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Abstract

:

Metaheuristics are multi-purpose problem solvers devoted to particularly tackle large instances of complex optimization problems. However, in spite of the relevance of metaheuristics in the optimization world, their proper design and implementation to reach optimal solutions is not a simple task. Metaheuristics require an initial parameter configuration, which is dramatically relevant for the efficient exploration and exploitation of the search space, and therefore to the effective finding of high-quality solutions. In this paper, the authors propose a variation of the water cycle inspired metaheuristic capable of automatically adjusting its parameter by using the autonomous search paradigm. The goal of our proposal is to explore and to exploit promising regions of the search space to rapidly converge to optimal solutions. To validate the proposal, we tested 160 instances of the manufacturing cell design problem, which is a relevant problem for the industry, whose objective is to minimize the number of movements and exchanges of parts between organizational elements called cells. As a result of the experimental analysis, the authors checked that the proposal performs similarly to the default approach, but without being specifically configured for solving the problem.
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1. Introduction


Worldwide manufacturing plants are usually structured into manufacturing entities, which are composed of machines processing a specific part for a product. This organization presents a problem for most companies because, generally, the output of a machine could be the input of another, which could be located in a faraway place, reducing the efficiency of the construction process because of the moving of parts. This relevant problem for the industry is a classical optimization problem defined by Flanders [1] and called the manufacturing cell design problem, whose objective is to minimize the number of movements and exchanges of parts between groups of machines, which are called cells.



During the last decade, the manufacturing cell design problem has been intensely addressed in the optimization field area. Exact techniques have been proposed for solving the problem, as in [2]. This type of exhaustive techniques is efficient in solving low-complexity instances. However, these techniques usually fail when larger instances are considered because of timing constraints [3]. On the other hand, approximate algorithms are capable of getting solutions for any instance size in reasonable computing time, but results could not be as high quality as expected because these methods are focused on providing near-optimal solutions [4,5].



Focusing on metaheuristics, many bio-inspired algorithms have successfully addressed complex optimization problems in the literature. These techniques are characterized by mimic the behavior of processes from nature, such as honey bees collect nectar from flowers, bats hunt their prey in darkness, the attraction between two objects by computing the gravitational force, among many other examples. Despite the great success of metaheuristics in different application areas, their proper design and implementation to reach optimal solutions is not a simple task. The operation of metaheuristics is governed by a set of parameters that demand a previous setting. Such a configuration is known to be a major task. In fact, selecting the appropriate parameter setting is crucial for the efficient exploration of the search space and therefore to the effective finding of high-quality solutions [6].



Under this line, the authors propose a variation of the water cycle algorithm technique inspired by the water cycle of the elements in the hydrosphere, which was originally proposed in [7,8]. The goal of this variation is that the algorithm has the capacity of updating the population size to manage the trade-off between exploration and exploitation, so that the process of getting good solutions to the optimization problem could be facilitated. To this end, the authors consider the autonomous search paradigm introduced in [9]. The idea of selecting the population size parameter to control this trade-off is not new and then, many works can be found in the literature following this trend [10]. As expected, other interesting approaches can be found for controlling this trade-off in the literature [10].



In this work, the authors compare the original and the autonomous approach of the metaheuristic while solving 160 known instances of the manufacturing cell design problem [11]. As a result, the authors checked that the autonomous water cycle algorithm performs similarly than the default approach, but without being specifically configured for solving a specific instance, which is valuable.



The manuscript is organized as follows. Section 2 discusses related works in the field. Section 3 defines the manufacturing cell design problem. Section 4 exposes the default water cycle algorithm. The proposed autonomous water cycle algorithm is presented in Section 5. Finally, experimental results and concluding remarks are shown in Section 6 and Section 7, respectively.




2. Related Work


Cellular manufacturing systems are widely considered in the industry due to the several benefits involved in economic terms; indeed, preliminary investigations in this context date back from 1960 with the work of Burbidge [12] about production flow analysis. From this point, mathematical programming was strongly involved in solving the problem. Several examples in this line can be found from classic linear programming to more advanced goal programming procedures [11,13,14,15,16,17,18]. Techniques derived from mathematical programming and artificial intelligence, such as constraint programming, were also reported [2,3]. More recently, the room for metaheuristics in this area has been growing since its use is more appropriate when problem instances are intractable with exact methods because of computing time restrictions. In this line, some authors applied classic metaheuristics as tabu search for solving different approaches of the problem [19,20,21,22,23]. The presence of genetic algorithms (GAs) is also large. For instance, a bi-criteria model for solving cell formation problems was presented in [24]. A similar approach was reported in [25], but involving three objective functions. Alternative routines for the part-flow were incorporated in [26,27]. In [28], another GA was proposed but mostly oriented to minimize the inter-cell flow cost rather than minimizing the number of inter-cell movements. Industrial cases from the automobile and steel industry were presented in [29,30] while applying GAs. Hybrid GAs, as well as variants such as the predator-prey GA, were also explored [31,32,33,34]. Classic simulated annealing, differential evolution, scatter search, and particle optimization algorithms also participate in the literature [35,36,37,38].



From the previous analysis, the authors reach that modern swarm intelligence metaheuristics are the most widely applied techniques for solving the problem in recent years. For instance, the authors may cite the following works, among many others. In [39], a migrating bird algorithm was applied, which was later parallelized in [40]. The artificial fish swarm algorithm and the shuffled frog leaping algorithm were applied in [41,42]. Bat algorithm and its autonomous version were applied in [43,44], respectively. The firefly algorithm was considered in [45,46], the cat swarm optimization in [47] and the flower pollination algorithm in [48]. Black hole algorithm has successfully been applied to fine tune a machine learning approach in [49]. Finally, an Egyptian vulture optimization algorithm was reported in [50].



As introduced before, although metaheuristics are widely considered in the literature for solving complex optimization problems, the usage of these methods is limited by the needed of configuring parameters, which definitively affect how the search is performed. This situation implies that it is needed to solve the fitting problem of the algorithm. However, it is unlikely to get the optimal solution to the problem because of the number of possible combinations. This fact means that the performance of the algorithm could be biased due to the usage of an inadequate configuration. A solution to this problem could be to consider metaheuristics with the less possible number of parameters. However, parameters usually provide metaheuristics the capacity of providing a good solution in a great range of instances and problems, i.e., adaptability. Another possibility is the one considered in this paper, where the authors study how to provide autonomous adaptability during the solving time. This is a novel concept, which has not been extensively considered in the literature. For instance, we may cite the following works defining an autonomous strategy for guiding specific metaheuristics [51,52,53]. On this basis, in this work, the authors study how to provide autonomous adaptability to the water cycle algorithm, which is a metaheuristic that was successfully applied to solve several optimization problems [54,55,56,57]. As far as the authors know, this is the first work in the field providing adaptability to the water cycle algorithm, while solving the cell design problem.




3. The Manufacturing Cell Design Problem


The cellular manufacturing strategy proposed by Flanders [1] promotes the separation of the machines involved in a production plant by following a specific strategy. The idea is to group parts of similar functions, geometry or fabrication process into families that are processed in the same section, and thus creating highly independent areas called cells. Some advantages of this production strategy include reduction of cost and material-handling time, labor, and paperwork, a decrease of in-process inventories, shortening delivery time, and an increase of machine utilization and production control. Further analysis of this technology may be found in [58,59,60].



3.1. Problem Statement


To find the optimal design of the production plant, where the inter-cell part exchange is minimized, the problem is schematized into the part-machine matrix, where each coordinate shows which machine processes a particular part. Through the reorganization of the rows and columns of the matrix different configurations can be tested. From this initial matrix, two others are derived: the machine-cell and the part-cell matrices, representing the cell that currently allocates the machines and parts, respectively.



The idea in this optimization problem is to minimize the so-called exceptional elements, which are parts that move from one cell to another to satisfy the production workflow [11]. The mathematical model representing this problem is described as follows:




	
Modeling parameters:



	-

	
M: the number of machines.




	-

	
P: the number of parts.




	-

	
C: the number of cells.




	-

	
  M  m a x   : the maximum number of machines in a cell.




	-

	
  x  i j   : the   ( i , j )   element in the machine-part incidence matrix, meaning


   x  i j   =     1    if  the  i  - th   machine  processes  the  j  - th   part ,      0    otherwise ,       



(1)




where   i ∈ { 1 , … , M  } is the machine number and   j ∈ { 1 , … , P }   is the part number.







	
Decision variables:



	-

	
  y  i k   : the   ( i , k )   element in the machine-cell incidence matrix, meaning


   y  i k   =     1    if  the  i  - th   machine  is  located  in  the  k  - th   cell ,      0    otherwise ,       



(2)




where   k ∈ { 1 , … , C  } is the cell number.




	-

	
  z  j k   : the   ( j , k )   element in the part-cell incidence matrix, meaning


   z  j k   =     1    if  the  j  - th   part  is  located  in  the  k  - th   cell ,      0    otherwise .       



(3)
















The goal of the optimization problem is given by


  minimize    ∑  k = 1  C   ∑  i = 1  M   ∑  j = 1  P   x  i j    z  j k    ( 1 −  y  i k   )  ,  



(4)




subject to


   ∑  k = 1  C   y  i k   = 1 ,  ∀  i ,  



(5)






   ∑  k = 1  C   z  j k   = 1 ,  ∀  j ,  



(6)






   ∑  i = 1  M   y  i k   ≤  M  m a x   ,  ∀  k .  



