecting the rise and fall in stock values. However, each researcher has chosen their input features
differently for their prediction models [37]. In the following subsection, choosing input features for
stock price movement prediction in recent studies is presented.

Several studies have used technical indicators (TIs) as input variables in forecasting future stock
prices [26,38–43]. For example, for every day of training, to construct input feature vectors, the authors
in [40,42] calculated 10 technical indicators (e.g., simple moving average, exponential moving average,
and relative strength index) from raw time series data including opening price, closing price, high and
low prices, and trading volume. Thus, they fed these technical indicator values into their models (based
on SVM, ANN, and RF). Experimental results showed satisfactory prediction accuracy. Although
technical indicators have been used widely in stock market prediction tasks, the selection of suitable
indicators to form model inputs from among various technical indicators is still a challenging task.

Other studies were aimed at predicting stock prices given textual information from the
financial news [44–46]. For instance, Akita et al. [44] converted newspaper articles into distributed
representations via paragraph vectors and modeled the temporal effects of past events with an LSTM
on predicting opening prices of stocks on the Tokyo Stock Exchange. Bollen et al. [47] revealed that
investor’s emotions derived from Twitter have impacts on stock indicators. Michael et al. [48] first
introduced a novel word representation method to extract important features from text data. Then,
they used an SVM model to predict the direction of stock price movements in the next day. Those
studies proved that textual information can be used in financial time series prediction tasks. However,
their objective was to find effective feature extraction methods to help improve prediction performance.
Moreover, most of the research assumed that a company’s news was always published each day, which
is a rare case in reality.

Fischer and Krauss [20] deployed an LSTM network in predicting the directional movement of
constituent stocks of the S&P 500 from 1992 to 2015. In their research, they used 240 one-day returns as
input variables for the prediction model. They divided the entire time period into 23 study periods,
where each study period had 750 days (approximately three years). Their model was compared with
other classifier models, such as RF, DNN, and logistic regression. They provided an in-depth guide on
data preprocessing, as well as the development of LSTM for financial time series prediction tasks, and
concluded that their approach outperformed other baselines over 23 study periods in terms of average
prediction accuracy, shape ratio, and profit. However, in their study, they only used one-day returns
of the target stock to form input models. In contrast, our work takes relationships between other
stocks and the target stock into account in designing effective input. Thus, the proposed approach is
compared to the work by Fischer and Krauss [20]. Results show that the considered relationships can
enhance the performance of the prediction model.

Appl. Sci. 2019, 9, 4745 5 of 16

3. Preliminaries

3.1. Long Short Term Memory

Long short-term memory (LSTM) is a specific recurrent neural network (RNN) architecture. It can
learn temporal patterns from sequential data, and overcomes the vanishing gradient problem in a
standard RNN [8]. Moreover, LSTMs have gating mechanisms to regulate the flow of information.
The amount of information that will be retained is systemically determined at each time step. Therefore,
LSTMs can memorize temporal patterns over a long time series. The architecture of an LSTM cell is
illustrated in Figure 1, in which xt, ht, and ct are defined as the input, the hidden state, and the cell
state, respectively, at time t. An LSTM cell has three gates: ft, it, and ot, which are called the forget gate,
the input gate, and the output gate, respectively. Note that ⊗ is point-wise multiplication. Sigmoid
and tanh activation functions are marked as sigmoid and tanh, respectively. Here, the tanh activation
function is defined as tanh(z) = 2

1+e−2z − 1. The tanh function is used in order to update the hidden
state. Moreover, the sigmoid activation function is defined as σ(z) = (1+ e−z)−1. The sigmoid function
helps form the output value in the range of [0, 1]. If the output is close to 0, most information is lost.
If the output value is close to 1, it means that more information is allowed.

sigmoid tanh sigmoid

tanh

sigmoid

Ct-1

ht-1

Ct

ht

ht

xt

ft it

Ot

Figure 1. The structure of long short-term memory (LSTM) block.

The calculations for the forget gate (ft), the input gate (it), the output gate (ot), the cell state (ct)
and the hidden state (ht) are performed using the following formulas:

ft = σ(W f ∗ xt + U f ∗ ht−1 + b f) (1)

it = σ(Wi ∗ xt + Ui ∗ ht−1 + bi) (2)

ot = σ(Wo ∗ xt + Uo ∗ ht−1 + bo) (3)

ct = ft ∗ ct−1 + it ∗ tanh(Wc ∗ xt + Uc ∗ ht−1 + bc) (4)

ht = ot ∗ tanh(ct) (5)

where W f , Wi, Wo, Wc, U f , Ui, Uo, and Uc are weight matrices, and b f , bi, bo, and bc are bias vectors.

3.2. Transfer Learning

Transfer learning is a type of machine learning technique. Here, transfer learning aims at extracting
the knowledge from one or more source tasks, and applies the knowledge to a target task. The key
to transfer learning is achieving a remarkable improvement in performance by learning from similar
tasks. In addition, it can avoid “starting from scratch” when training on an individual task, and can
reduce the training time. Therefore, we can achieve better performance and reduce training time by
using a small number of training samples for a new task. Due to this advantage, in our study, we
use transfer learning to overcome the limited-data problem. We obtain a large source data and learn

Appl. Sci. 2019, 9, 4745 6 of 16

knowledge from them before transferring the knowledge into the target data (i.e., where data from
only the target stock are used). A large source of data can be formed by mixing other stock data, and
Section 5 will discuss this in detail.

According to the availability of labels in the source dataset and the target dataset, transfer learning
approaches are divided into three categories: inductive transfer learning, transductive transfer learning,
and unsupervised transfer learning [49]. Table 1 shows the differences between these categories in
transfer learning.

Table 1. Different settings of transfer learning.

Transfer Learning Settings Source Data Labels Target Data Labels

Inductive transfer learning Available AvailableUnavailable

Transductive transfer learning Available Unavailable

Unsupervised transfer learning Unavailable Unavailable

In our case, inductive transfer learning is applied because labeled data in both the source
data and the target data are available. Moreover, in this study, we first obtained a large
source data from a large number of different stocks. Then, a base deep neural network was
trained with obtained source data, and we attained a well-trained deep network based on
validation performance. In the next step, a prediction model was constructed that has the same
architecture as the base model. Thus, we transferred the trained parameters of the base model
including weights and biases to initialize the prediction model. Finally, the prediction model
was fine-tuned by using a small amount of target data and we optimized these parameters to
achieve final prediction performance. Therefore, among the different approaches for inductive
transfer learning setting (i.e., instance-transfer, feature-representation-transfer, parameter-transfer, and
relational-knowledge-transfer) [49], parameter-transfer was chosen for our approach.

