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Abstract: In this paper, we present a model that is based on near–far-field charged bubble formation
and transportation in an underlying dielectric liquid. The bubbles are controlled by the dielectric
liquid, which is influenced by an external electrical field. This allows us to control the shape and
volume of the bubbles in the dielectric liquid, such as water. These simulations are important to close
the gap between the formation of charged bubbles, which is a fine-scale model and their transport in
the underlying liquid, which is a coarse-scale model. In the fine-scale model, the formation of the
bubbles and their influence of the electric-stress is approached by a near-field model, which is done
by the Young–Laplace equation plus additional force-terms. In the coarse-scale model, the transport
of the bubbles is approached by a far-field model, which is done with a convection-diffusion equation.
The models are coupled with a bubble in cell scheme, which interpolates between the fine and coarse
scales of the different models. Such a scale-dependent approach allows us to apply optimal numerical
solvers for the different fine and coarse time and space scales and help to foresee the fluctuations of
the charged bubbles in the E-field. We discuss the modeling approaches, numerical solver methods
and we present the numerical results for the near–far-field bubble formation and transport model in
a dielectric carrier fluid.

Keywords: bubble formation; dielectric fluids; electrical field; scale-dependent models; near–far-field
approach; Young–Laplace equation; convection-diffusion equation; level-set method; coupling
analysis

MSC: 35K25; 35K20; 74S10; 70G65

1. Introduction

We are motivated to model bubble formation and transport in dielectric liquids, which are applied
in controlled production of gas/plasma bubbles in chemical, petrochemical, plasma or biomedical
processes, see [1–4].

The benefit of additional particles or charged-bubbles in the dielectric carrier fluids are that they
can influence their fluid behavior or have additional reactions in the fluid, see [5] or [6]. Therefore,
the carrier or background liquid can be influenced in the following directions:

• The charged bubbles can be used as plasma bubbles and can be discharged, such applications can
then be used to clean a polluted fluid, see [7].

• The charged bubbles can influence the flow of the underlying liquid, such applications can then
be used in designing chemical reactors, see [6,8].
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In our model, we concentrate on the first applications, we model the influence of the bubbles
in a dielectric carrier fluid, such as water. Our modeling approach is based on a decomposition into
scale-dependent models:

• Formation of bubbles (near-field model): the fast-fluctuating bubbles are formed with a near-field
model and are influenced by the electric-stress related to the dielectric liquid, [9–11].

• Transport of bubbles (far-field model): the slow-fluctuating bubbles are transported with a far-field
model, [12,13].

Here, we can assume that the fast-fluctuations of the formations and the slow-fluctuations of
the transport of the bubble in the liquid carrier fluid has a clear spectral gap, which can be overcome
with interpolating (e.g., spline-functions) between the different models, see [14]. Therefore, we apply
a so-called modified particle in cell (PIC) method, see [14] and interpolate between the fine-model
(microscopic model) and the coarse-model (macroscopic model). The benefit of such a decomposition
allows us to simulate the two separate models independently, while we only couple them with the
interpolation functions, see [15]

We also deal with numerical methods that take into account the different scale-dependent model.
The formation process of bubbles are done with a microscopic model, the most standard solvers are
done in the following:

• Fast ordinary differential equation (ODE) solvers for so-called bubble shape models, which are
based on Young–Laplace equations: We apply the Young–Laplace equations, which are a system
of ODEs. The benefit is that the solvers are very fast, while the drawback is that we are restricted
to quasi-static processes, see [11].

• Coupled partial differential equation (PDE) solvers for so-called free surface models, which are
based on Navier-Stokes equations with kinematic boundary condition. Here, we have to solve a
free surface problem with PDE solvers. The benefit is that we can apply the model to instationary
processes, the drawback is that we need to solve a system of PDEs, which is more time consuming,
see [16].

The macroscopic model is done with a transport model based on an advection equation, where
the most standard solver approaches are:

• Volume-of-fluid (VOF) methods: the VOF function presents the fraction of the volume in the grid
cells, which is occupied by one of the two fluids. This is modeled with an advection equation.
The benefit of the methods are mass conservation, the drawback of the methods are the problem
to solve the sharp change in interface-region, see [17,18].

• Level-set (LS) methods: the level set function presents a signed distance, which is positive on
one fluid side and negative on the other fluid side, see [13]. It is also modeled with the same
advection equation. The benefit of the methods is that we can solve if with fast high-speed
flow methods, such as total variational diminishing (TVD) or essentially non-oscillatory (ENO)
methods, see [19,20]. The drawback is the lack of mass conservation.

Combining the LS and VOF methods can also provide many benefits, although they are delicate to
implement, see [18]. Here, we concentrate on the fast LS methods and take into account that we have to
reinitialize or apply only small distance of the transport to reduce the mass-conservation error, see [18].

Such decomposition allows us to choose the optimal discretization and solver methods, which
means that we can apply fast ODE-solvers for the near-field model and fast level-set methods for the
far-field model.

The rest of this paper is organized as follows. The modeling problems and their solvers are
presented in Section 2. The near-field solver is discussed in Section 3. In Section 4, we discuss the
far-field Solver. The coupling of the models are discussed in Section 5 The numerical experiments are
presented in Section 6. In Section 7, we summarize our results.
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2. Mathematical Model

Our mathematical model is based on a laboratory experiment, where gas bubbles are formed
in a liquid and are transported after the formation process, see the plasma-experiment in [2].
The experiment is given as a thin capillary, where the gas bubbles are streamed in an homogeneous
form and transported in a tube that is filled with liquid, see the Figure 1.

outflowing gas

Capillary with

Tube with water

Bubble transport

Bubble formation

r−axis

(2d  profile)
(2d  profile)

z−axis

Figure 1. Sketch of our laboratory experiment (capillary with gaseous outflow into a tube filled with water).