(7)








3.2. Problem Example


An example of the manufacturing cell design problem is included in this section to clarify the previous definition. To this end, the authors consider the machine-part matrix in Table 1, determining how machines and parts are related in a given industrial process. From this table, there are 10 machines (  M = 10  ) and 10 parts (  P = 10  ). Suppose that for the optimized design, there are 3 (  C = 3  ) available cells to organize the industrial process and there is a constraint in the maximum number of machines in a cell so that this maximum number equals 4 (  M  m a x    = 4). With this information, the machine-cell and part-cell matrices are generated by randomly assigning machines and parts to cells. These two matrices are shown in Table 2. From these two matrices, the objective of the optimization problem is to reorganize machines and parts so that inter-cell movements are minimized. A possible solution to this problem is shown in Table 3, where machines   { A , E , F , H }   and parts   { 3 , 7 , 10 }   are assigned to cell 1, machines   { B , C , I }   and parts   { 1 , 2 , 6 , 9 }   are assigned to cell 2, and machines   { D , G , J }   and parts   { 4 , 5 , 8 }   are assigned to cell 3. The cost of this solution is 0 because there are not inter-cell movements, meaning that this is an optimal solution to the problem.





4. The Water Cycle Inspired Solving-Method


As is well known, water exists in the earth in three different states: solid (ice, snow), liquid (water, sea, raindrops) and gaseous (vapor). Even though oceans, sea, rivers, streams, clouds, and rains are constantly changing, the total amount of water on the planet is not affected [61,62,63]. The interconnection of the three water states forms the water life cycle depicted in Figure 1. In this figure, raindrops travel in the mountains towards the sea, forming rivers or streams; however, there is also a possibility that some streams flow into rivers and not necessarily into the sea. The water life cycle is composed of three phases [64,65,66]. The first one occurs when the heat produced by the sun affects the water surface, producing that seawater begins to evaporate. This first phase is complemented by the photosynthesis of plants in a process known as transpiration. In the second phase, vapor rises to the atmosphere forming clouds which store plenty of evaporated water through condensation. The third phase, known as precipitation, occurs when stored vapor becomes liquid water because of clouds start to cool, for instance when clouds rise considerably.



The water cycle inspired algorithm is a population-based solving method. In the context of the algorithm, each individual in the population is a solution to the problem known as a raindrop. Thus, each raindrop has associated a machine-cell and a part-cell matrix, as well as a fitness value calculated as given by Equation (4). The population is composed of   N  p o p    raindrops.



The solutions in the population are organized on three levels: sea, rivers, and streams. To this end, the population is first sorted in decreased order of fitness quality. Then, the first solution is the sea. The following   N  r i v e r s    solutions are the rivers and the rest of the solutions are the streams. Thus, the sum of rivers and sea is given by


   N  s r   =  N  r i v e r s   + 1 ,  



(8)




and the number of streams is given by


   N  s t r e a m s   =  N  p o p   −  N  s r   .  



(9)







According to the flow magnitude (how good a solution is), each sea/river has associated a set of streams flowing to them. The cardinal of this set for a given sea/river is defined as


  N  S n  = r o u n d  |   c n    ∑  i = 1   N  s r     c i    | ×  N  s t r e a m s    ,  n ∈  { 1 , 2 , … ,  N  s r   }  ,  



(10)




where   c n   is the fitness value of the n-th solution in the first   N  s r    solutions in the population as given by Equation (4). From this expression, the sea will have a higher number of streams than a lower quality river. Following this idea, better solutions will have the capacity of attracting more water flows than worse ones, as shown in Figure 2. In this figure, rivers (stars) and streams (circles) modify their trajectory to follow stronger flows. When a stream flows into the sea (squares), it is taken as a solution. Additionally, the white color is used to detail advances in each iteration (a new position).



The way in which a stream modify its trajectory is depicted in Figure 3, where X is the new position of the stream as a random displacement in the interval   [ 0 , α · d ]  , d is the distance between the river and the stream (usually in terms of fitness value), and   α ∈ ( 1 , 2 )  .



According to the attraction capacity of water flows, the algorithm applies three phases to transform a solution during one iteration of the optimization process. First, it moves streams forward to the rivers as given by


   X  s t r e a m    ( t + 1 )  =  X  s t r e a m    ( t )  + r a n d · α ·  (  X  r i v e r    ( t )  −  X  s t r e a m    ( t )  )  .  



(11)




where rand is a random number in the interval   [ 0 , 1 ]  . Second, streams are directed to the sea as given by


   X  s t r e a m    ( t + 1 )  =  X  s t r e a m    ( t )  + r a n d · α ·  (  X  s e a    ( t )  −  X  s t r e a m    ( t )  )  .  



(12)







Third, rivers flow towards the sea as given by


   X  r i v e r    ( t + 1 )  =  X  r i v e r    ( t )  + r a n d · α ·  (  X  s e a    ( t )  −  X  r i v e r    ( t )  )  .  



(13)







Next, the algorithm evaluates if the newly generated solution is better than its connection, i.e., if the stream provides a better fitness value than the river. In such a case, roles are exchanges as depicted in Figure 4.



The algorithm also includes a mechanism to avoid premature convergence based on the evaluation of the evaporation condition. This process evaluates how close are rivers and streams to the sea so that evaporation is produced. Thus, the evaporation condition for rivers is evaluated as


   ∥   X  s e a   −  X  r i v e r    ∥ <   d  m a x    o r  r a n d < 0.1 ,  



(14)




and for streams is evaluated as


   ∥   X  s e a   −  X  s t r e a m    ∥ <   d  m a x    o r  r a n d < 0.1 ,  



(15)




where   d  m a x    is updated over iterations as given by


   d  m a x   t + 1   =  d  m a x   t = 0   −   d  m a x  t   max  iterations   .  



(16)







Note that the   d  m a x    is reduced over iterations, meaning that the evaporation condition is more complicated to meet so as execution progresses. If the evaporation condition is met, a rain process occurs, meaning that the water cycle starts again and then, a new population is generated replacing the previous one. That is,


   X  new  population   = L B + r a n d ·  ( U B − L B )  ,  



(17)




where   L B   and   U B   represent the lower and upper bound values, respectively. Based on the above description, the main steps in the algorithm are described in Algorithm 1.





	Algorithm 1: Water cycle inspired algorithm.



	 [image: Applsci 09 04736 i001]







5. The Proposed Autonomous Water Cycle Algorithm


The integration of autonomous search into the water cycle algorithm will be responsible for varying the population size (  N  p o p   ), while maintaining the same proportion of rivers/sea (  N  s r   ) and streams (  N  s t r e a m s   ). This proportion was experimentally defined as   30 %   for   N  s r    and 70% for   N  s t r e a m s   . The calculation of   N  p o p    is inspired by one of the most important expressions in the water cycle algorithm, Equation (10), defining the trade-off between exploitation and exploration in the metaheuristic. Thus, the population size is calculated according to the relationship between the worst and best solution in the current population. That is:


   N  p o p   = r o u n d  |    c  b e s t   N  p o p    −  c  w r o n g   N  p o p       ∑  i = 1   N  p o p    c o s  t i    | × 100  ,  



(18)




where   c  b e s t   N  p o p     and   c  w o r s t   N  p o p     are the best and worst fitness value in the current population. In this expression, population size will be larger as the difference between the best and the worst fitness value is increased. Otherwise, population size will be smaller.



The criterion for updating the population size is defined according to the differences observed, in percentage, between the best and worst solution in   N  s r    in two different time intervals. Thus, let   d i f  f   N  s r     t 1     and   d i f  f   N  s r     t 2     the differences observed between the best and worst solution in   N  s r    in time   t 1   and   t 2  ,   t 1 < t 2  , respectively. Then, if   d i f  f   N  s r     t 2   − d i f  f   N  s r     t 1   < 0  , it means that the algorithm could be trapped in a local minimum and then, the population size should be increased in a number of elements as given by Equation (18). Otherwise, if   d i f  f   N  s r     t 2   − d i f  f   N  s r     t 1   > d i f  f  t h    , it means that the differences observed could be very large and then, the algorithm should focus the search on the most promising areas, so reducing the population size in terms of Equation (18). Note that   d i f  f  t h     was experimentally defined as   3.00 %  . The previously discussed hybridization of autonomous search and the water cycle algorithm can be find in Algorithm 2.





	Algorithm 2: Hybridization of autonomous search and the water cycle algorithm.



	 [image: Applsci 09 04736 i002]






When proposing a hybrid approach is also important to analyze the time complexity of the proposal in comparison to the default approach. If we focus on the default water cycle algorithm, the time complexity has a linear relationship between the maximum number of iterations   ( T )   and the population size. Hence, the time complexity of the algorithm is bounded by   O ( k · n )  , where k is related to the number of iterations and n with the population size. Analyzing the hybrid approach, we also reach that time complexity is also bounded by a linear relationship between the number of iterations, which remains constant in both approaches, and the population size, which varies over the execution of the algorithm. Hence, theoretical complexity is not increased. As expected, execution time could differ for both approaches because of the size of the population, as occurs for two runs of the default algorithm with two different values for the population parameter. If we focus on the memory footprint, we reach that it depends on the size of the population. Hence, the usage of the main memory will be similar for both approaches, while considering the same population size.