4. Dataset and Preprocessing

For our experiments, we use historical closing price data from two stock market indices, i.e.,
the KOSPI 200 and the S&P 500, and included all stocks in each index from 31 July 2012 to 31 July
2018 on a working-day basis. These data were obtained from the Yahoo financial website (https:
//finance.yahoo.com/). Let n denote the number of stocks we collected.

During the entire time period from 2012 to 2018, this study considered three sub-study periods,
as shown in Figure 2.

Training

Validation

Testing

3 years 6 months 6 months

2012.07.31 2016.01.312015.07.31 2018.07.31

Study period 1

Study period 2

Study period 3

2017.07.312016.07.31

Training

TestingValidation

Validation

Training Testing

Figure 2. Study periods.

Each study period included stock data from four years, which were partitioned into three parts:
the first three years for the training set, next six months for the validation set, and final six months for
the test set.

https://finance.yahoo.com/
https://finance.yahoo.com/

Appl. Sci. 2019, 9, 4745 7 of 16

Let Ps
t denote the closing price of stock s on day t. In our context, s ∈ {s1, s2, ..., sn} corresponds

to the position of stocks in descending order of market capitalization. Similar to [20], we define rs
t,p as

the return of stock s on day t over the previous p days (i.e., the difference in closing price between day
t and day t− p) as follows:

rs
t,p =

Ps
t − Ps

t−p

Ps
t−p

. (6)

For all stock data, we first calculate one-day (p = 1) returns, rs
t,1, for each day t of each stock s.

Then, 20 one-day returns of the most recent 20 days with day t + 1 are stacked into one feature vector,
Rs

t = {rs
t−19,1, rs

t−18,1, ..., rs
t,1}, on day t. In total, in each study period, the numbers of samples for the

training set, the validation set, and the testing set of each stock are described in Table 2.

Table 2. Specification of the number of samples for each set.

Time Interval Training Set Validation Set Test Set

2012-07-31 to 2016-07-31 720 (734) 121 (124) 105 (108)
2013-07-31 to 2017-07-31 717 (736) 123 (124) 104 (108)
2014-07-31 to 2018-07-31 718 (734) 117 (125) 104 (108)

NB: The sets are denoted as follows: number of samples of each stock from the Korea Composite Stock Price
Index 200 (KOSPI 200) (number of samples of each stock from the S&P 500).

Meanwhile, ys
t is used to indicate the output of the estimation model, which shows the change

in the closing price of each stock s between two consecutive days (day t and day t + 1). For example,
ys

t = 1 indicates that an increase in the closing price on day t + 1, compared to the previous day, and
ys

t = 0 means a decrease in the closing price.

5. Deep Transfer with Related Stock Information (DTRSI) Framework

In this section, the DTRSI framework is described. Figure 3a shows the specific procedures of
the proposed framework. First, the source data are obtained from 50 different stocks. Then, a base
model that has the architecture as shown in Figure 3b is trained by using the obtained source data.
Note that FC is defined fully connected layers. In the next step, a prediction model is constructed that
has the same architecture as the base model. Finally, the prediction model is fine-tuned by using a
small amount of data from a COI stock and uses different types of input features (constructed based
on stock relationships) to predict COI stock price movements.

Dataset
<50 stocks>

Base
Model

Prediction
Model

Parameter Transfer

Dataset
<COI stock>

Source data
preparation

Target data
preparation

Predicted COI stock
price movement

(a) Flowchart of deep transfer with related stock
information (DTRSI).

...

Output: yts

LSTM

LSTM

...

LSTM

LSTM

FC

...

LSTM

LSTM

FC

...

...

Input: xts

inputt-19 inputt-18 inputt

...

(b) Architecture of the base model.

Figure 3. The framework and the model architecture.

5.1. Base Model Construction

In this subsection, we describe how to train the base model, which consists of two steps. The
first step is preparing a large source of data obtained from 50 available stocks. The second step is the
training process. Each step is described below in more detail.

Appl. Sci. 2019, 9, 4745 8 of 16

5.1.1. Source Data Preparation

In this study, three different source data with three different types of input features are employed.
Specifically, Type I input features are only one-day returns of the COI stock, Type II input features are
a combination of one-day returns of the COI stock and an index (e.g., KOSPI 200 and S&P 500), and
Type III input features are a combination of one-day return values of the COI stock, the index and
other stocks that have the highest cosine similarity to the COI stock.

Let xs
t denote an input that is used in predicting the closing price movement of stock s on day

t + 1. In addition, Rs
t , Rindex

t , and Rrs
t are feature vectors of stock s, the index, and related stocks rs ∈

{rs1, rs2, ..., rsm} with stock s, respectively, on day t, in which m is the number of stocks that are related
to stock s. As defined in Section 4, Rs

t = {rs
t−19,1, rs

t−18,1, ..., rs
t,1}, Rindex

t = {rindex
t−19,1, rindex

t−18,1, ..., rindex
t,1 },

and Rrs
t = {rrs

t−19,1, rrs
t−18,1, ..., rrs

t,1}. In the base model, xs
t = {Rs

t}, xs
t = {Rs

t , Rindex
t }, and xs

t =

{Rs
t , Rindex

t , Rrs1
t , Rrs2

t , ..., Rrsm
t } represent the Type I input features, the Type II input features, and

the Type III input features, respectively. Let n′ and nsamp denote the number of training samples of
source data and the number of training samples of each stock s, respectively.

In our work, three dimensional tensors (X1, X2, and X3) with dimensions of n′ × 20 × k
corresponding to the source data of three types of input features, are constructed, where k is the
number of input features. X1, X2 and X3 are illustrated in Figure 4, in which each matrix with
dimensions of 20× k corresponds to one training sample.