We consider the profile of the tube and deal with the simplified approach of the experiment,
which is given in Figure 2.

c 1,0 c 2,0
c 3,0 ...

i

tt 0
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Tube with water and periodical gas−inflows

v

(stable bubble sources)

Time−delay after the periodical inflows

c

Figure 2. 2D model-reactor and inflow-conditions of the bubbles, in the upper figure, we present the
2D model of the reactor (v is the velocity field, c1,0, . . . , cM,0 are the concentrations of the bubble inflow
sources), in the lower figure, we present the concentration of the i-th gas bubble with periodically
inflow (ci,0 is the i-th concentration of the bubble inflow source, t is the time, t0 is the initial time, ∆t1

is the time-interval, where the source is switched on and ∆t2 is the time-interval, where the source is
switched off).
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Furthermore, experiments are carried out in conjunction with electro-magnetic fields to influence
the bubble formation and transport, see [7,10]. Here, the electric field is associated with the bubble
oscillations, such as [kHz]-frequency of the E-field is related to [mm]-sized bubbles, see [10]. Based on
the deforming and oscillation of the bubbles, while controlled with the frequency of the high voltage
electrical field, we could achieve a shape, which is strategically more optimal (e.g., a small ellipsoid),
see [21,22], to enhance the E-field in the bubble. Then, the plasma ignition within the bubble gas can
be done at reduced voltage, see [21] or [23]. These experiments are based on the following Figure 3,
see also [7].

HV

pulse

(non−influenced

bubble−shapes)

c i,0 c i,0

with E−fieldwithout E−field

bubble−shapes)

(influenced

Bubbling reactors

Figure 3. Bubbling reactor: (left) we have non-influenced bubbles; (right) we have influenced bubbles
based on an external high-voltage E-field.

Based on the decoupling of formation and transport, while we assume that the formation process
is not influenced by the transport, see [24], we deal with two different decoupled models:

• Near-field approach, which is based on a Young–Laplace equation, see [11], where we have a
static shape after the formation of the bubbles.

• Far-field approach, which is based on a convection-diffusion equation, see [25], where we have a
rewriting into a level-set equation, such that we could transport the static bubble shapes, see [26]
and [13].

The modelling approach is given in the following Figure 4.

Initialisation of the bubble

Interpolation of the

Near−field modell

(formation of the bubbles with

additional electric stress)

Far−field modell

(transport of the bubbles

in the dielectrical fluid)

Interpolation of the

fine scales to the

coarse scales
coarse scales to the

fine scales

Macroscopic model

Microscopic model

Figure 4. Modelling approach of the near–far-field coupling.

In the following, we discuss the different models.
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2.1. Electrical-Field Approach for the Near-Field Model

In the first step, we model the influence of the electrical-field in the near-field model.
Here, we are able to use the additional influence of the electrical field to the dielectric liquid,

which can be modeled with the Maxwell stress tensor, see [27].
The electrical-field influences the normal stress or pressure pE of the underlying liquid, which is

given as:

pE = (T n) · n, (1)

and n is the unit normal vector to the surface. The Maxwell-stress tensor T is given as:

T = εE⊗ E− 1
2

ε(E · E)I, (2)

where E is the electrical field and ε is the permittivity.
In the following, we assume a uniform electric field E0 and the relation of the normal stress or

pressure of the bubble suspended in a dielectric liquid can be calculated with Equation (1) and can be
given by, see [27]:

pe ≈
9
8

ε|E0|2 sin2(Θ), (3)

where Θ is the angle of the elevation to the plane and we have a maximum with Θ = π/2, which means
in the equatorial plane.

The additional pressure term based on the electrical field is used in the near-field model in the
following Section 2.2.

2.2. Near-Field Model

The near-field model is discussed with respect to the formation of a drop or bubble, see [11,16].
The basic modeling idea is based on the so-called Young–Laplace equation, see [28]. We assumed

to have quasi-static cases, while we had static pressure, and the surface tension forces were also
effective elements, see [29].

The Young–Laplace-equation is derived by the balance of the liquid-gas interface, see [29], where
we have:

∆p + pex =

(
1
r1

+
1
r2

)
σ, (4)

where ∆p is the pressure-difference between the gas and liquid and pex is an extra pressure; for
example, in our case the electrical stress pex = pe. Furthermore, r1 and r2 are the radii of the curvature,
see Figure 5, and σ is the surface tension coefficient between the liquid and gas.