6. Experimental Analysis


This section discusses the experimental methodology followed by conducting the experimentation, as well as a discussion about the results obtained while comparing both default and autonomous approaches.



6.1. Experimental Methodology


Two sets of instances are considered. The first set includes the usual 90 Boctor’s instances, where the usage of 16 machines and 30 parts are optimized (see Table 4). The first 50 Boctor’s instances consider a value of C equalling 2, i.e., two cells, and a value of   M  m a x    in the range 8 to 12, i.e., a maximum number of machines per cell from 8 to 12. The next 40 Boctor’s instances consider a value of C equalling 3 and a value of   M  m a x    in the range 6 to 9.



Additionally, the authors apply the algorithms to a set of more complex problems from several authors, resulting in 70 instances to be optimized. In this set of instances, the number of machines is from 5 to 40, the number of parts is from 7 to 100,   M  m a x    is from 2 to 20, and C is from 2 to 3. Additional information about these instances is found in Table 5.



The two approaches, the default water cycle algorithm and the autonomous water cycle algorithm, are applied to solve both sets of problems. The static approach is executed for several population sizes (30, 50, 80, and 100), while maintaining    N  r i v e r s   = 2  ,   T = 1200   (number of generations), and    d  m a x   = 3  , all them experimentally fixed. The autonomous approach considers the same values for T and   d  m a x   , while the population size is dynamically updated in the range 10 to 100. Note that both algorithms were implemented using Java SE 7 and all the experiments were performed on a 2.3 GHz Intel Core i3 laptop with 4 GB RAM running Windows 7.




6.2. Discussion of the Experimental Results


Table 6, Table 7, Table 8, Table 9, Table 10 and Table 11 show the results obtained by solving the Boctor’s instances and the set of more complex instances through both approaches, respectively. In these tables, it is shown the average execution time (  S t i m e  ), in seconds, and the average number of iterations needed (  I t  ) to reach the best solution found, whose fitness value is shown in the   O p t   field. Note that the best fitness value found for each instance of the problem appears in bold font to facilitate the understanding of the results.



Analyzing Table 6 for instances BP01 to BP30, the authors check that the best configuration for the default approach was    N  p o p   = 80  , getting the best solution in 13 cases, while the autonomous approach reached the best solution in 12 cases. The rest of configurations for the default approach performs significantly worse than    N  p o p   = 80  . That means that the autonomous approach could be working in a similar way than the default one with    N  p o p   = 80  , but without being specifically configured. This fact is exemplified in Figure 5, which shows the evolution of the population size over iterations for the autonomous approach. In this figure, it is observed that the algorithm has the capacity of reducing or increasing the population according to the needed of exploitation or exploration, respectively. Additionally, it is also observed that the algorithm tends to consider large populations, matching with the best configuration found for the default approach. Regarding   S t i m e  , the authors check that this value is significantly lower than when considering the autonomous approach, which could be due to the improvement in the searchability of the algorithm. Note that the linear trend observed in Figure 5 is just something anecdotal and then, it does not represent the usual behavior of the population size. That is, the algorithm adapts the population size according to the needed for exploration or exploitation.



Focusing on the results in Table 7 for instances BP31 to BP60, the authors check that the best configuration for the default approach was    N  p o p   = 100  , getting the best solution in 12 cases, while the autonomous approach reached the best solution in 10 cases. As before, the rest of configurations for the default approach performs worse than    N  p o p   = 100   and the autonomous approach tends to provide a similar behavior than the best static configuration, but without being specifically configured. Note that   S t i m e   is also better in the autonomous approach.



Regarding the results in Table 8 for instances BP61 to BP90, the authors check that there are three configurations for the default approach providing a good performance (   N  p o p   = 50  ,    N  p o p   = 80  , and    N  p o p   = 100  ), getting the best solutions in 7 cases. On the other hand, the autonomous approach provides the best solutions in 10   c a s e s  . Thus, the autonomous approach tends to perform in a similar way than the best corresponding default approach, but without being specifically configured. This situation implies that for a real case where the best configuration could not be obtained for a problem before the execution, the usage of an autonomous approach could increase the probabilities of getting a good solution.



If we focus on the results solving more complex instances in Table 9, the authors check that the best configuration for the default approach was    N  p o p   = 30  , getting the best solution in 6 cases, followed by    N  p o p   = 50   with 5 cases, while the autonomous approach obtained the best solution in 12 cases. As before, there is no general configuration for the default approach which performs well in most of the instances, and then the autonomous approach seems to be a promising way to address the problem.



Focusing on the results in Table 10, the authors check that there is a configuration for the default approach that performs well in most of the instances. This configuration is    N  p o p   = 80  , getting the best solution in 11 cases, while the autonomous approach provided the best solution in 8 cases, which is better than the rest of configurations for the default approach. That means that the autonomous approach tended to work with a similar configuration as    N  p o p   = 80  , but without being specifically programmed. Finally, in the last set of instances in Table 11, the authors check that there is no general configuration for the default approach performing well in most of the instances. As expected from the previous analysis, the autonomous approach performs better in this case.



From this analysis, the authors conclude that the performance of the autonomous water cycle algorithm is similar than the default approach when the latter was successfully configured. This fact is especially valuable because it implies that the autonomous approach could replace the original one in cases when it is not possible to identify an adequate configuration before running the algorithm. Additionally, the autonomous approach has shown a lesser execution time finding a good solution because of the improvement in the search capacity due to the usage of a dynamic population.





7. Conclusions


In this research, the authors have demonstrated a study of an alternative approach to the application of the water cycle metaheuristic algorithm. Specifically, the authors considered concepts from the autonomous search paradigm, which is a particular case of adaptive systems, for updating the population parameter of the bio-inspired algorithm. Thus, the proposed metaheuristic can control this relevant parameter during the search process.



To know the performance of the proposal, the default water cycle algorithm and the autonomous water cycle algorithm were considered for solving the manufacturing cell design problem, which is a relevant optimization problem in the industry. Thus, two sets of instances were considered, i.e., 90 classic instances proposed by Boctor and 70 more complex instances proposed by several authors. As a result of solving these instances, the authors concluded that the performance of the autonomous approach tends to be similar to the default approach when the latter was successfully configured. This conclusion is relevant because the autonomous approach could perform in a similar way than a well-configured default approach, but without being specifically configured. That means that the autonomous approach could be considered for solving optimization problems, where configurations are unknown.



As future works, it could be interesting to improve the autonomy of the algorithm by including the capacity of dynamically updating the rest of parameters in the metaheuristic. It could also be interesting to study how to provide autonomy to other metaheuristics in the literature. Additionally, the authors plan to explore the Learnheuristic approach [67], which considers concepts from the machine learning field, to improve the search capacity of the metaheuristic.
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Figure 1. Hydrological water cycle. 
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Figure 2. Transformation process. 
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Figure 3. Flow from a stream to its connecting river. 
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Figure 4. Exchange of roles between a stream and its river. 
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Figure 5. Population size evolution in the autonomous approach, while solving the instance BP10. 
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Table 1. Problem example. Machine-part matrix.
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Table 2. Problem example. Randomly generated machine-cell and part-cell matrices.
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Table 3. Problem example. Optimized machine-cell and part-cell matrices.
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Table 4. Boctor’s instances.
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Instance

	
C

	
M    max   

	
Best

	
Instance

	
C

	
M    max   

	
Best

	
Instance

	
C

	
M    max   

	
Best




	
ID

	
Known

	
ID

	
Known

	
ID

	
Known






	
BP01

	
2

	
8

	
11

	
BP11

	
2

	
9

	
11

	
BP21

	
2

	
10

	
11




	
BP02

	
2

	
8

	
7

	
BP12

	
2

	
9

	
6

	
BP22

	
2

	
10

	
4




	
BP03

	
2

	
8

	
4

	
BP13

	
2

	
9

	
4

	
BP23

	
2

	
10

	
4




	
BP04

	
2

	
8

	
14

	
BP14

	
2

	
9

	
13

	
BP24

	
2

	
10

	
13




	
BP05

	
2

	
8

	
9

	
BP15

	
2

	
9

	
6

	
BP25

	
2

	
10

	
6




	
BP06

	
2

	
8

	
5

	
BP16

	
2

	
9

	
3

	
BP26

	
2

	
10

	
3




	
BP07

	
2

	
8

	
7

	
BP17

	
2

	
9

	
4

	
BP27

	
2

	
10

	
4




	
BP08

	
2

	
8

	
13

	
BP18

	
2

	
9

	
10

	
BP28

	
2

	
10

	
8




	
BP09

	
2

	
8

	
8

	
BP19

	
2

	
9

	
8

	
BP29

	
2

	
10

	
8




	
BP10

	
2

	
8

	
8

	
BP20

	
2

	
9

	
5

	
BP30

	
2

	
10

	
5




	
BP31

	
2

	
11

	
11

	
BP41

	
2

	
12

	
11

	
BP51

	
3

	
6

	
27




	
BP32

	
2

	
11

	
3

	
BP42

	
2

	
12

	
3

	
BP52

	
3

	
6

	
7




	
BP33

	
2

	
11

	
3

	
BP43

	
2

	
12

	
1

	
BP53

	
3

	
6

	
9




	
BP34

	
2

	
11

	
13

	
BP44

	
2

	
12

	
13
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3

	
6

	
27
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2
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5
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12