rt+nsamp−20,1
s50 rt+nsamp−19,1

s50 .… rt+nsamp−1,1
s50

rt−18,1
s1 rt−17,1

s1 … rt+1,1
s1

rt−19,1
s1 rt−18,1

s1 … rt,1
s1

𝕏1,20,1

𝕏2,20,1

𝕏nsamp∗50,20,1

(a) Type I input features

𝐫𝐭+𝐧𝐬𝐚𝐦𝐩−𝟐𝟎,1
𝐬𝟓𝟎 𝐫𝐭+𝐧𝐬𝐚𝐦𝐩−𝟏𝟗,𝟏

𝐬𝟓𝟎 … 𝐫𝐭+𝐧𝐬𝐚𝐦𝐩−𝟏,𝟏
𝐬𝟓𝟎

rt+nsamp−20,1
index rt+nsamp−19,1

index … rt+nsamp−1,1
index

𝐫𝐭−𝟏𝟖,𝟏
𝐬𝟏 𝐫𝐭−𝟏𝟕,𝟏

𝐬𝟏 … 𝐫𝐭+𝟏,𝟏
𝐬𝟏

rt−18,1
index rt−17,1

index … rt+1,1
index

𝐫𝐭−𝟏𝟗,𝟏
𝐬𝟏 𝐫𝐭−𝟏𝟖,𝟏

𝐬𝟏 … 𝐫𝐭,𝟏
𝐬𝟏

rt−19,1
index rt−18,1

index … rt,1
index

𝕏1,20,2

𝕏2,20,2

𝕏nsamp∗50,20,2

(b) Type II input features

𝐫𝐭+𝐧𝐬𝐚𝐦𝐩−𝟐𝟎,𝟏
𝐂𝐎𝐈 𝐫𝐭+𝐧𝐬𝐚𝐦𝐩−𝟏𝟗,𝟏

𝐂𝐎𝐈 … 𝐫𝐭+𝐧𝐬𝐚𝐦𝐩−𝟏,𝟏
𝐂𝐎𝐈

rt+nsamp−20,1
index rt+nsamp−19,1

index … rt+nsamp−1,1
index

𝐫𝐭+𝐧𝐬𝐞𝐪−𝟐𝟎,𝟏
𝐫𝐬𝟒𝟔 𝐫𝐭+𝐧𝐬𝐞𝐪−𝟏𝟗,𝟏

𝐫𝐬𝟒𝟔 … 𝐫𝐭+𝐧𝐬𝐚𝐦𝐩−𝟏,𝟏
𝐫𝐬𝟒𝟔

… … … …

𝑟𝑡+𝑛𝑠𝑒𝑞−20,1
𝑖𝑛𝑑𝑒𝑥 𝑟𝑡+𝑛𝑠𝑒𝑞−19,1

𝑖𝑛𝑑𝑒𝑥 … 𝐫𝐭+𝐧𝐬𝐚𝐦𝐩−𝟏,𝟏
𝐫𝐬𝟓𝟎

rt+nsamp−1,1
index

𝑟𝑡+𝑛𝑠𝑒𝑞−20,1
𝑖𝑛𝑑𝑒𝑥 𝑟𝑡+𝑛𝑠𝑒𝑞−19,1

𝑖𝑛𝑑𝑒𝑥 … 𝑟𝑡+𝑛𝑠𝑒𝑞−1,1
𝑖𝑛𝑑𝑒𝑥

𝐫𝐭−𝟏𝟗,𝟏
𝐂𝐎𝐈 𝐫𝐭−𝟏𝟖,𝟏

𝐂𝐎𝐈 … 𝐫𝐭,𝟏
𝐂𝐎𝐈

rt−19,1
index rt−18,1

index … rt,1
index

𝐫𝐭−𝟏𝟗,𝟏
𝐫𝐬𝟒𝟔 𝐫𝐭−𝟏𝟖,𝟏

𝐫𝐬𝟒𝟔 … 𝐫𝐭,𝟏
𝐫𝐬𝟒𝟔

… … … …

rt−19,1
rs50 rt−18,1

rs50 … 𝐫𝐭,𝟏
𝐫𝐬𝟓𝟎

𝐫𝐭+𝐧𝐬𝐚𝐦𝐩−𝟐𝟎,𝟏
𝐂𝐎𝐈 𝐫𝐭+𝐧𝐬𝐚𝐦𝐩−𝟏𝟗,𝟏

𝐂𝐎𝐈 … 𝐫𝐭+𝐧𝐬𝐚𝐦𝐩−𝟏,𝟏
𝐂𝐎𝐈

rt+nsamp−20,1
index rt+nsamp−19,1

index … rt+nsamp−1,1
index

… …. … …

𝐫𝐭−𝟏𝟗,𝟏
𝐫𝐬𝐦 𝐫𝐭−𝟏𝟖,𝟏

𝐫𝐬𝐦 … 𝐫𝐭,𝟏
𝐫𝐬𝐦

𝐫𝐭+𝐧𝐬𝐚𝐦𝐩−𝟐𝟎,𝟏
𝒊𝒏𝒅𝒆𝒙 𝐫𝐭+𝐧𝐬𝐚𝐦𝐩−𝟏𝟗,𝟏

𝒊𝒏𝒅𝒆𝒙 … 𝐫𝐭+𝐧𝐬𝐚𝐦𝐩−𝟏,𝟏
𝒓𝒔𝒎

 𝕏1,20,2+m

𝕏nsamp∗9+1,20,2+m

𝐫𝐭−𝟏𝟗,𝟏
𝐂𝐎𝐈 𝐫𝐭−𝟏𝟖,𝟏

𝐂𝐎𝐈 … 𝐫𝐭,𝟏
𝐂𝐎𝐈

rt−19,1
index rt−18,1

index … rt,1
index

𝐫𝐭−𝟏𝟗,𝟏
𝐫𝐬𝟏 𝐫𝐭−𝟏𝟖,𝟏

𝐫𝐬𝟏 … 𝐫𝐭,𝟏
𝐫𝐬𝟏

… … … …

𝐫𝐭−𝟏𝟗,𝟏
𝐫𝐬𝐦 𝐫𝐭−𝟏𝟖,𝟏

𝐫𝐬𝐦 … 𝐫𝐭,𝟏
𝐫𝐬𝐦

 𝕏nsamp,20,2+m

𝕏nsamp∗10,20,2+m

First group

Tenth group

(c) Type III input features (i.e., m = 5 and company of interest (COI) stock)

Figure 4. Training samples with different types of input features.

Specifically, in the Type I input features and the Type II input features, we choose data from the
top 50 stocks in terms of market capitalization, in which s ∈ {s1, s2, ..., s50} and stack them into one
large dataset. In these cases, n′ = nsamp × 50. For example, the number of training samples becomes
approximately 35,900 for the first study period. Note that k = {1, 2} for Type I input features and Type

Appl. Sci. 2019, 9, 4745 9 of 16

II input features, respectively. A main objective is to optimize model parameters by using training
samples from 50 stocks instead of using training samples from only one stock.