The parameters of the model and the geometry of the bubble are presented in Figure 5.
The parameterization of the free surface of the bubble in terms of the arclength s can be modelled as a

system of ordinary differential equation with a boundary value problems and is given as, see also [11,29]:

dr
ds

= cos(θ), (5)

dz
ds

= sin(θ), (6)

dθ

ds
=

∆p(z)
σ

+
pe

σ
− sin(θ)

r
, (7)
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where the pressure difference is given as:

∆p(z)
σ

=
2
r0
− gz

σ
(ρl − ρg), (8)

where we have r0 the radius of the curvature at the apex, σ is the surface-tension coefficient, ρl is the
liquid density, ρg is the gas density, g is the gravity and pe the electrical stress.

r1

r 2

Geometry of the 3d Bubble
Bubble−shape in 2D

r

z

(r,z)
s

φ

φ

Figure 5. Bubble geometries: (left) 3D bubble with the R1 the radius of the curvature in a horizontal
section and R2 the radius of the curvature in the vertical section, (right) set-up of the bubble shape in
2D, where φ is the contact angle, r is the horizontal length, z is the vertical length and s is the arclength
along the free surface of the bubble.

In the following, we assume a small radius r0 ≤ 1 and assume small vertical extensions; that is,
z ≤ 1. Then, we have a dominant 2

R0
term in the pressure difference, see also [29]:

∆p(z)
σ

=
2
r0
− gz

σ
(ρl − ρg) ≈

2
r0

. (9)

Further, we have the boundary conditions, which are given as:

r = a, z = 0, at s = 0, (10)

r = 0,
dz
ds

=
dz
dr

= 0, at s = L, (11)

where L is the arc length of the bubble which is a-priori unknown and is numerically computed via
the boundary value problem. Furthermore, we apply a→ 0, while a is the initial radius of the bubble
at s = 0.

The ODE system (5)–(7) is a so-called boundary value problem, which can be solved with a
multiple shooting methods, see also a discussion in Section 3 and the literature [30–32]. We apply
a boundary-value solver of the MATLAB software-package, which is given as programmed in the
function bvp4c. Based on the boundary values, we can solve the possible curvature of the bubble.
We solve the axial-symmetric bubble, while it is sufficient to solve the half shape of the bubble. Then,
we can measure the different diameters of the bubble ellipse and such results are interpolated on a
grid, which is used in the far-field solver methods, see Section 5.

2.3. Far-Field Approach

For the far-field model, we base our work on macroscopic transport, see [18,33]. We assume
that the flow is laminar and incompressible. Furthermore, we concentrate on the two-dimensional
tube-problem, which is given in Figure 2.
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The conservation equation for the two fluids are given by the Navier–Stokes equation, which is
also called the two-phase flow equation, see also [16]:

∇ · v = 0, (x, y, t) ∈ Ω× [0, T], (12)

ρ(
∂v
∂t

+ v · ∇v) = −∇p +∇ · (µ(∇v +∇vt)) + ρlg + Fσ, (x, y, t) ∈ Ω× [0, T], (13)

where v is the velocity vector, ρl is the fluid density of the liquid, σ is the surface tension of the liquid,
µ is the fluid viscosity of the liquid and ρ is the fluid density of the liquid. g is the gravitational
acceleration and Fσ is the surface tension force. Furthermore, Ω ∈ IR2 is the underlying reactor-domain
and T ∈ IR+ is the end-time of the simulations.

The detailed coordinates of the bubble reactor is given in Figure 6.

v

F
σ

F
σ

p−

y

x

c c1 M

...

Model−Reactor

g

Figure 6. The coordinates of the model-reactor with the concentrations of the bubbles c1, . . . , cM,
the velocity v, the gravitational acceleration g, the pressure p and the surface tension force Fσ.

The modeling equations of the gas bubble in the liquid is given by a transport equation, which is
based on the idea of the volume of fluid and level set methods.

We assume the indicator functions ui(x, t) with i = 1, . . . , M, while M is the number of bubble
sources.

We define the values of the function as:
ui(x, t) = 1, gas-phase,
ui(x, t) = 0, liquid-phase,

0 < ui(x, t) < 1, interface.
(14)

Furthermore, we assume the absence of phase changes and then, we deal with the transport
equation of the gas-phase as:

∂ui
∂t

+∇(v ui) = 0, (x, y, t) ∈ Ω× [0, T], i = 1, . . . , M, (15)

ui(x, 0) = ui,0(x), (16)

i = 1, . . . , M, (17)
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where v is the velocity of the two-phase flow equation, and ui are the indicator functions of the
gas-phases and ui,0(x) are the initial indicator conditions.

In the following Assumption 1, we simplify the flow model in the bubbling reactor, such that we
could concentrate on the transport-equations as far-field modeling equations.

Assumption 1. We deal with the following assumption to reduce the computational amount of the far-field model:

• We can assume a constant velocity in the reactor.
• We assume that the water and the gas are not interacting or change the constant velocity.
• We have such small velocities, such that the transport equations of the gas bubbles are sufficient, see [18].
• For such a simplification, we deal with v = v0 = const in the transport Equations (15)–(17).
• The concentration of the bubbles are given as ci(x, t) = ci,0(x)ui(x, t), while ci,0(x) is the initial

concentration of the bubble.

Based on this assumption, we have the following benefits and drawbacks of the far-field modeling
approach:

• Benefits:

– The model is simple and fast to compute.
– The model also allows us to discuss a dynamical shape.

• Drawbacks:

– The shape of the bubble is not preserved, while we assume a static shape.
– The influence of the speed of motion in the outer normal direction is not possible.

The far-field model can be solved with VOF- or LS-methods but we concentrate on the LS-methods
to obtain highly accurate shapes of the bubbles. We discuss the solver in Section 4.