	
4
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3

	
6

	
11
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2

	
11
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2
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2
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3

	
6

	
6
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2
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4
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2

	
12

	
4
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3

	
6

	
11




	
BP38

	
2

	
11

	
5

	
BP48

	
2

	
12

	
5

	
BP58

	
3

	
6

	
14
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2

	
11

	
5
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2

	
12

	
5

	
BP59

	
3

	
6

	
12
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2

	
11

	
5

	
BP50

	
2

	
12

	
5

	
BP60

	
3

	
6

	
10




	
BP61

	
3

	
7

	
18

	
BP71

	
3

	
8

	
11

	
BP81

	
3

	
9

	
11




	
BP62

	
3

	
7

	
6

	
BP72

	
3

	
8

	
6

	
BP82

	
3

	
9

	
6




	
BP63

	
3

	
7

	
4

	
BP73

	
3

	
8

	
4

	
BP83

	
3

	
9

	
4




	
BP64

	
3

	
7

	
18

	
BP74

	
3

	
8

	
14

	
BP84

	
3

	
9

	
13




	
BP65

	
3

	
7

	
8

	
BP75

	
3

	
8

	
8

	
BP85

	
3

	
9

	
6




	
BP66

	
3

	
7

	
4

	
BP76

	
3

	
8

	
4

	
BP86

	
3

	
9

	
3




	
BP67

	
3

	
7

	
5

	
BP77

	
3

	
8

	
5

	
BP87

	
3

	
9

	
4




	
BP68

	
3

	
7

	
11

	
BP78

	
3

	
8

	
11

	
BP88

	
3

	
9

	
10




	
BP69

	
3

	
7

	
12

	
BP79

	
3

	
8

	
8

	
BP89

	
3

	
9

	
8




	
BP70

	
3

	
7

	
8

	
BP80

	
3

	
8

	
8

	
BP90

	
3

	
9

	
5
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Table 5. A set of complex instances from several authors.
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Instance

	
M

	
P

	
ID

	
M    max   

	
C

	
Best

	
ID

	
M    max   

	
C

	
Best




	
(Author)

	
Know

	
Know






	
King

	
5

	
7

	
CFP01

	
3

	
2

	
0

	
CFP02

	
2

	
3

	
2




	
Waghodekar

	
5

	
7

	
CFP03

	
3

	
2

	
5

	
CFP04

	
2

	
3

	
8




	
Seifoddini

	
5

	
18

	
CFP05

	
3

	
2

	
5

	
CFP06

	
2

	
3

	
11




	
Kusiak

	
6

	
8

	
CFP07

	
3

	
2

	
2

	
CFP08

	
2

	
3

	
7




	
Kusiak

	
7

	
11

	
CFP09

	
4

	
2

	
3

	
CFP10

	
3

	
3

	
5




	
Boctor

	
7

	
11

	
CFP11

	
4

	
2

	
2

	
CFP12

	
3

	
3

	
2




	
Seifoddini

	
8

	
12

	
CFP13

	
4

	
2

	
6

	
CFP14

	
3

	
3

	
7




	
Chandrasekharan

	
8

	
20

	
CFP15

	
4

	
2

	
7

	
CFP16

	
3

	
3

	
14




	
Chandrasekharan

	
8

	
20

	
CFP17

	
4

	
2

	
28

	
CFP18

	
3

	
3

	
39




	
Mosier

	
10

	
10

	
CFP19

	
5

	
2

	
1

	
CFP20

	
4

	
3

	
0




	
Chan

	
10

	
15

	
CFP21

	
5

	
2

	
4

	
CFP22

	
4

	
3

	
0




	
Askin

	
14

	
24

	
CFP23

	
7

	
2

	
1

	
CFP24

	
5

	
3

	
2




	
Stanfel

	
14

	
24

	
CFP25

	
7

	
2

	
2

	
CFP26

	
5

	
3

	
22




	
McCormick

	
16

	
24

	
CFP27

	
8

	
2

	
16

	
CFP28

	
6

	
3

	
17




	
Srinivasan

	
16

	
30

	
CFP29

	
8

	
2

	
12

	
CFP30

	
6

	
3

	
–




	
King

	
16

	
43

	
CFP31

	
8

	
2

	
15

	
CFP32

	
6

	
3

	
–




	
Carrie

	
18

	
24

	
CFP33

	
9

	
2

	
13

	
CFP34

	
6

	
3

	
–




	
Mosier

	
20

	
20

	
CFP35

	
10

	
2

	
27

	
CFP36

	
7

	
3

	
–




	
Kumar

	
20

	
23

	
CFP37

	
10

	
2

	
25

	
CFP38

	
7

	
3

	
–




	
Carrie

	
20

	
35

	
CFP39

	
10

	
2

	
1

	
CFP40

	
7

	
3

	
–




	
Boe

	
20

	
35

	
CFP41

	
10

	
2

	
–

	
CFP42

	
7

	
3

	
–




	
Chandrasekharan

	
24

	
40

	
CFP43

	
12

	
2

	
–

	
CFP44

	
8

	
3

	
–




	
Chandrasekharan

	
24

	
40

	
CFP45

	
12

	
2

	
–

	
CFP46

	
8

	
3

	
–




	
Chandrasekharan

	
24

	
40

	
CFP47

	
12

	
2

	
–

	
CFP48

	
8

	
3

	
–




	
Chandrasekharan

	
24

	
40

	
CFP49

	
12

	
2

	
–

	
CFP50

	
8

	
3

	
–




	
Chandrasekharan

	
24

	
40

	
CFP51

	
12

	
2

	
–

	
CFP52

	
8

	
3

	
–




	
Chandrasekharan

	
24

	
40

	
CFP53

	
12

	
2

	
–

	
CFP54

	
8

	
3

	
–




	
McCormick

	
27

	
27

	
CFP55

	
14

	
2

	
–

	
CFP56

	
9

	
3

	
–




	
Carrie

	
28

	
46

	
CFP57

	
14

	
2

	
–

	
CFP58

	
10

	
3

	
–




	
Kumar

	
30

	
41

	
CFP59

	
15

	
2

	
–

	
CFP60

	
10

	
3

	
–




	
Stanfel

	
30

	
50

	
CFP61

	
15

	
2

	
–

	
CFP62

	
10

	
3

	
–




	
Stanfel

	
30

	
50

	
CFP63

	
15

	
2

	
–

	
CFP64

	
10

	
3

	
–




	
King

	
30

	
90

	
CFP65

	
18

	
2

	
–

	
CFP66

	
12

	
3

	
–




	
McCormick

	
37

	
53

	
CFP67

	
19

	
2

	
–

	
CFP68

	
13

	
3

	
–




	
Chandrasekharan

	
40

	
100

	
CFP69

	
20

	
2

	
–

	
CFP70

	
14

	
3

	
–
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Table 6. Results solving the Boctor’s instances (1/3).






Table 6. Results solving the Boctor’s instances (1/3).





	

	
Water Cycle Algorithm




	
Instance

	
Autonomous Approach

	
Default Approach




	
ID

	
     N pop  ∈  { 10 , 100 }     

	
     N pop  = 30    

	
     N pop  = 50    

	
     N pop  = 80    

	
     N pop  = 100    






	