Unlike the two first types of input features, in the Type III input features, we first choose 50
stocks closest (in terms of cosine similarity) to each COI stock, because features of these stocks
may improve the base model performance. From rs ∈ {rs1, rs2, ..., rs50}, the 50 related stocks are
randomly divided into groups, and each group includes m stocks. For instance, when m = 5, 10
different groups will be generated. An illustration is provided in Figure 4c, which shows how each
group is used to design Type III input features. As shown in Figure 4c, for each COI stock, each
xCOI

t = {RCOI
t , Rindex

t , Rrs1
t , Rrs2

t , ..., Rrsm
t }, xCOI

t = {RCOI
t , Rindex

t , Rrsm+1
t , Rrsm+2

t , ..., Rrs2m
t },..., xCOI

t =

{RCOI
t , Rindex

t , Rrs46
t , Rrs47

t , ..., Rrs50
t } denotes the inputs designed from 10 generated groups. In the Type

III input features, with each xCOI
t , nsamp training samples are fed into the base model to predict COI

stock price movements. In our study, m = {3, 5, 7} is taken into account. In this case, n′ = nsamp × 50
m

and k = 2 + m. By considering these different groups, we bring two benefits to train the network. First,
the number of training samples increases by 50

m . Second, more relevant and effective features can be
used in constructing model inputs.

5.1.2. Training Process

For training the base model, a variety of network architectures which have a different number of
layers, hidden units, and activation functions were examined. Then, from among the considered
configurations, the most appropriate network architecture was selected based on the highest
performance over the validation set. The topology of our LSTM model is as follows:

• The input layer has units that equal the number of features and 20 timesteps.
• There are two LSTM layers, which are followed by two fully connected layers (marked FC in

Figure 3b). Each layer has 16 units and dropout regularization is applied to the outputs of each
hidden layer in order to mitigate the overfitting problem. Keep probability values are set to 0.5.

• The output layer has one sigmoid activation unit.

Moreover, weight and bias values are initialized with the normal distribution. A learning rate in
RMSprop optimization [50], the batch size, and the maximum training epochs are selected as 0.001,
512, and 5000, respectively.

5.2. Training the Prediction Model

In this subsection, we discuss how to train the prediction model. This model has the same
architecture as the base model, and initial values of parameters are set to parameter values found
for the base model. The prediction model takes data from only the COI stock for training task.
Moreover, six different sets of input features (siCOI

t , siCI
t , siCI+CS

t , siCI+SF
t , siCI+HMC

t , and siCI+RND
t)

are considered, which are fed into the prediction model to predict COI stock price movement on day
t + 1. Table 3 defines the notations that are used in this subsection.

Table 3. Definitions of notations.

Notation Meaning

siCOI
t Input using only one-day returns of COI stock on day t

siCI
t Input using one-day returns of the COI stock and the index on day t

siCI+CS
t Input using one-day returns of the COI stock, the index, and the company with the highest cosine similarity to the COI on day t

siCI+SF
t Input using one-day returns of the COI stock, the index, and the company from a field similar to the COI on day t

siCI+HMC
t Input using one-day returns of the COI stock, the index, and the company with the highest market capitalization on day t

siCI+RND
t Input using one-day returns of the COI stock, the index, and the company chosen randomly on day t

RCOI
t Feature vector of the COI stock on day t

Rindex
t Feature vector of the index on day t

RCS1
t ,...,RCSm

t Feature vector of m stocks with the highest cosine similarity to the COI on day t
RSF1

t ,...,RSFm
t Feature vector of m stocks from a field similar to the COI on day t

RHMC1
t ,...,RHMCm

t Feature vector of m stocks with the highest market capitalization on day t
RRND1

t ,...,RRNDm
t Feature vector of m stocks chosen randomly on day t

Appl. Sci. 2019, 9, 4745 10 of 16

Each input vector is formed as follows:

siCOI
t = {RCOI

t } (7)

siCI
t = {RCOI

t , Rindex
t } (8)

siCI+CS
t = {RCOI

t , Rindex
t , RCS1

t , ..., RCSm
t } (9)

siCI+SF
t = {RCOI

t , Rindex
t , RSF1

t , ..., RSFm
t } (10)

siCI+HMC
t = {RCOI

t , Rindex
t , RHMC1

t , ..., RHMCm
t } (11)

siCI+RND
t = {RCOI

t , Rindex
t , RRND1

t , ..., RRNDm
t }. (12)

In training the prediction model, six dimensional tensors, SI1, SI2, SI3a, SI3b, SI3c, and SI3d, with
dimensions of nsamp × 20× k are constructed as the training data for six types of input vectors, siCOI

t ,
siCI

t , siCI+CS
t , siCI+SF

t , siCI+HMC
t , and siCI+RND

t , respectively. Thus, we train six different prediction
models using six different types of training data. Note that the base model and the prediction model
have the same feature space. All training data of the prediction model are fed into the base model
correspondingly, as shown in Table 4.

Table 4. Specification of the training data fed to each model.

Base Model Prediction Model

X1 SI1
X2 SI2
X3 SI3a, SI3b, SI3c, SI3d

The learning rate and the maximum number of epochs are 0.0005 and 500, respectively. A small
learning rate is chosen to avoid distorting pre-trained parameters too quickly.

6. Experimental Results

In this section, we present details on how we evaluate the performance of the proposed approach.
Moreover, the influence of other information in predicting stock closing price movements based on the
performance of different types of input features is also discussed in detail. To assess the performance
of the prediction model, we use standard performance metrics (e.g., prediction accuracy). In this
study, prediction accuracy is defined as the number of correctly classified outputs among the total
number of outputs from the test data. In addition, our experiments are implemented by using keras
(https://keras.io/) and scikit-learn (https://scikit-learn.org/stable/) libraries.

6.1. Effectiveness of Different Types of Input Features

In this subsection, the performance of our approach is examined using six different types of input
features for the top five companies on the KOSPI 200 (i.e., Samsung Electronics Co. (Suwon, Korea),
SK Hynix Inc. (Icheon-si, Korea), Celltrion (Incheon, Korea), Hyundai Motor Co. (Seoul, Korea), and
LG Chem (Seoul, Korea)) and the top five companies from five popular sectors on the S&P 500 (i.e.,
Apple Inc. (Cupertino, CA, USA), Amazon.com Inc. (Seattle, WA, USA), Boeing Company (Chicago,
IL, USA), Johnson & Johnson (New Brunswick, NJ, USA), and JPMorgan Chase & Co. (New York, NY,
USA)). Note that Table 5 uses COI, CI, CI+CS, CI+SF, CI+HMC, and CI+RND as the names of input
features siCOI

t , siCI
t , siCI+CS

t , siCI+SF
t , siCI+HMC

t , and siCI+RND
t , respectively. Recall that CI is defined

as model inputs formed based on features of the COI stock and the index; CS, SF, HMC, and RND
are represented the relationship between other stocks and the COI stock such as the highest cosine
similarity, similar field, the highest market capitalization, and randomly chosen, respectively.