3. Near-Field Solver: System of Ordinary Differential Equations with Boundary Conditions

For the near-field, we have to solve a BVP for ODEs, see [30–32].
We assume the following nonlinear ODE, given as:

dy
dt

= f(y, t), t ∈ [a, b], (18)

Bay(a) + Bby(b)− d = 0, (19)

where y, d ∈ IRn, Ba, Bb ∈ IRn×n and f : IRn × IR+ → IRn, see [32]. For example, we can rewrite our
boudary value problem (5)–(7) into this vectorial notation.

The boundary value problem (18)–(19) can be solved with a multiple shooting algorithm, which
is given in the following approach. We have a mesh a = s1 < s2 < . . . < sm = b, on each mesh
interval [si, si+1] with 1 ≤ i ≤ m− 1. Then, we apply the following steps to solve the boundary value
problem (BVP).

We solve the BVP in the following five steps:

1. For the grid-points s̃1, . . . , s̃m ∈ IRn, we denote by y(s; sj, s̃j) the solution of the initial value problem

dy
dt

= f(y, t), (20)

y(sj; s̃j) = s̃j. (21)
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2. We approach to the grid and define a piecewiese function ỹ with

ỹ(s) = y(s; sj, s̃j), for sk ≤ s ≤ sk+1, 1 ≤ j ≤ m− 1, (22)

ỹ(sm) = s̃m. (23)

3. Then ỹ solves the boundary value problem (18)–(19), if and only if:

y(sj+1; sj, s̃j) = s̃j+1, for 1 ≤ j ≤ m− 1, (24)

Ba s̃1 + Bb s̃m − d = 0, (25)

4. Therefore, we have to solve the fixpoint problem, which is given by the initial value problem
(20)–(21) and the conditions (24)–(25) and defined as:

F(s̃1, . . . , s̃m) = 0, (26)

which can be solved by linearization or nonlinear solver methods, e.g., Newton’s method.

The multiple shooting algorithm allows us to compute the boundary value problem also with
respect to the Neumann-boundary conditions. see [32]. The algorithm is a rewriting of the underlying
BVP into an initial value problem (IVP) plus additional conditions. Based on the nonlinearity of the
differential equation system, we have to apply linearization schemes or nonlinear solver schemes.
In the Section 6.1, we apply the multiple shooting algorithm with linearization and additional solver
schemes to approximate the nonlinear differential equation-system.

4. Far-Field Solver: Level-Set Method

We solve the transport Equations (15)–(17) with the level-set method, which allows us to follow
the shapes of the bubble, see [13].

We reformulate the transport Equations (15)–(17) in the level-set equations, which are given as

∂ui
∂t

= −F0|∇ui|, (x, t) ∈ Ω× [0, T], (27)

ui(x, 0) = ui,0(x), (28)

ui(x, t) = 0.0, (x, t) ∈ ∂Ω× [0, T], (29)

i = 1, . . . , M, (30)

where v is the constant velocity field with v = F0n, while n = ∇ui/|∇ui|, see [13]. Furthermore, Ω is
the computational domain and T is the end time. The indicator functions are given as ui(x, t) and the
initialization ui(x, 0) is done based on the results of the near-field computations, see Section 5.

These equations are well known as level-set equations and can be solved like convection–diffusion
equations, see [13]. We concentrate on the benefits of the LS-methods, which are highly accurate
and assume to deal with short transport-phases such that we could reduce the problem of the
mass-conservation, see [18].

In the following, we apply the explicit different discretization methods in space, while we apply
the level-set equation with the explicit time-discretization and apply upwind methods for the advection
and outer normal direction term only in the x-direction, the same is also done with the y-direction.
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We discretize the Level-set equation with the explicit time-discretization and apply upwind
methods for the advection and outer normal direction term in the x- and y-direction and have the
following terms:

D−x ui,j,k =
ui,j,k − ui,j−1,k

∆x
, (31)

D+
x ui,j,k =

ui,j+1,k − ui,j,k

∆x
, (32)

D−y ui,j,k =
ui,j,k − ui,j,k−1

∆y
, (33)

D+
y ui,j,k =

ui,j,k+1 − ui,j,k

∆y
, (34)

|D+
x ui,j,k| =

(
(max(D−x ui,j,k, 0))2 + (min(D+

x ui,j,k, 0))2 (35)

+(max(D−y ui,j,k, 0))2 + (min(D+
y ui,j,k, 0))2

)1/2
. (36)

The explicit discretization is given as:

un+1
i,j,k = un

i,j,k + ∆t F0|D+
x un

i,j,k|, (37)

i = 1, . . . , M, j = 1, . . . , Mx, k = 1, . . . , My, n = 0, . . . , N, (38)

u0
i,j,k = ui,j,k,0, initial condition, (39)

where we have F0 ≥ 0 based on the positive velocity vx, vy ≥ 0 of the transport equations. Furthermore,
M is the number of bubbles, Mx and My are the number of spatial grid-points in x and y direction. N
is the number of time-steps.

For our case of the pure velocity in the y-directions, means we have vx = 0, vy ≥ 0,
the discretization is simplified to:

un+1
i,j,k = un

i,j,k + ∆t F0|D̃+
x un

i,j,k|, (40)

|D̃+
x ui,j,k| =

(
(max(D−x ui,j,k, 0))2 + (min(D+

x ui,j,k, 0))2
)1/2

, (41)

i = 1, . . . , M, j = 1, . . . , Mx, k = 1, . . . , My, n = 0, . . . , N, (42)

u0
i,j,k = ui,j,k,0, initial condition, (43)

where F0 = vy is the pure velocity in y direction.
An alternative approach of the shape transport can be done with the VOF method. This method is

based on a free-surface modeling technique, while the method is tracking and locating the free
surface, see also [17]. These methods are mass-conserved but more delicate to implement and
more computationally intensive; therefore, we deal with the idea to reduce computational time
with fast LS-methods and update the far-near-field coupling as much as possible to reduce the error
of mass-conservation.