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  




	
BP01

	
11,631

	
196.71

	
11.13

	
9372

	
157.52

	
11.81

	
11,572

	
115.16

	
11.26

	
13,097

	
169.13

	
11.00

	
13,163

	
149.52

	
11.39




	
BP02

	
11,427

	
172.71

	
11.00

	
9081

	
137.71

	
11.26

	
11,345

	
80.29

	
11.06

	
12,921

	
71.58

	
11.00

	
13,247

	
46.39

	
11.00




	
BP03

	
11,572

	
222.68

	
11.00

	
9021

	
178.55

	
11.13

	
10,329

	
126.68

	
11.00

	
12,642

	
72.00

	
11.00

	
13,281

	
90.23

	
11.00




	
BP04

	
11,594

	
128.81

	
11.16

	
8964

	
156.00

	
11.23

	
11,378

	
158.52

	
11.00

	
12,863

	
118.97

	
11.00

	
12,903

	
61.13

	
11.06




	
BP05

	
11,311

	
96.58

	
11.15

	
9102

	
146.90

	
11.65

	
10,363

	
211.39

	
11.06

	
12,759

	
154.00

	
11.10

	
13,347

	
136.61

	
11.19




	
BP06

	
11,601

	
370.87

	
7.03

	
8969

	
135.03

	
7.26

	
11,729

	
241.48

	
7.29

	
12,865

	
264.16

	
7.29

	
12,829

	
252.94

	
7.16




	
BP07

	
11,872

	
141.26

	
6.15

	
9093

	
111.71

	
6.23

	
11,377

	
96.13

	
6.29

	
13,042

	
82.84

	
6.45

	
13,171

	
65.48

	
6.45




	
BP08

	
11,646

	
199.06

	
5.10

	
8972

	
136.48

	
5.35

	
11,404

	
178.87

	
4.94

	
12,825

	
144.29

	
4.77

	
13,067

	
142.13

	
4.90




	
BP09

	
12,054

	
33.35

	
4.26

	
8836

	
86.35

	
4.74

	
11,581

	
74.97

	
3.71

	
12,548

	
35.77

	
4.19

	
13,066

	
70.52

	
4.00




	
BP10

	
11,942

	
81.61

	
3.37

	
9177

	
106.03

	
3.74

	
11,602

	
47.55

	
3.68

	
12,539

	
114.10

	
3.29

	
13,147

	
72.10

	
3.48




	
BP11

	
11,723

	
5.97

	
5.38

	
9128

	
8.77

	
4.77

	
11,900

	
3.55

	
5.52

	
12,743

	
1.16

	
5.00

	
13,292

	
0.71

	
5.48




	
BP12

	
11,606

	
73.65

	
4.39

	
9038

	
52.65

	
4.65

	
11,840

	
40.55

	
4.52

	
12,614

	
46.23

	
4.52

	
13,347

	
55.19

	
4.65




	
BP13

	
11,576

	
95.94

	
4.13

	
8941

	
178.19

	
4.45

	
11,707

	
114.23

	
4.32

	
12,596

	
65.13

	
4.13

	
13,016

	
69.84

	
4.00




	
BP14

	
11,384

	
35.26

	
3.15

	
9019

	
37.77

	
3.55

	
10,789

	
16.94

	
3.58

	
12,839

	
26.84

	
3.45

	
13,431

	
11.65

	
3.65




	
BP15

	
11,365

	
77.19

	
2.15

	
9062

	
36.19

	
2.13

	
11,062

	
31.90

	
2.26

	
12,514

	
7.19

	
2.45

	
13,168

	
49.26

	
2.06




	
BP16

	
11,449

	
121.23

	
13.15

	
8907

	
199.42

	
14.45

	
11,851

	
251.45

	
14.26

	
12,709

	
203.16

	
14.23

	
13,245

	
226.06

	
14.32




	
BP17

	
11,478

	
71.32

	
13.00

	
8996

	
53.32

	
13.00

	
10,805

	
48.23

	
13.00

	
12,801

	
23.13

	
13.00

	
13,104

	
20.71

	
13.00




	
BP18

	
11,272

	
110.13

	
13.00

	
8947

	
68.87

	
13.00

	
10,695

	
96.48

	
13.00

	
12,711

	
63.32

	
13.00

	
13,219

	
58.71

	
13.00




	
BP19

	
11,334

	
186.81

	
13.19

	
9028

	
127.32

	
13.06

	
11,087

	
140.52

	
13.13

	
12,679

	
169.61

	
13.10

	
13,037

	
85.10

	
13.00




	
BP20

	
11,416

	
269.32

	
13.10

	
9022

	
167.45

	
13.45

	
11,509

	
192.06

	
13.13

	
12,919

	
186.65

	
13.13

	
13,075

	
142.06

	
13.06




	
BP21

	
11,444

	
19.61

	
9.14

	
9040

	
3.58

	
9.97

	
11,886

	
0.81

	
9.77

	
12,992

	
4.03

	
9.65

	
12,990

	
1.97

	
9.84




	
BP22

	
11,413

	
30.97

	
7.03

	
9079

	
52.19

	
7.58

	
11,608

	
23.97

	
7.61

	
12,772

	
9.35

	
7.13

	
13,208

	
11.00

	
7.45




	
BP23

	
11,118

	
99.03

	
7.02

	
9063

	
65.39

	
7.19

	
10,607

	
23.42

	
7.13

	
12,784

	
85.42

	
7.06

	
12,870

	
119.84

	
7.13




	
BP24

	
11,397

	
25.55

	
6.27

	
9134

	
99.32

	
7.10

	
11,718

	
76.16

	
6.19

	
12,778

	
61.77

	
5.68

	
13,112

	
59.16

	
6.00




	
BP25

	
11,925

	
164.10

	
5.16

	
9103

	
76.39

	
4.87

	
10,513

	
69.39

	
4.90

	
13,099

	
140.42

	
4.65

	
13,255

	
119.94

	
4.55




	
BP26

	
11,724

	
112.58

	
5.16

	
9071

	
189.94

	
5.26

	
11,784

	
139.71

	
5.39

	
13,111

	
176.39

	
5.06

	
13,023

	
218.58

	
5.10




	
BP27

	
11,566

	
189.65

	
3.81

	
9100

	
115.06

	
4.29

	
11,956

	
83.00

	
3.71

	
12,857

	
71.61

	
4.23

	
13,149

	
65.55

	
3.48




	
BP28

	
11,605

	
95.65

	
3.81

	
9008

	
31.48

	
4.23

	
11,347

	
67.23

	
3.94

	
13,074

	
118.10

	
3.61

	
13,024

	
21.16

	
3.81




	
BP29

	
11,481

	
124.29

	
3.06

	
9042

	
193.13

	
3.13

	
10,895

	
68.65

	
3.13

	
13,116

	
48.35

	
3.06

	
13,241

	
153.68

	
3.39




	
BP30

	
11,459

	
3.39

	
3.10

	
9078

	
69.71

	
2.68

	
11,750

	
67.26

	
2.65

	
12,876

	
137.97

	
2.61

	
13,217

	
91.58

	
2.68
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Table 7. Results solving the Boctor’s instances (2/3).
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Water Cycle Algorithm




	
Instance

	
Autonomous Approach

	
Default Approach




	
ID

	
     N pop  ∈  { 10 , 100 }     

	
     N pop  = 30    

	
     N pop  = 50    

	
     N pop  = 80    

	
     N pop  = 100    






	