As seen in Table 5, the average prediction accuracy with CI+SF is the highest over all the study
periods. Specifically, CI+SF obtains the highest average accuracy at 60.64%, compared to 53.74% and

https://keras.io/
https://scikit-learn.org/stable/

Appl. Sci. 2019, 9, 4745 11 of 16

56.35% for COI and CI, respectively. In addition, our model with CI+CS, CI+HMC and CI+RND
achieves 58.91%, 58.59%, and 55.87%, respectively. This indicates that similar-field companies help to
significantly improve the prediction accuracy of the model, compared to other considered factors.

Table 5. Average accuracy of the different types of input variables over all study periods.

Stock Name COI CI CI+CS CI+SF CI+HMC CI+RND

Samsung Electronics Co 49.84 53.36 57.51 59.74 58.15 55.91
SK Hynix Inc 53.02 54.63 58.46 60.38 58.78 55.91
Celltrion 55.77 55.28 58.17 61.02 56.87 55.27
Hyundai Motor Co. 58.16 60.07 62.94 64.54 61.98 58.79
LG Chem 51.43 56.23 59.75 60.05 60.00 56.23

Boeing Company 50.93 55.56 59.57 60.19 57.71 55.86
Apple Inc. 55.87 60.49 57.41 59.88 59.88 54.63
Amazon.com Inc. 55.56 57.72 60.19 62.65 61.11 58.33
Johnson & Johnson 53.08 54.94 57.71 59.26 57.10 55.25
JPMorgan Chase & Co. 53.71 55.25 58.02 58.64 54.01 52.47

Average 53.74 56.35 58.91 60.64 58.59 55.87

Overall, the prediction model with CI+SF obtains the highest performance for almost all of the
stocks. In particular, the prediction model with CI+SF effectively predicts Hyundai Motor Co. with a
64.54% average accuracy and Amazon.com Inc. with a 62.65% average accuracy over all study periods.
However, in case of Apple Inc., CI attains 60.49% accuracy, which is slightly better than the 59.88%
accuracy from CI+SF. One reason may be that Apple Inc. is the largest company in the United States
and it is better coupled with the S&P 500.

In CI+SF, stocks from a similar field (e.g., similar industrial products) to the COI stock are selected.
In fact, two companies in the same industry affect each other dramatically [44]. For example, an event
like a “Samsung recall” may decrease Samsung’s stock value while increasing the stock price of SK
Hynix Inc. at the same time because SK Hynix Inc. is the world’s second-largest memory chip-maker
(after Samsung). In contrast, CI+CS uses stocks that have the most similar direction in closing price
movements. In our work, cosine similarity between two vectors including one-day returns of two
stocks is calculated over the entire training time period. As shown in Table 5, CI+SF achieves better
average accuracy than CI+CS by 1.73%.

Additionally, CI+HMC aims at using top stocks that have the highest market capitalization in
order to construct model inputs. When the COI is one of the top companies (e.g., Samsung Electronics
Co., SK Hynix Inc, Apple Inc., or Amazon.com Inc.), CI+HMC obtains slightly better performance than
CI+CS. Unlike these top companies, in the case of JPMorgan Chase & Co., CI+HMC achieves the worst
performance at 54.01% average accuracy. Note that JPMorgan Chase & Co. is the largest company in
the US financial field. Meanwhile, top companies of the US are companies working in the information
technology field (e.g., Apple Inc., Alphabet Inc Class A (Mountain View, CA, USA), Microsoft Corp.
(Redmond, WA, USA), and Facebook Inc. (Menlo Park, CA, USA)). Therefore, considering CI+HMC
may not affect to JPMorgan Chase & Co.’s stock price movements, and may make irrelevant input
features. As we can see in Table 5, in case of JPMorgan Chase & Co., CI+HMC obtains slightly lower
performance than CI, which does not use information about other stocks.

Moreover, in our study, we train the prediction model with CI+RND. In this type of input, we
choose other companies randomly (i.e., they may have no relationship to the COI stock). From the
empirical results presented in Table 5, CI+RND provides lower performance than CI in terms of
average prediction accuracy over all study periods. It proves that adding unnecessary information
does not help improve the model’s performance.

One should note that CI+CS, CI+SF, and CI+HMC attain higher prediction accuracy than CI,
and COI achieves the lowest performance. It indicates that by adding more relevant information, the
performance of the prediction model is generally enhanced.

Appl. Sci. 2019, 9, 4745 12 of 16

6.2. Effectiveness of the Proposed Approach versus Benchmark Models

In this subsection, we evaluate the performance of our model compared to four baseline classifiers,
which are SVM, RF, KNN, and an existing model using LSTM cells [20]. First, the input vector for
training four baseline models is constructed. Specifically, in constructing input vectors for the SVM,
RF, and KNN models, five returns are stacked into one feature vector Rs

t = {rs
t,1, rs

t,2, rs
t,5, rs

t,10, rs
t,20},

which is used as an input vector. Unlike these models, in [20], they used 240 one-day returns, rs
t−p′ ,1,

to design input vectors, in which p′ ∈ {0, 1, 2, ..., 239}. Therefore, the input model is formed as
Rs

t = {rs
t−239,1, rs

t−238,1, ..., rs
t,1}. All returns, rs

t,p, are calculated by using Equation (6). In addition,
targets of the baseline models are defined in the same way as the targets of our model in Section 4.

Two kinds of non-linear kernels (i.e., the radial basis function (RBF) kernel and the polynominal
kernel) of SVM are considered. Hyperparameters of SVM (e.g., γ of RBF kernel, degree d of
polynominal, and regularization C), hyperparameters of RF (e.g., the number of trees B, and maximum
depth J), and hyperparameters of KNN (e.g., the number of neighbors K) are chosen by grid search
for each branch. For choosing hyperparameters of the SVM model, the searching interval for γ, d,
and C is [0.5, 10.5] with a step size of 0.5, [1, 4] with a step size of 1, and [0.5, 1.5, 10, 100], respectively.
The search range [10, 100] with a step size of 10 and range [1, 5] with a step size of 1 are considered for
number of trees and maximum depth of RF model, respectively. Also, the search range [1, 50] with a
step size of 1 is considered for number of neighbors of KNN model. The model from [20] consists of
the input layer with one feature and 240 timesteps, one LSTM layer with h = 25 hidden neurons and a
dropout of 0.1, and the output layer with two neurons and softmax activation function.

As shown in Table 6, the performance of our proposed approach is the highest, with a 60.70%
average accuracy in the study periods, while the SVM, RF, and KNN methods show low performance
with 51.57%, 51.49%, and 51.77% average accuracy, respectively. Note that even when our approach
uses only one-day returns of COI stock, it achieves 53.74% average accuracy, which is higher than
SVM, RF, and KNN models by 2.17 percentage points, 2.25 percentage points, and 1.97 percentage
points, respectively. It indicates that simple classifier models cannot extract input features effectively.
Moreover, the overfitting problem may occur in training the SVM, RF, and KNN models due to the
insufficient amount of data, whereas our approach based on transfer learning can reduce the influence
of this problem.