5. Coupling Near-Field and Far-Field

The modeling assumes that we could decouple the near- and far-field, while we neglect the
coalescence or ruptures of the bubbles, such as in the flow-field, see [34].

We assume that in terms of the bubble density function:

fb(r, z, x, y, t) = u(x, y, t)δ((r− R(x, y, t)), (z− Z(x, y, t))), (44)
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where u is the concentration of the bubble and R and Z are obtained with the bubble formation
equations, while r and z are the cylinder coordinates of the density function, that we do not have an
influence means r ≈ R and z ≈ Z for the formation process.

We discuss the following different coupling ideas:

• Decoupled computation of near- and far-field: parameters of the ellipse are computed in the
near-field and initialize the far-field bubble.

• Coupled computation of near- and far-field: the near-field computation is directly implemented
into the far-field by a so-called bubble-in-cell (BIC) method and is directly updated in a
computational cycle.

5.1. Decoupled Computation of Near- and Far-Field

In the decoupled version, we only initialize the bubble and update the bubble shaped from time
to time.

Here, we assume a nearly constant bubble, which is near the initialization of the bubble.
The bubble is computed by the near-field-model with the ODE’s given in (5)–(7).
Then, we estimate the characteristic parameters of the ellipse in the Figure 7.

a

b

Bubble (ellipltic)

Estimation of the bubble−parameters

near−field     

area           

a b(x  , y   )

Figure 7. Final bubble based on the near-field computation and estimation of the bubble parameters
(we assume an elliptic curve).

Based on the estimation of the elliptic-parameters, we obtain the curvature of the ellipse:

(x− xa)2

a2 +
(y− yb)

2

b2 = 1. (45)

The ellipse is interpolated to the far-field model with shape-interpolations and we transport
bubble shape with the LS-method.

The relatively stable bubble allows us to apply assumptions, such that we only update the bubble
from time to time. The transformation of the elliptic parameters of the near-field model allows us
to simplify the construction of the shape in the far-field. We only apply the ellipses in the far-field
transport model. Therefore, we save computational time.

5.2. Coupled Computation of Near- and Far-Field

Based on the electric-field, which acts on a smaller time-scale, we have to update the near-field
and far-field coupling in a numerical cycle,

The near-field bubble is computed with the ODE’s and with the underlying influence of the E-field.
Furthermore, the far-field is computed by the transport equation with level-set methods. We realize
the coupling via an interpolation between the mesh-free space of the near-field and the grid-space of
the far-field with the given diameters of the bubbles and the trajectories of the transport field

The numerical cycle is given in Figure 8.
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Initialisation of the bubble

Interpolation of the

bubble shape to the

grid−space

Near−far−field coupling cycle

Evolving the transport of the bubble

in the far−field

Evolving the formation of the bubble

in the near−field with the E−field

influence

Interpolation of the

bubble shape to the

meshfree−space

Figure 8. Numerical cycle of the near–far-field coupling.

In the following, we discuss the detailed coupling of the near-field and far-field, see Figure 9.

Near−Field computation

with E−field

Far−Field computation

with E−field

a

b

~

Interpolation

between

near− and

far−field

~

Figure 9. Near field and far field coupling in the E-field.

The accuracy of the cycle is given with respect to the step-size of the far-field. Further, we
can improve the accuracy of the cycle with higher-order interpolation schemes and higher-order
near-field and far-field solvers, see the improvement of the PIC-cycles [15,25]. Such ideas of different
scale-dependent solvers can also be applied to so-called multiscale approaches, see [35].

A stronger coupling of the near- and far-field is given by an idea that is also used in the PIC
(particle in cell) algorithms, see [14,15]. Here, we couple microscopic scales—that is, particle scales
with macroscopic scales (i.e., clusters of particles in a macroscopic grid), see [36].

We apply a so called modified PIC algorithm, which we call the BIC (bubble in cell) algorithm.
These algorithms use the Young–Laplace equation in the finer scales, while we apply the bubble
formation and modification, and the level-set or transport equations in the coarser scales, while we
apply the bubble transport, see [37].

The algorithm is given in the following Figure 10.
We have first order approximation errors for the interpolation between phase-space and grid

space, while we apply a linear approximation, see [15]. We could improve the interpolation error
with the help of higher order spline-approximations, such as second or third order splines, see [15].
This fine updating of the near- and far-field model allows to obtain more accurate results.



Appl. Sci. 2019, 9, 4722 13 of 28

Initialisation of the bubble

Interpolation of the

bubble shape to the

grid−space

Phase−Space

Grid−Space

Near−far−field coupling cycle

Interpolation of the

bubble shape to the

meshfree−space

Young−Laplace equation

(analytical method in the fine scales)

Level−set equation

(grid method in the coarse scales)

Phase−Space

Grid−Space

Figure 10. Bubble in cell algorithm based on the near–far-field approximation.

6. Numerical Experiments

In the following, we apply the different numerical experiments based on the bubble formation
and the bubble transport. While the bubble formation is based on the model with Young–Laplace
equation, the bubble transport model is based on the level-set equations.