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  




	
BP31

	
11,191

	
262.52

	
7.09

	
8989

	
188.87

	
7.29

	
11,711

	
196.19

	
7.29

	
12,982

	
173.74

	
7.32

	
13,080

	
152.23

	
7.13




	
BP32

	
11,224

	
46.35

	
5.19

	
9063

	
80.13

	
4.77

	
10,666

	
77.32

	
4.94

	
12,875

	
67.61

	
4.58

	
13,378

	
45.16

	
4.58




	
BP33

	
11,792

	
52.06

	
4.58

	
8958

	
66.55

	
4.58

	
11,547

	
24.58

	
4.19

	
12,882

	
74.39

	
4.45

	
13,397

	
53.06

	
4.19




	
BP34

	
11,492

	
57.84

	
4.12

	
9071

	
54.32

	
5.03

	
10,804

	
72.81

	
4.65

	
13,077

	
34.03

	
4.58

	
13,438

	
42.13

	
4.39




	
BP35

	
11,456

	
53.19

	
4.11

	
9005

	
88.13

	
4.74

	
11,588

	
16.94

	
4.74

	
12,972

	
47.87

	
4.77

	
13,230

	
53.74

	
4.58




	
BP36

	
11,251

	
427.90

	
13.16

	
9071

	
336.52

	
13.48

	
10,919

	
185.87

	
13.29

	
12,983

	
187.45

	
13.23

	
13,262

	
275.68

	
13.06




	
BP37

	
11,321

	
51.35

	
10.07

	
9082

	
98.32

	
10.94

	
11,770

	
35.55

	
10.97

	
12,519

	
76.81

	
11.03

	
13,192

	
79.58

	
10.77




	
BP38

	
11,318

	
155.97

	
9.16

	
8933

	
81.16

	
9.00

	
10,856

	
124.61

	
9.68

	
12,861

	
221.61

	
8.77

	
13,195

	
117.52

	
8.81




	
BP39

	
11,571

	
126.26

	
7.52

	
8985

	
174.61

	
6.13

	
10,582

	
123.16

	
5.52

	
12,842

	
119.45

	
5.39

	
13,405

	
145.16

	
5.74




	
BP40

	
11,763

	
116.68

	
6.75

	
9115

	
142.13

	
6.26

	
11,869

	
112.06

	
5.97

	
13,096

	
55.77

	
5.58

	
13,025

	
75.97

	
5.52




	
BP41

	
11,275

	
174.68

	
9.38

	
9100

	
144.42

	
10.29

	
11,951

	
86.90

	
9.55

	
12,762

	
99.55

	
9.45

	
13,404

	
29.68

	
9.61




	
BP42

	
11,458

	
150.06

	
8.00

	
8975

	
100.55

	
8.29

	
11,709

	
180.94

	
8.39

	
12,570

	
106.16

	
8.10

	
12,975

	
113.13

	
8.00




	
BP43

	
11,436

	
77.35

	
8.27

	
9051

	
133.90

	
8.65

	
11,838

	
49.97

	
9.06

	
12,875

	
168.19

	
8.87

	
13,407

	
128.10

	
8.58




	
BP44

	
11,222

	
79.26

	
6.24

	
9051

	
151.81

	
6.87

	
11,795

	
127.74

	
6.42

	
12,710

	
136.87

	
6.71

	
13,171

	
77.26

	
6.06




	
BP45

	
11,304

	
205.94

	
6.15

	
9148

	
78.19

	
7.32

	
11,609

	
95.97

	
6.81

	
13,193

	
120.45

	
6.26

	
13,356

	
223.10

	
5.77




	
BP46

	
11,363

	
243.42

	
8.02

	
9061

	
55.45

	
9.32

	
11,550

	
90.23

	
8.84

	
12,923

	
196.61

	
8.65

	
12,970

	
106.48

	
8.65




	
BP47

	
11,168

	
235.16

	
6.16

	
9034

	
161.23

	
6.32

	
10,677

	
99.29

	
5.58

	
12,712

	
165.58

	
5.87

	
13,188

	
149.35

	
5.84




	
BP48

	
11,692

	
109.35

	
5.75

	
9079

	
139.94

	
5.81

	
10,213

	
131.94

	
5.61

	
12,891

	
60.26

	
5.61

	
13,326

	
36.03

	
5.71




	
BP49

	
11,552

	
121.35

	
5.47

	
9038

	
96.77

	
7.06

	
10,171

	
196.90

	
6.39

	
12,762

	
123.42

	
5.77

	
12,924

	
173.68

	
5.39




	
BP50

	
11,471

	
97.00

	
5.59

	
9111

	
73.61

	
6.42

	
11,449

	
139.06

	
5.71

	
12,618

	
76.00

	
5.84

	
13,044

	
82.23

	
6.10




	
BP51

	
11,771

	
39.16

	
28.00

	
11,966

	
21.03

	
31.26

	
10,418

	
44.68

	
30.52

	
13,079

	
39.19

	
30.87

	
13,604

	
17.84

	
23.71




	
BP52

	
11,506

	
0.23

	
22.18

	
11,516

	
0.98

	
23.32

	
10,305

	
2.74

	
22.94

	
13,249

	
56.39

	
22.74

	
13,531

	
0.03

	
22.10




	
BP53

	
12,134

	
239.48

	
15.12

	
11,932

	
185.84

	
14.00

	
10,860

	
236.35

	
14.61

	
13,095

	
233.81

	
13.84

	
13,483

	
226.90

	
13.81




	
BP54

	
11,653

	
165.26

	
14.12

	
11,880

	
168.32

	
13.00

	
11,000

	
209.32

	
13.26

	
13,482

	
158.58

	
13.45

	
13,677

	
159.45

	
15.26




	
BP55

	
12,182

	
57.52

	
14.29

	
11,780

	
92.74

	
14.10

	
10,664

	
96.06

	
12.97

	
13,224

	
29.71

	
11.84

	
13,883

	
22.58

	
11.32




	
BP56

	
11,777

	
64.48

	
12.10

	
11,683

	
27.32

	
13.81

	
11,313

	
43.58

	
9.13

	
13,085

	
132.39

	
10.55

	
13,605

	
72.84

	
11.48




	
BP57

	
12,008

	
13.23

	
11.23

	
11,634

	
30.55

	
11.61

	
11,126

	
0.10

	
9.32

	
13,129

	
57.81

	
10.16

	
13,547

	
0.00

	
10.26




	
BP58

	
12,096

	
161.23

	
8.14

	
11,741

	
114.45

	
9.90

	
11,314

	
48.03

	
8.29

	
13,197

	
75.71

	
8.35

	
13,777

	
163.19

	
8.90




	
BP59

	
11,767

	
11.45

	
13.07

	
12,015

	
41.19

	
12.65

	
11,006

	
5.90

	
12.16

	
13,566

	
134.52

	
11.87

	
13,846

	
22.16

	
9.29




	
BP60

	
11,662

	
9.42

	
10.26

	
11,772

	
65.58

	
9.58

	
10,997

	
28.42

	
9.06

	
13,290

	
3.87

	
9.19

	
13,670

	
1.58

	
9.58
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Table 8. Results solving the Boctor’s instances (3/3).
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Water Cycle Algorithm




	
Instance

	
Autonomous Approach

	
Default Approach




	
ID

	
     N pop  ∈  { 10 , 100 }     

	
     N pop  = 30    

	
     N pop  = 50    

	
     N pop  = 80    

	
     N pop  = 100    






	