Table 6. Comparisonof our proposed approach and baselines over all study periods. Support vector
machine (SVM), random forest (RF), K-nearest neighbors (KNN).

Stock Name Our Approach Baselines

SVM RF KNN Fisher and Krauss [20]

Samsung Electronics Co. 59.74 52.07 48.25 50.80 54.95
SK Hynix Inc 60.38 55.28 51.43 51.44 55.27
Celltrion 61.02 56.55 53.67 54.97 59.74
Hyundai Motor Co. 64.54 54.96 57.51 58.47 57.83
LG Chem 60.05 50.47 49.98 50.15 58.78

Boeing Company 60.19 48.78 52.78 50.00 58.64
Apple Inc. 60.49 43.83 46.91 50.62 57.72
Amazon.com Inc. 62.65 54.01 59.95 50.93 58.02
Johnson & Johnson 59.26 48.77 50.62 50.31 56.48
JPMorgan Chase & Co. 58.64 50.94 52.16 50.00 56.17

Average 60.70 51.57 51.49 51.77 57.36

Compared to the existing model from [20], our approach improves the average accuracy by 3.34%.
In [20], the model predicted COI stock price movement on day t + 1 based on only one-day returns
of the COI stock over one year. In fact, the direction of stock price movement is affected by other

Appl. Sci. 2019, 9, 4745 13 of 16

factors [1]. Unlike [20], related stocks are considered in our study. Results prove the effectiveness of
using returns of related stocks to form the model input.

Overall, the proposed approach outperforms the model in [20] for all stocks, particularly, in the
case of Hyundai Motor Co. company, with only 57.83% average accuracy from the existing model,
compared to 64.54% average accuracy of our proposed approach (a broad difference of 6.71 percentage
points). Additionally, 5.11% and 4.63% higher average accuracy are achieved for SK Hynix Inc and
Amazon.com Inc., respectively. However, Table 6 illustrates similar average accuracy for the proposed
approach and the existing model in predicting stock price movements of LG Chem, at 60.05% and
58.78%, respectively.

6.3. Performance Based on Different Numbers of Similar Companies

In this subsection, we concentrate on examining the influence of the number of stocks from a
field similar to the COI stock when predicting stock price movement. The number of stocks varies:
m = {3, 5, 7}.

As shown in Table 7, the performance of predicting stock price movements of each company
dramatically depends on the value of m. Specifically, m = 7 displays the lowest performance at 55.93%
average accuracy. However, with Hyundai Motor Co. and LG Chem, m = 7 achieves remarkable
performance at 64.22% and 56.87% average accuracy, respectively, compared to the others.

Table 7. Average accuracy for different numbers of similar-field stocks over all study periods.

Stock Name m = 3 m = 5 m = 7

Samsung Electronics Co. 59.42 58.14 52.39
SK Hynix Inc 60.06 56.56 53.66
Celltrion 54.94 60.70 55.59
Hyundai Motor Co. 55.26 57.83 64.22
LG Chem 53.33 56.21 56.87

Boeing Company 60.19 57.41 56.48
Apple Inc. 58.96 53.09 52.78
Amazon.com Inc. 62.04 61.11 57.41
Johnson & Johnson 57.79 58.33 53.70
JPMorgan Chase & Co. 57.72 56.79 56.17

Average 57.97 57.62 55.93

In addition, both m = 3 and m = 5 obtain similar performances at 57.97% and 57.62% average
accuracy. In the Korean market, unlike Hyundai Motor Co. and LG Chem, the performance from stock
price movement prediction for two companies (Samsung Electronics Co. and SK Hynix Inc) is the
highest when m = 3. For instance, with Samsung Electronics Co., m = 3 achieves 59.42% average
accuracy, compared to 56.56% and 52.39% average accuracy when m = 5 and m = 7, respectively. A
similar trend is present in the US market, as shown in Table 7, particularly, for Apple Inc., with only
52.68% average predictive accuracy when m = 7, compared to 58.96% average accuracy when m = 3
(a broad difference of 6.18 percentage points).

It should be highlighted that the value of m is considered as a hyperparameter of the prediction
model and this value should be chosen carefully for each company.

7. Conclusions

In this paper, a novel framework called DTRSI is proposed to predict stock price movements
by using an insufficient amount of data, yet with satisfactory performance. The framework takes
full advantage of parameter transfer learning and a deep neural network. Moreover, we leverage
relationships between stocks into constructing effective inputs to enhance the prediction model
performance. Applied to the Korean stock market and the US stock market, experimental results show

Appl. Sci. 2019, 9, 4745 14 of 16

that the proposed approach performs better than other baselines (e.g., SVM, RF, KNN, and the model
from [20]) in terms of average prediction accuracy. Moreover, stocks related to the COI stock are more
useful in financial time series prediction tasks. Among the considered relationships, the prediction
model using the returns of companies with a field similar to the COI achieved the highest performance.

To the best of our knowledge, this is the first study using a combination of transfer learning and
long short-term memory in financial time series prediction tasks. Although the proposed integrated
system has satisfactory prediction performance, it still has some drawbacks. First, our model has a
large number of parameters by the nature of deep neural network. Therefore, the training process
needs considerable time and computational resources, compared to other approaches. Second, finding
a suitable number of stocks chosen in obtaining source data for the base model should be considered in
order to enhance predictive accuracy. In addition, we use only the one-day returns of stocks, whereas
market sentiment also helps make profitable models. In particular, several pre-trained models for the
sentiment analysis task are being employed extensively. Therefore, our future task will be to design
an optimized trading system that uses multiple types of source data, including numerical data (e.g.,
returns) and sentiment information.

Author Contributions: Conceptualization, S.Y. and T.-T.N.; methodology, T.-T.N. and S.Y.; software, T.-T.N.;
validation, T.-T.N. and S.Y.; formal analysis, T.-T.N. and S.Y.; investigation, T.-T.N. and S.Y.; resources, S.Y.; data
curation, T.-T.N.; writing—original draft preparation, T.-T.N. and S.Y.; writing—review and editing, T.-T.N. and
S.Y.; visualization, T.-T.N. and S.Y.; supervision, S.Y.; project administration, S.Y.; funding acquisition, S.Y.