6.1. Bubble Formation: Experiment 1

The near-field equations are given as:

dr
ds

= cos(θ), (46)

dz
ds

= sin(θ), (47)

dθ

ds
= − sin(θ)

r
+

∆p
σ

, (48)

or in vectorial form:

dy
ds

= f(y, s) = Ã(y(s)) + q̃(s), s ∈ [si, si+1], (49)

where Ã(y(s)) =

 cos(θ)
sin(θ)
− sin(θ)

r

 and q̃(s) =

 0
0

∆p
σ

. Furthermore, y(s) =

 r(s)
z(s)
θ(s)

 and s is the arc

length along the curve and r is the radius, z is the vertical distance and θ the angle of elevation for its
slope and σ is the mono-layer surface tension.

We have to linearize the equations, which are given as:

dy
dt

= Ã(y(si)) +
∂Ã
∂y
|y(si)

(y(s)− y(si)) + q̃(s), s ∈ [si, si+1], (50)

dy
ds

= A(s)y(s) + q(s), t ∈ [si, si+1], (51)

Bay(a) + Bby(b) = d, (52)

where A(t) = ∂Ã
∂y |y(si)

, q(s) = Ã(y(si)) − ∂Ã
∂y |y(si)

y(si) + q̃(s). In the linearization, we apply the
Jacobian matrix, which is given as

∂A
∂y
|y(si)

=

 0 0 − sin(θ(si))

0 0 cos(θ(si))

− sin(θ(si))
r2(si)

0 − cos(θ(si))
r(si)

 . (53)
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We have the conditions:

r = a, z = 0, θ = π/2, at s = 0, (54)

r = 0,
dz
ds

= 0, θ = 2(π/2), at s = L, (55)

where a is the radius of the bubble, L is the arc length of the bubble which is a-priori unknown, where
we start with L = L0 = 2πa2

4 and we go on with L = L1 ≤ L2 ≤ . . . ≤ Lstop.
We have the following linear equation system:

S1 R1

S2 R2
. . . . . .

SN RN
Ba Bb−1 Bb




y1

y2
...
yN
yN+1

 =


q1

q2
...
qN
d

 , (56)

where Si = Ri = −h−1
i I − 1

2 A(si+1/2), qi = q(si+1/2 with hi = si+1 − si, si+1/2 = si +
1
2 hi.

Furthermore, we have matrices and vectors:

Ba =

 0 0 0
0 0 0
0 0 0

 , Bb−1 =

 0 0 0
0 1 0
0 0 0

 , Bb =

 1 0 0
0 1 0
0 0 1

 , d =

 L
0
0

 . (57)

• Test example 1:
We apply the following test-example with the a quarter of a circle, means L = 2πa2/4, where
a = 1, 2, 3, 3.5 and we assume N = L/∆s, where we assume ∆s = 2π · 0.001 is the arc-length step
for the numerical computations. Further, we have ∆p

σ = 0.
• Test example 2:

We have N = L/∆s, where we assume ∆s = 0.001 is the arc-length step for the numerical
computations. Further, we have L = 2 and ∆p

σ = 0, 0.8, 1.4.

The numerical results of bubble formation are given in Figure 11.

Figure 11. Bubble formation, left figure with different lengths L and ∆p
σ = 0, while L = 2 is exact

solution of the 1/4 circle and right-hand figure with different right-hand side-parameters ∆p
σ and for

L = 2.

The Young–Laplace equation allows us to formulate the bubble formation, such that we could
obtain the radii of the different bubbles based on the various pressure parameters. We also compare
the results with respect to the computations in the literature, see the ideas in [16].
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6.2. Bubble Formation: Validation of the Near-Field

In the following, we validate the near-field model, which is a model based on the formation
of bubbles.

We can obtain an analytical expression, see [29]. Based on the mechanical equilibrium approach,
we can develop the analytical expressions and predict the bubble departure volume. This departure
volume is based on the force balance analysis under different assumptions, see also [38].

The relationship is given as:

V = N
Q6/5

g3/5 , (58)

g is the gravity, N is a constant with N = 1.378. The departure volume is given as V and the gas-flow
rate is Q.

We apply different experiment to validate with the analytical expression:

• Test example 1:
We apply the following test-example with the circumference of the ellipse, which are given as
Li = 2πa2

i /4, where L1 = 1, L2 = 2, L3 = 3, L4 = 3.5, L5 = 4.0, while a special case is the circle
with Lcirc = π/2 and radius r = 1. Furthermore, we assume Ni = Li/∆s, where the arc-length
step for the computations is ∆s = 2π · 0.001 and ∆p

σ = 0.

Here, we measure prediction of the volume of the ellipsoid, while we assume a constant
gas-flow-rate:

QLi =
dVLi

dt
, (59)

means we apply:

QLi =
VLi (t2)−VLi (t1)

t2 − t1
, (60)

where i = 1, 2, 3, 4, which we could compute with our MATLAB simulations. We assume that Q is
a constant and approximated to V.

Then, we can predict the departure volume with the experimental formula:

VLi = N
Q6/5

Li

g3/5 , (61)

where the constants are defined in Equation (58) and different volumes of the ellipsoids are given
with the indices i = 1, 2, 3, 4.