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  




	
BP61

	
11,506

	
17.77

	
7.19

	
11,474

	
0.27

	
7.81

	
10,972

	
80.61

	
6.13

	
13,279

	
97.03

	
5.81

	
13,815

	
17.13

	
6.29




	
BP62

	
11,726

	
44.61

	
5.31

	
11,784

	
85.97

	
7.06

	
10,870

	
78.74

	
5.00

	
13,466

	
31.55

	
5.81

	
13,957

	
60.52

	
6.00




	
BP63

	
11,636

	
152.97

	
27.34

	
11,661

	
148.00

	
27.90

	
11,335

	
9.61

	
27.58

	
13,338

	
113.97

	
27.58

	
13,835

	
85.55

	
21.52




	
BP64

	
11,752

	
96.84

	
14.23

	
11,425

	
135.97

	
20.68

	
11,282

	
141.26

	
20.45

	
13,343

	
53.71

	
20.58

	
13,856

	
115.90

	
21.29




	
BP65

	
11,670

	
70.65

	
14.84

	
11,657

	
40.74

	
18.03

	
11,050

	
67.68

	
16.35

	
13,074

	
98.87

	
15.81

	
13,787

	
81.74

	
17.45




	
BP66

	
11,539

	
206.23

	
14.34

	
11,679

	
180.13

	
16.65

	
11,192

	
197.90

	
14.65

	
13,373

	
265.32

	
14.23

	
13,781

	
150.58

	
14.58




	
BP67

	
11,872

	
162.65

	
11.21

	
12,170

	
132.87

	
14.10

	
10,912

	
71.58

	
13.32

	
13,983

	
155.06

	
12.87

	
13,475

	
141.35

	
12.74




	
BP68

	
11,871

	
42.45

	
12.00

	
11,712

	
9.32

	
14.81

	
11,054

	
60.97

	
12.03

	
13,314

	
106.90

	
10.35

	
13,763

	
59.97

	
12.03




	
BP69

	
11,827

	
35.13

	
11.45

	
11,852

	
11.77

	
11.16

	
10,909

	
53.42

	
9.71

	
13,184

	
17.55

	
10.06

	
13,925

	
57.26

	
11.06




	
BP70

	
11,901

	
30.65

	
10.77

	
12,290

	
18.65

	
11.84

	
11,455

	
76.35

	
9.52

	
13,020

	
62.65

	
9.55

	
13,821

	
48.97

	
9.26




	
BP71

	
11,989

	
72.90

	
9.12

	
11,907

	
80.71

	
9.61

	
10,874

	
51.94

	
8.87

	
13,427

	
77.52

	
9.35

	
13,609

	
90.61

	
7.19




	
BP72

	
11,639

	
32.29

	
9.01

	
11,968

	
8.35

	
8.94

	
10,678

	
19.52

	
8.45

	
13,562

	
41.71

	
8.74

	
13,774

	
50.06

	
7.52




	
BP73

	
11,596

	
39.52

	
7.13

	
12,019

	
7.65

	
9.35

	
10,812

	
0.52

	
7.45

	
13,443

	
32.68

	
8.00

	
13,793

	
7.48

	
7.06




	
BP74

	
11,509

	
34.65

	
7.87

	
11,793

	
56.74

	
6.97

	
10,951

	
6.71

	
6.52

	
13,496

	
23.42

	
6.23

	
13,652

	
45.97

	
6.94




	
BP75

	
11,827

	
0.46

	
10.10

	
11,648

	
55.00

	
17.81

	
11,041

	
65.06

	
15.13

	
13,420

	
84.13

	
14.26

	
13,600

	
28.87

	
10.48




	
BP76

	
11,796

	
8.68

	
8.34

	
11,476

	
7.61

	
12.42

	
11,097

	
5.94

	
9.81

	
13,104

	
58.45

	
9.42

	
13,537

	
27.45

	
11.87




	
BP77

	
11,860

	
15.71

	
10.35

	
11,527

	
1.39

	
10.68

	
10,473

	
0.29

	
9.06

	
13,456

	
22.48

	
9.06

	
13,591

	
42.71

	
9.74




	
BP78

	
11,747

	
128.97

	
7.47

	
11,564

	
22.32

	
9.52

	
11,200

	
25.29

	
7.61

	
13,210

	
20.19

	
5.65

	
13,690

	
78.48

	
8.35




	
BP79

	
11,810

	
183.87

	
13.65

	
11,531

	
91.84

	
20.29

	
10,865

	
3.68

	
18.35

	
13,131

	
129.42

	
17.90

	
13,919

	
121.03

	
16.32




	
BP80

	
11,778

	
45.77

	
16.37

	
11,592

	
2.94

	
18.23

	
11,170

	
39.84

	
16.29

	
13,220

	
42.32

	
17.06

	
13,919

	
48.97

	
16.90




	
BP81

	
11,493

	
101.68

	
14.04

	
11,600

	
64.87

	
14.19

	
11,368

	
55.00

	
14.65

	
13,353

	
85.00

	
14.71

	
13,568

	
73.81

	
15.61




	
BP82

	
11,569

	
92.13

	
14.65

	
11,539

	
68.97

	
13.45

	
11,236

	
56.52

	
12.94

	
13,231

	
57.87

	
13.68

	
13,859

	
42.35

	
14.58




	
BP83

	
11,564

	
104.06

	
11.26

	
11,432

	
38.19

	
19.61

	
10,682

	
60.87

	
16.19

	
13,383

	
74.19

	
16.77

	
13,746

	
110.13

	
15.03




	
BP84

	
11,235

	
44.87

	
13.17

	
11,542

	
6.97

	
18.13

	
10,737

	
44.58

	
16.03

	
13,639

	
54.48

	
15.26

	
13,623

	
16.26

	
16.06




	
BP85

	
11,469

	
29.19

	
11.18

	
11,673

	
60.29

	
14.45

	
10,784

	
21.65

	
10.52

	
13,262

	
36.65

	
11.65

	
13,756

	
128.87

	
12.87




	
BP86

	
11,654

	
110.94

	
12.32

	
11,560

	
67.19

	
13.45

	
11,154

	
97.52

	
11.23

	
13,619

	
128.48

	
9.35

	
13,749

	
69.77

	
11.10




	
BP87

	
11,354

	
9.35

	
14.35

	
11,845

	
68.26

	
16.84

	
10,779

	
5.19

	
15.45

	
13,316

	
63.61

	
15.03

	
13,899

	
23.45

	
12.35




	
BP88

	
11,278

	
16.06

	
15.26

	
11,487

	
31.13

	
16.13

	
10,887

	
16.35

	
12.77

	
13,153

	
26.48

	
12.81

	
13,227

	
27.23

	
13.19




	
BP89

	
11,455

	
35.87

	
11.87

	
11,888

	
13.71

	
12.81

	
11,057

	
83.87

	
10.68

	
13,220

	
58.65

	
11.13

	
13,803

	
89.71

	
10.45




	
BP90

	
11,394

	
54.77

	
8.24

	
11,714

	
45.39

	
10.45

	
10,895

	
89.32

	
10.32

	
13,028

	
149.81

	
8.26

	
13,914

	
75.42

	
9.71
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Table 9. Results solving complex instances (1/3).
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Water Cycle Algorithm




	
Instance

	
Autonomous Approach

	
Default Approach




	
ID

	
     N pop  ∈  { 10 , 100 }     

	
     N pop  = 30    

	
     N pop  = 50    

	
     N pop  = 80    

	
     N pop  = 100    






	

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  




	
CF01

	
4463

	
20.09

	
0.00

	
4890

	
30.20

	
0.00

	
5583

	
41.42

	
0.00

	
5210

	
22.02

	
0.00

	
5564

	
41.23

	
0.00




	
CF02

	
4100

	
10.03

	
5.00

	
4982

	
40.12

	
5.00

	
4677

	
34.56

	
5.00

	
5267

	
34.89

	
5.00

	
6045

	
34.23

	
5.00




	
CF03

	
4562

	
1.05

	
5.00

	
4729

	
31.55

	
5.00

	
5129

	
102.29

	
5.00

	
5241

	
45.99

	
5.00

	
6680

	
45.45

	
5.00




	
CF04

	
4140

	
19.08

	
2.00

	
4999

	
129.09

	
2.00

	
5577

	
234.55

	
2.30

	
5578

	
182.33

	
2.45

	
6137

	
192.44

	
2.00




	
CF05

	
4321

	
7.08

	
2.00

	
4762

	
29.42

	
3.55

	
4579

	
56.89

	
3.49

	
5023

	
197.38

	
3.00

	
5805

	
43.23

	
3.56




	
CF06

	
4749

	
20.50

	
3.12

	
4534

	
12.23

	
2.32

	
5124

	
12.45

	
2.45

	
5310

	
38.03

	
2.50

	
6136

	
87.93

	
2.00




	
CF07

	
4200

	
58.98

	
6.07

	
4700

	
79.20

	
6.33

	
4894

	
0.02

	
6.09

	
5272

	
56.10

	
6.33

	
6179

	
31.56

	
6.34




	
CF08

	
4890

	
63.88

	
9.65

	
4124

	
145.67

	
8.23

	
5200

	
56.12

	
7.02

	
5161

	
52.48

	
8.23

	
4271

	
21.68

	
8.34




	
CF09

	
4387

	
1.80

	
29.68

	
4019

	
88.76

	
30.34

	
4679

	
87.92

	
29.20

	
5124

	
4.19

	
33.12

	
6012

	
56.23

	
29.23




	
CF10

	
4662

	
107.07

	
1.87

	
4589

	
56.78

	
2.44

	
5579

	
23.12

	
1.28

	
5812

	
46.79

	
3.66

	
5967

	
87.34

	
1.98




	
CF11

	
4136

	
72.00

	
6.71

	
4692

	
46.89

	
4.00

	
5489

	
98.12

	
4.12

	
5681

	
17.23

	
4.77

	
6126

	
69.34

	
4.12




	
CF12

	
4123

	
34.70

	
2.01

	
4532

	
109.23

	
1.92

	
5313

	
76.12

	
4.21

	
5125

	
168.78

	
2.45

	
6175

	
35.30

	
4.12




	
CF13

	
4980

	
186.07

	
2.67

	
4523

	
37.34

	
3.44

	
5092

	
51.22

	
3.10

	
5239

	
78.99

	
2.00

	
6376

	
45.23

	
3.12




	
CF14

	
4215

	
123.90

	
16.16

	
4423

	
35.46

	
18.23

	
5333

	
32.56

	
16.22

	
4569

	
35.67

	
17.34

	
6125

	
76.35

	
17.33




	
CF15

	
4578

	
31.85

	
12.07

	
4278

	
78.54

	
16.23

	
4578

	
87.99

	
12.45

	
4172

	
92.34

	
12.56

	
5569

	
53.34

	
12.46




	
CF16

	
4567

	
123.98

	
15.12

	
4982

	
77.77

	
17.44

	
4572

	
182.23

	
15.29

	
5374

	
45.67

	
19.34

	
6162

	
90.63

	
15.89




	
CF17

	
4991

	
12.45

	
14.67

	
4729

	
67.97

	
13.45

	
4793

	
124.56

	
17.23

	
5517

	
35.46

	
13.45

	
4579

	
87.34

	
14.22




	
CF18

	
4235

	
128.09

	
27.99

	
4934

	
56.78

	
29.03

	
4346

	
98.23

	
31.23

	
5771

	
68.89

	
29.34

	
5764

	
54.23

	
28.45




	
CF19

	
4215

	
201.12

	
25.91

	
4579

	
76.23

	
28.33

	
5141

	
41.23

	
26.34

	
5279

	
23.78

	
26.34

	
6579

	
51.24

	
26.34




	
CF20

	
4721

	
69.08

	
2.02

	
4689

	
34.87

	
2.34

	
5025

	
22.45

	
3.12

	
6011

	
94.23

	
2.56

	
6189

	
74.67

	
2.34




	
CF21

	
4676

	
41.00

	
22.42

	
4689

	
43.12

	
25.00

	
4578

	
77.24

	
22.24

	
5102

	
144.22

	
21.34

	
5834

	
13.68

	
22.24




	
CF22

	
4666

	
67.67

	
1.77

	
5325

	
43.65

	
2.32

	
4557

	
98.23

	
0.23

	
5129

	
46.38

	
4.12

	
6122

	
56.34

	
1.02




	
CF23

	
4733

	
38.92

	
6.84

	
4835

	
53.75

	
6.99

	
5034

	
129.18

	
9.22

	
5808

	
67.45

	
7.23

	
6123

	
124.68

	
7.34




	
CF24

	
4935

	
125.88

	
10.94

	
4912

	
45.78

	
11.29

	
5178

	
34.22

	
10.22

	
5198

	
66.94

	
9.34

	
6632

	
83.49

	
9.84




	
CF25

	
4235

	
56.72

	
19.86

	
4523

	
12.97

	
23.44

	
4689

	
56.89

	
21.32

	
6986

	
87.23

	
19.34

	
4829

	
34.67

	
22.23




	
CF26

	
4568

	
80.91

	
22.21

	
4867

	
67.68

	
23.44

	
4333

	
81.28

	
24.55

	
6567

	
64.23

	
23.68

	
5976

	
22.67

	
23.24




	
CF27

	
4377

	
132.01

	
22.42

	
4667

	
78.23

	
22.09

	
5129

	
86.23

	
26.23

	
6118

	
51.01

	
22.45

	
6136

	
163.49

	
23.56




	
CF28

	
4213

	
100.82

	
32.05

	
4899

	
45.23

	
32.99

	
5199

	
23.24

	
33.22

	
5292

	
30.45

	
34.56

	
6378

	
42.56

	
33.34




	
CF29

	
4912

	
31.50

	
37.35

	
4567

	
97.23

	
38.12

	
5275

	
45.23

	
37.23

	
5123

	
50.20

	
39.34

	
4562

	
78.93

	
37.34




	
CF30

	
4762

	
66.78

	
5.94

	
4987

	
156.34

	
6.01

	
5331

	
121.47

	
5.12

	
6399

	
34.85

	
5.68

	
6565

	
30.01

	
6.23
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Table 10. Results solving complex instances (2/3).
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Water Cycle Algorithm




	
Instance

	
Autonomous Approach

	
Default Approach




	
ID

	
     N pop  ∈  { 10 , 100 }     

	
     N pop  = 30    

	
     N pop  = 50    

	
     N pop  = 80    

	
     N pop  = 100    






	