Funding: This research was funded by the 2019 Research Fund of University of Ulsan

Conflicts of Interest: The authors declare no conflict of interest

References

1. Abu-Mostafa, Y.S.; Atiya, A.F. Introduction to financial forecasting. Appl. Intell. 1996, 6, 205–213. [CrossRef]
2. Kim, H.J.; Shin, K.S. A hybrid approach based on neural networks and genetic algorithms for detecting

temporal patterns in stock markets. Appl. Soft Comput. 2007, 7, 569–576. [CrossRef]
3. Guresen, E.; Kayakutlu, G.; Daim, T.U. Using artificial neural network models in stock market index

prediction. Expert Syst. Appl. 2011, 38, 10389–10397. [CrossRef]
4. Lin, Y.; Guo, H.; Hu, J. An SVM-based approach for stock market trend prediction. In Proceedings of

the 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013;
pp. 1–7.

5. Booth, A.; Gerding, E.; McGroarty, F. Predicting equity market price impact with performance weighted
ensembles of random forests. In Proceedings of the 2014 IEEE Conference on Computational Intelligence for
Financial Engineering & Economics (CIFEr), London, UK, 27–28 March 2014; pp. 286–293.

6. Lipton, Z.C.; Berkowitz, J.; Elkan, C. A critical review of recurrent neural networks for sequence learning.
arXiv 2015, arXiv:1506.00019.

7. Liu, Y.; Guan, L.; Hou, C.; Han, H.; Liu, Z.; Sun, Y.; Zheng, M. Wind Power Short-Term Prediction Based on
LSTM and Discrete Wavelet Transform. Appl. Sci. 2019, 9, 1108. [CrossRef]

8. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
9. Lee, M.C. Using support vector machine with a hybrid feature selection method to the stock trend prediction.

Expert Syst. Appl. 2009, 36, 10896–10904. [CrossRef]
10. Ng, A.Y. Feature selection, L 1 vs. L 2 regularization, and rotational invariance. In Proceedings of the

Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; p. 78.
11. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent

neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
12. Wong, S.C.; Gatt, A.; Stamatescu, V.; McDonnell, M.D. Understanding data augmentation for classification:

when to warp? In Proceedings of the 2016 International Conference on Digital Image Computing: Techniques
and Applications (DICTA), Gold Coast, Australia, 30 November–2 December 2016; pp. 1–6.

13. Caruana, R.; Lawrence, S.; Giles, C.L. Overfitting in neural nets: Backpropagation, conjugate gradient, and
early stopping. In Proceedings of the Advances in Neural Information Processing Systems, River Edge, NJ,
USA, 21 November 2001; pp. 402–408.

http://dx.doi.org/10.1007/BF00126626
http://dx.doi.org/10.1016/j.asoc.2006.03.004
http://dx.doi.org/10.1016/j.eswa.2011.02.068
http://dx.doi.org/10.3390/app9061108
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.eswa.2009.02.038

Appl. Sci. 2019, 9, 4745 15 of 16

14. Norouzzadeh, M.S.; Nguyen, A.; Kosmala, M.; Swanson, A.; Palmer, M.S.; Packer, C.; Clune, J. Automatically
identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl.
Acad. Sci. USA 2018, 115, E5716–E5725. [CrossRef]

15. Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.;
Wu, X.; Yan, F.; et al. Identifying medical diagnoses and treatable diseases by image-based deep learning.
Cell 2018, 172, 1122–1131. [CrossRef]

16. Oliver, A.; Odena, A.; Raffel, C.A.; Cubuk, E.D.; Goodfellow, I. Realistic evaluation of deep semi-supervised
learning algorithms. In Proceedings of the Advances in Neural Information Processing Systems, Palais des
Congrès de Montréal, QC, Canada, 17 November 2018; pp. 3235–3246.

17. Lee, J.; Park, J.; Kim, K.; Nam, J. Samplecnn: End-to-end deep convolutional neural networks using very
small filters for music classification. Appl. Sci. 2018, 8, 150. [CrossRef]

18. Izadpanahkakhk, M.; Razavi, S.; Taghipour-Gorjikolaie, M.; Zahiri, S.; Uncini, A. Deep region of interest and
feature extraction models for palmprint verification using convolutional neural networks transfer learning.
Appl. Sci. 2018, 8, 1210. [CrossRef]

19. Zhang, L.; Wang, D.; Bao, C.; Wang, Y.; Xu, K. Large-Scale Whale-Call Classification by Transfer Learning on
Multi-Scale Waveforms and Time-Frequency Features. Appl. Sci. 2019, 9, 1020. [CrossRef]

20. Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions.
Eur. J. Oper. Res. 2018, 270, 654–669. [CrossRef]

21. Ziegel, E.R. Analysis of Financial Time Series; Taylor & Francis: London, UK, 2002; Volume 8, p. 408.
22. Gabriel, A.S. Evaluating the Forecasting Performance of GARCH Models. Evidence from Romania.

Procedia Soc. Behav. Sci. 2012, 62, 1006–1010. [CrossRef]
23. Ariyo, A.A.; Adewumi, A.O.; Ayo, C.K. Stock price prediction using the ARIMA model. In Proceedings of

the 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, Cambridge,
UK, 26–28 March 2014; pp. 106–112.

24. Di Persio, L.; Honchar, O. Artificial neural networks architectures for stock price prediction: Comparisons
and applications. Int. J. Circ. Syst. Signal Process. 2016, 10, 403–413.

25. Adebiyi, A.A.; Adewumi, A.O.; Ayo, C.K. Comparison of ARIMA and artificial neural networks models for
stock price prediction. J. Appl. Math. 2014, 2014, 614342. [CrossRef]

26. Chen, Y.; Hao, Y. A feature weighted support vector machine and K-nearest neighbor algorithm for stock
market indices prediction. Expert Syst. Appl. 2017, 80, 340–355. [CrossRef]

27. Kara, Y.; Boyacioglu, M.A.; Baykan, Ö.K. Predicting direction of stock price index movement using artificial
neural networks and support vector machines: The sample of the Istanbul Stock Exchange. Expert Syst. Appl.
2011, 38, 5311–5319. [CrossRef]

28. Qiu, M.; Song, Y. Predicting the direction of stock market index movement using an optimized artificial
neural network model. PLoS ONE 2016, 11, e0155133. [CrossRef]

29. Göçken, M.; Özçalıcı, M.; Boru, A.; Dosdoğru, A.T. Integrating metaheuristics and artificial neural networks
for improved stock price prediction. Expert Syst. Appl. 2016, 44, 320–331. [CrossRef]

30. Chen, K.; Zhou, Y.; Dai, F. A LSTM-based method for stock returns prediction: A case study of China stock
market. In Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA,
USA, 29 October–1 November 2015; pp. 2823–2824.