In the following Figure 12, we present the validation of the numerical computed volumes
Vnum,Li /Vnum,Li−1 and the experimental computed volumes VLi /VLi−1 . The experimental
computed volumes are given with the Equation (61), see the experiments in [29].
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Figure 12. Validation for the relative departure volume related to the bubble length Li, which are
based on the numerical volume Vnum,Li and the experimental volume VLi .

• Test example 2:
We have N = L/∆s, where the arc-length step for the computations is ∆s = 0.001 and L = 2 and
we apply the following pressure relations ∆p1

σ = 0, ∆p2
σ = 0.5, ∆p3

σ = 1.0, ∆p4
σ = 1.5 and ∆p5

σ = 2.0.

Here, we can predict the different gas-flow-rates, based on the different pressure relations.

Q∆pi/σ =
V∆pi/σ(t2)−V∆pi/σ(t1)

t2 − t1
. (62)

where i = 1, 2, 3, 4, 5, which we could compute with our MATLAB simulations and we assume Q
is a constant and approximated to V.

Then, we can predict the departure volume with the experimental formula:

V∆pi/σ = N
Q6/5

∆pi/σ

g3/5 , (63)

where the constants are defined in Equation (58) and different pressure relations are given with the
indices i = 1, 2, 3, 4.

In the following Figure 13, we present the validation of the numerical computed volumes
Vnum,∆pi/σ/Vnum,∆pi−1/σ and the experimental computed volumes V∆pi/σ/V∆pi−1/σ. The experimental
computed volumes are given with the Equation (63), see the experiments in [29].

Figure 13. Validation for the relative departure volume related to the bubble length Li, which are
based on the numerical volume Vnum,Li and the experimental volume VLi .

We have applied the validation of the near-field model simulation with the experimentally results
of the heuristic formulas (61) and (63). We compared the experimental and numerical results and
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obtain relatively the same results. Such a validation allows us to apply the near-field model for the
simulations of the far-field model, see also bubble-experiments in [39].

6.3. Bubble Transport: Validation of the Far-Field

In the following, we validate the far-field model, which is a model based on the transport
of bubbles.

We define N grid points for the x and y direction in the area of the bubble transport. Then, we deal
with different space-steps, such as ∆x, ∆x/2, ∆x/4, ∆x/8.

We apply the numerical error based on the L2-norm:

errL2,∆x,∆x/2(t) =
1
N

N

∑
i=1

(ui,∆x(t)− ui,∆x/2(t))2, (64)

where N number of grid-points on which we compute the solutions. ∆x spatial step of the error
analysis. t time, where we apply the convergence study, e.g., t = tend.

Furthermore, we apply the experimental order of convergence, see [40], which is given as:

ρL2,∆x,∆x/2(t) =
log
(

errL2,∆x/2,∆x/4(t)
errL2,∆x,∆x/2(t)

)
log(0.5)

, (65)

where we can see a convergence rate based on the refinement of the spatial grid.
We have the following Table 1 for the validation of the far-field:

Table 1. Validation for the far-field solvers with N = Nx = Ny = 41.

∆x errL2,∆x,∆x/2(t) ρL2,∆x,∆x/2(t)

1/N 1.2 108

1/(2N) 7.8 107 0.621
1/(4N) 2.1 107 1.893
1/(8N) 3.2 106 2.714

In the following Figure 14, we see the convergence rates with the higher resolution of the computations.

Figure 14. Convergence analysis of the finer resolution with respect to the far-field validation with
Nstart = 41 and Ni = i Nstart.

We see a convergence based on the L2-error with finer resolutions in Figure 14. Therefore,
we obtain with finer grids a higher resolution for the far-field computations. Such a convergence
analysis allows us to validate the far-field computations.
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6.4. Bubble Formation: Experiment 2

In the following, we couple the near-field and far-field computations.
We have the following setting, see Figure 15.

a

b

Bubble (ellipltic)

Near−Field computation
Far−Field computation

Figure 15. (left) Bubble formation with the ordinary differential equations (ODEs). (right) Bubble
transport with the partial differential equations (PDEs) (level-set equations).

We apply the following parameters:

• Input-parameters of the near-field bubbles:

– r1(0) = 0.01, z1(0) = 0, r1(L) = 0, L = 1, ∆p1
σ1

= 0.8,

– r2(0) = 0.01, z2(0) = 0, r2(L) = 0, L = 2, ∆p2
σ2

= 0.8.

• We compute the bubbles based on the near-field code and we obtain the ellipse-diameters
abubble, bbubble.

• We initialize the two ellipses for the far-field computations given as:

– (x− 20)2 + ((y− 100) ∗ abubble,1/bbubble,1)
2 − a2

bubble,1,
– (x− 70)2 + ((y− 90) ∗ abubble,2/bbubble,2)

2 − a2
bubble,2.

The numerical results of near-field bubble formation are given in Figure 16.

Figure 16. The computation of the bubble formation (near-field) for two bubbles.

The numerical results of the near–far-field coupled bubble transport code, which is given in
Figure 17.

The coupling of the formation and transport of the bubbles is done with ordinary and partial
differential equations. Such a coupling closes the gap between the different scale-dependent models of
a near-field and far-field simulation, see [37]. Based on decoupling such systems of mixed ordinary and
partial differential equations, we were able to compute each separate part with the optimal numerical
solvers. We apply higher order near-field and far-field solvers, which accelerate the computational
time, see also [25,37].
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Figure 17. (top left) Transport of the two bubbles in the far-field at time t = 0.5. (top right) Level-set
function of the two bubbles at time t = 0.5 with the level-set-area of 100. (bottom left) Transport of the
two bubbles in the far-field at time t = 25.0. (bottom right) Level-set function of the two bubbles at
time t = 25.0 with the level-set-area of 100.