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  




	
CF31

	
4589

	
81.44

	
7.48

	
5744

	
232.67

	
7.09

	
4123

	
87.27

	
8.12

	
5509

	
156.56

	
8.99

	
6195

	
63.56

	
7.97




	
CF32

	
4412

	
146.34

	
25.32

	
4935

	
57.68

	
26.97

	
5124

	
56.92

	
25.22

	
5982

	
49.03

	
25.23

	
6512

	
78.46

	
24.21




	
CF33

	
4567

	
98.92

	
40.77

	
5567

	
23.32

	
40.01

	
5794

	
72.08

	
40.23

	
5612

	
78.02

	
41.57

	
6391

	
56.23

	
42.23




	
CF34

	
4567

	
86.12

	
218.04

	
4924

	
12.34

	
232.12

	
4568

	
82.96

	
231.59

	
5857

	
57.89

	
217.67

	
5893

	
98.32

	
221.15




	
CF35

	
4912

	
40.71

	
20.55

	
4678

	
122.23

	
14.23

	
4512

	
12.39

	
13.55

	
5662

	
83.46

	
12.56

	
5704

	
112.34

	
14.45




	
CF36

	
4809

	
50.34

	
2.00

	
4579

	
61.92

	
2.00

	
5123

	
53.23

	
2.00

	
5823

	
45.23

	
2.00

	
6723

	
67.23

	
2.00




	
CF37

	
4579

	
132.45

	
8.00

	
4986

	
48.13

	
8.34

	
4982

	
34.23

	
8.00

	
5902

	
53.34

	
8.00

	
5723

	
87.12

	
8.00




	
CF38

	
4790

	
98.34

	
11.23

	
5230

	
51.09

	
11.23

	
5234

	
192.43

	
11.00

	
6623

	
98.12

	
11.00

	
6234

	
32.47

	
11.00




	
CF39

	
4902

	
55.10

	
7.00

	
4123

	
69.23

	
7.00

	
5912

	
30.34

	
7.00

	
5091

	
48.23

	
7.00

	
6871

	
54.12

	
7.00




	
CF40

	
4891

	
41.34

	
5.00

	
4926

	
66.34

	
5.00

	
4827

	
56.43

	
5.00

	
6123

	
77.34

	
5.00

	
6123

	
76.12

	
5.00




	
CF41

	
4891

	
64.12

	
2.00

	
5209

	
82.12

	
2.00

	
5782

	
58.23

	
2.23

	
5092

	
79.57

	
2.00

	
5983

	
12.68

	
2.00




	
CF42

	
4981

	
77.23

	
7.00

	
5500

	
56.19

	
7.00

	
5123

	
73.23

	
7.00

	
5397

	
52.12

	
7.00

	
6612

	
65.69

	
7.00




	
CF43

	
4520

	
56.56

	
14.00

	
4987

	
57.23

	
15.23

	
4982

	
80.23

	
14.00

	
6660

	
31.56

	
16.20

	
5981

	
77.23

	
14.00




	
CF44

	
4532

	
52.45

	
40.23

	
4562

	
55.23

	
42.23

	
4672

	
51.23

	
41.70

	
5234

	
12.57

	
45.34

	
6981

	
76.35

	
41.23




	
CF45

	
4873

	
64.98

	
2.15

	
4982

	
124.59

	
2.23

	
5088

	
22.45

	
1.23

	
5098

	
18.47

	
4.35

	
6912

	
91.34

	
2.34




	
CF46

	
4762

	
91.23

	
0.23

	
4309

	
77.34

	
0.23

	
5091

	
65.78

	
1.10

	
5230

	
57.21

	
1.23

	
6125

	
88.31

	
2.34




	
CF47

	
4623

	
102.34

	
3.69

	
4986

	
76.23

	
3.13

	
5982

	
74.23

	
2.20

	
5809

	
87.34

	
4.12

	
6898

	
10.34

	
3.34




	
CF48

	
4981

	
73.34

	
3.65

	
5210

	
54.33

	
2.34

	
4562

	
128.23

	
3.12

	
5729

	
73.23

	
2.34

	
5354

	
34.57

	
3.12




	
CF49

	
4871

	
57.09

	
25.69

	
4975

	
58.12

	
22.35

	
4123

	
12.34

	
23.40

	
6678

	
10.23

	
24.34

	
4981

	
64.46

	
22.34




	
CF50

	
4812

	
53.89

	
17.28

	
4987

	
61.23

	
20.23

	
5722

	
29.23

	
18.23

	
5982

	
45.24

	
17.35

	
6198

	
264.12

	
18.23




	
CF51

	
4718

	
93.56

	
22.23

	
4198

	
57.12

	
24.56

	
4982

	
77.34

	
23.40

	
5091

	
91.23

	
23.46

	
6987

	
136.34

	
22.35




	
CF52

	
4412

	
53.23

	
19.23

	
5012

	
105.23

	
18.23

	
5987

	
52.34

	
20.23

	
5890

	
31.45

	
20.43

	
5871

	
38.23

	
20.34




	
CF53

	
4092

	
67.75

	
41.89

	
4876

	
72.23

	
46.12

	
5512

	
77.35

	
41.23

	
5789

	
67.23

	
45.35

	
5123

	
65.25

	
42.34




	
CF54

	
4902

	
73.98

	
34.47

	
4764

	
52.31

	
35.67

	
5423

	
93.34

	
36.98

	
6123

	
54.12

	
36.34

	
6712

	
59.21

	
36.45




	
CF55

	
4782

	
53.46

	
18.98

	
5562

	
76.23

	
19.32

	
5982

	
192.34

	
17.98

	
5092

	
69.23

	
16.87

	
6258

	
54.13

	
15.56




	
CF56

	
4782

	
94.12

	
35.79

	
4357

	
98.23

	
36.89

	
5917

	
77.23

	
36.98

	
5689

	
77.20

	
35.12

	
6289

	
72.46

	
36.45




	
CF57

	
4757

	
42.10

	
4.56

	
4189

	
57.23

	
5.23

	
4728

	
88.34

	
6.98

	
6234

	
82.23

	
4.12

	
6012

	
38.57

	
4.48




	
CF58

	
4578

	
21.85

	
8.69

	
5762

	
133.23

	
9.23

	
5982

	
79.23

	
9.54

	
5819

	
78.35

	
8.23

	
5982

	
48.23

	
9.86




	
CF59

	
4684

	
12.87

	
14.58

	
4527

	
72.34

	
14.55

	
5123

	
67.34

	
14.87

	
5123

	
31.34

	
15.12

	
6230

	
69.12

	
14.97




	
CF60

	
4898

	
45.82

	
33.87

	
5342

	
45.12

	
35.43

	
5335

	
45.01

	
33.52

	
6123

	
23.12

	
32.24

	
6498

	
61.68

	
33.56
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Table 11. Results solving complex instances (3/3).
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Water Cycle Algorithm




	
Instance

	
Autonomous Approach

	
Default Approach




	
ID

	
     N pop  ∈  { 10 , 100 }     

	
     N pop  = 30    

	
     N pop  = 50    

	
     N pop  = 80    

	
     N pop  = 100    






	

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  

	
  Stime  

	
  It  

	
  Opt  




	
CF61

	
4787

	
67.34

	
35.01

	
4581

	
98.23

	
34.56

	
5512

	
53.23

	
38.34

	
6987

	
19.23

	
36.12

	
6213

	
45.12

	
35.34




	
CF62

	
4899

	
122.56

	
32.58

	
4198

	
34.23

	
32.45

	
5982

	
31.24

	
37.23

	
6349

	
149.23

	
32.89

	
6098

	
59.23

	
33.56




	
CF63

	
4700

	
83.57

	
71.69

	
5929

	
67.60

	
72.35

	
4627

	
45.12

	
78.23

	
5234

	
98.34

	
71.23

	
6928

	
49.12

	
71.35




	
CF64

	
4698

	
75.29

	
53.68

	
4721

	
56.78

	
55.32

	
4982

	
56.23

	
59.23

	
4012

	
71.23

	
54.12

	
6340

	
111.35

	
54.34




	
CF65

	
4677

	
87.31

	
11.67

	
5892

	
77.89

	
11.01

	
4635

	
85.30

	
17.23

	
5821

	
161.24

	
10.23

	
6329

	
51.57

	
10.23




	
CF66

	
4986

	
52.58

	
15.56

	
4912

	
56.78

	
15.57

	
5872

	
34.67

	
18.33

	
5898

	
104.23

	
15.23

	
6213

	
71.23

	
14.23




	
CF67

	
4872

	
81.23

	
43.99

	
4719

	
43.32

	
47.45

	
4983

	
25.67

	
49.12

	
6318

	
76.34

	
57.23

	
6391

	
33.47

	
46.89




	
CF68

	
4798

	
75.23

	
46.46

	
4689

	
76.34

	
57.34

	
4982

	
92.34

	
51.23

	
5981

	
207.23

	
50.47

	
6305

	
55.58

	
48.23




	
CF69

	
4821

	
65.12

	
318.08

	
4986

	
87.34

	
331.32

	
5093

	
56.45

	
367.23

	
6102

	
87.23

	
320.23

	
6982

	
97.24

	
318.54




	
CF70

	
4986

	
54.67

	
43.65

	
4700

	
120.30

	
47.77

	
5928

	
134.12

	
46.23

	
6124

	
41.23

	
41.23

	
6469

	
87.23

	
41.67
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