31. Di Persio, L.; Honchar, O. Recurrent neural networks approach to the financial forecast of Google assets.
Int. J. Math. Comput. Simul. 2017, 11, 7–13.

32. Liu, S.; Liao, G.; Ding, Y. Stock transaction prediction modeling and analysis based on LSTM. In Proceedings
of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China,
31 May–2 June 2018; pp. 2787–2790.

33. Hsieh, T.J.; Hsiao, H.F.; Yeh, W.C. Forecasting stock markets using wavelet transforms and recurrent
neural networks: An integrated system based on artificial bee colony algorithm. Appl. Soft Comput. 2011,
11, 2510–2525. [CrossRef]

34. Chung, H.; Shin, K.S. Genetic algorithm-optimized long short-term memory network for stock market
prediction. Sustainability 2018, 10, 3765. [CrossRef]

35. Bao, W.; Yue, J.; Rao, Y. A deep learning framework for financial time series using stacked autoencoders and
long-short term memory. PLoS ONE 2017, 12, e0180944. [CrossRef]

http://dx.doi.org/10.1073/pnas.1719367115
http://dx.doi.org/10.1016/j.cell.2018.02.010
http://dx.doi.org/10.3390/app8010150
http://dx.doi.org/10.3390/app8071210
http://dx.doi.org/10.3390/app9051020
http://dx.doi.org/10.1016/j.ejor.2017.11.054
http://dx.doi.org/10.1016/j.sbspro.2012.09.171
http://dx.doi.org/10.1155/2014/614342
http://dx.doi.org/10.1016/j.eswa.2017.02.044
http://dx.doi.org/10.1016/j.eswa.2010.10.027
http://dx.doi.org/10.1371/journal.pone.0155133
http://dx.doi.org/10.1016/j.eswa.2015.09.029
http://dx.doi.org/10.1016/j.asoc.2010.09.007
http://dx.doi.org/10.3390/su10103765
http://dx.doi.org/10.1371/journal.pone.0180944

Appl. Sci. 2019, 9, 4745 16 of 16

36. Ntakaris, A.; Mirone, G.; Kanniainen, J.; Gabbouj, M.; Iosifidis, A. Feature Engineering for Mid-Price
Prediction With Deep Learning. IEEE Access 2019, 7, 82390–82412. [CrossRef]

37. Atsalakis, G.S.; Valavanis, K.P. Surveying stock market forecasting techniques–Part II: Soft computing
methods. Expert Syst. Appl. 2009, 36, 5932–5941. [CrossRef]

38. Rodríguez-González, A.; García-Crespo, Á.; Colomo-Palacios, R.; Iglesias, F.G.; Gómez-Berbís, J.M. CAST:
Using neural networks to improve trading systems based on technical analysis by means of the RSI financial
indicator. Expert Syst. Appl. 2011, 38, 11489–11500. [CrossRef]

39. Chen, Y.S.; Cheng, C.H.; Tsai, W.L. Modeling fitting-function-based fuzzy time series patterns for evolving
stock index forecasting. Appl. Intell. 2014, 41, 327–347. [CrossRef]

40. Patel, J.; Shah, S.; Thakkar, P.; Kotecha, K. Predicting stock and stock price index movement using trend
deterministic data preparation and machine learning techniques. Expert Syst. Appl. 2015, 42, 259–268.
[CrossRef]

41. Chiang, W.C.; Enke, D.; Wu, T.; Wang, R. An adaptive stock index trading decision support system.
Expert Syst. Appl. 2016, 59, 195–207. [CrossRef]

42. Shynkevich, Y.; McGinnity, T.M.; Coleman, S.A.; Belatreche, A.; Li, Y. Forecasting price movements using
technical indicators: Investigating the impact of varying input window length. Neurocomputing 2017,
264, 71–88. [CrossRef]

43. Long, W.; Lu, Z.; Cui, L. Deep learning-based feature engineering for stock price movement prediction.
Knowl.-Based Syst. 2019, 164, 163–173. [CrossRef]

44. Akita, R.; Yoshihara, A.; Matsubara, T.; Uehara, K. Deep learning for stock prediction using numerical and
textual information. In Proceedings of the 2016 IEEE/ACIS 15th International Conference on Computer and
Information Science (ICIS), Okayama, Japan, 26–29 June 2016; pp. 1–6.

45. Vargas, M.R.; De Lima, B.S.; Evsukoff, A.G. Deep learning for stock market prediction from financial news
articles. In Proceedings of the 2017 IEEE International Conference on Computational Intelligence and Virtual
Environments for Measurement Systems and Applications (CIVEMSA), Annecy, France, 26–28 June 2017;
pp. 60–65.

46. Yasir, M.; Durrani, M.Y.; Afzal, S.; Maqsood, M.; Aadil, F.; Mehmood, I.; Rho, S. An Intelligent
Event-Sentiment-Based Daily Foreign Exchange Rate Forecasting System. Appl. Sci. 2019, 9, 2980. [CrossRef]

47. Bollen, J.; Mao, H.; Zeng, X. Twitter mood predicts the stock market. J. Comput. Sci. 2011, 2, 1–8. [CrossRef]
48. Hagenau, M.; Liebmann, M.; Neumann, D. Automated news reading: Stock price prediction based on

financial news using context-capturing features. Decis. Support Syst. 2013, 55, 685–697. [CrossRef]
49. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359.

[CrossRef]
50. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2924353
http://dx.doi.org/10.1016/j.eswa.2008.07.006
http://dx.doi.org/10.1016/j.eswa.2011.03.023
http://dx.doi.org/10.1007/s10489-014-0520-6
http://dx.doi.org/10.1016/j.eswa.2014.07.040
http://dx.doi.org/10.1016/j.eswa.2016.04.025
http://dx.doi.org/10.1016/j.neucom.2016.11.095
http://dx.doi.org/10.1016/j.knosys.2018.10.034
http://dx.doi.org/10.3390/app9152980
http://dx.doi.org/10.1016/j.jocs.2010.12.007
http://dx.doi.org/10.1016/j.dss.2013.02.006
http://dx.doi.org/10.1109/TKDE.2009.191
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Stock Market Prediction
	Feature Selection for Stock Price Prediction

	Preliminaries
	Long Short Term Memory
	Transfer Learning

	Dataset and Preprocessing
	Deep Transfer with Related Stock Information (DTRSI) Framework
	Base Model Construction
	Source Data Preparation
	Training Process

	Training the Prediction Model

	Experimental Results
	Effectiveness of Different Types of Input Features
	Effectiveness of the Proposed Approach versus Benchmark Models
	Performance Based on Different Numbers of Similar Companies

	Conclusions
	References