6.5. Bubble Formation: Multiple Bubble Experiment (10 Bubbles)

In the following, we extend the near-field and far-field computations with 10 bubbles. We also
apply the decomposition of near-field and far-field computations as given in Figure 15.

We apply the following parameters:

• Computation of the near-field bubbles (a representing bubble is computed):

– Input-parameters of the near-field bubbles computation are given in Appendix A.1.
– Output-parameters of the near-field bubble computation are given in Appendix A.1.
– Ellipse: (x− xbubblei

)2 + ((y− ybubblei
) ∗ abubble/bbubble)

2 − a2
bubble,

where (xbubblei
, ybubblei

) is the origin of the i-th bubble.

• Computation of the far-field bubbles (level-set initialization):

– Parameterization of the level-set initial-function, such as two bubbles:

φ0(x, y) =


(x− xbubble1)

2 + ((y− ybubble1)
abubble1
bbubble1

)2 − a2
bubble1

,

ax ≤ x ≤ 50, ay ≤ x ≤ by,
(x− xbubble2)

2 + ((y− ybubble2)
abubble2
bbubble2

)2 − a2
bubble2

,

50 ≤ x ≤ bx, ay ≤ x ≤ by,

(66)

where (xbubble1 , ybubble1) = (20, 50), (xbubble2 , ybubble2) = (80, 50) with the coordinates of the
grid (ax, ay) = (0, 0) and bx, by) = (100, 200).

The numerical results of the formation of the bubbles are given in Figure 18.
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Figure 18. Formation of 10 bubbles with the different pressure-terms.

The numerical results of the near–far-field coupled bubble transport code, which is given in
Figures 19 and 20.

Figure 19. Transport of 10 bubbles with the level-set function at the initialization t = 0.1.

Figure 20. Transport of 10 bubbles with the level-set function at time t = 50.

In the experiment, we deal with at least 10 bubbles, which are differently formatted and
transported via the level-set method. Such experiments are important to simulate experiments,
which are used for bubble reactors, see [2,6]. The numerical experiments allow us to accelerate the
formation and transport of such processes and save expensive laboratory experiments, see [41].

6.6. Bubble Formation: Oscillation of the Air-Bubbles in the Electrical-Field (Decoupled Version)

In the following, we simulate a bubble filled with air in an electrical field, see [10]. We apply the
decoupled computation of the near- and far-field, as discussed in Section 5.1.

We have the following setting of the influenced bubble, see Figure 21.
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Bubble influenced in an E−field

~

Bubble (original)

Bubble (oscillation)

AC Voltage

Figure 21. Bubble formation influenced by an electrical field.

We apply the following near-field equation based on an extension of the pressure-term with
an E-field.

The near-field equations with the E-field are given as:

dr
ds

= cos(θ), (67)

dz
ds

= sin(θ), (68)

dθ

ds
+

sin(θ)
r

=
∆p
σ

+
pE
σ

, (69)

where s is the arc length along the curve and θ the angle of elevation for its slope and σ is the
mono-layer surface tension, and the approximated pressure difference is given as ∆p = 2

R0
, see

Section 2.1. pE = 9
8 |E0|2 sin(θ) is the electrical stress related to an external electrical field E0.

We apply the following parameters:

• Computation of the near-field bubbles (a representing bubble is computed)

– The electrical field parameters are given as:

σ = 0.1, ρ = 0.1, g = 9.81, |E0|2 = 0.1.
– Input-parameters of the near-field bubbles computation are given in Appendix A.2.
– Output-parameters of the near-field bubble computation (formation) are given in the

Appendix A.2.
– Output-parameters of the near-field bubble computation (in the E-field) are given in

Appendix A.2.
– Ellipse: (x− xbubblei

)2 + ((y− ybubblei
) ∗ abubble/bbubble)

2 − a2
bubble,

where (xbubblei
, ybubblei

) is the origin of the i-th bubble.

• Computation of the far-field bubbles (level-set initialization):
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– Parameterization of the level-set initial-function, such as two bubbles:

φ0(x, y) =


(x− xbubble1)

2 + ((y− ybubble1)
abubble1
bbubble1

)2 − a2
bubble1

,

ax ≤ x ≤ 50, ay ≤ x ≤ by,
(x− xbubble2)

2 + ((y− ybubble2)
abubble2
bbubble2

)2 − a2
bubble2

,

50 ≤ x ≤ bx, ay ≤ x ≤ by,

(70)

where (xbubble1 , ybubble1) = (20, 50), (xbubble2 , ybubble2) = (80, 50) with the coordinates of the
grid (ax, ay) = (0, 0) and bx, by) = (100, 200).

The numerical results of the formation of the bubbles with and without the E-field are given in
Figure 22.

Figure 22. (left) Formation of 10 bubbles without an E-field. (right) Formation of 10 bubbles with
an E-field.

The numerical results of the near–far-field coupled bubble transport code are given in Figures 23
and 24.

The bubble modifications are given by the E-field, while it changes the formation of the bubble, see
the Figure 24. The level-set method is flexible and is modified by multi-level-set domains. Therefore,
it allows us to deal with multiple level-set functions of different concentrations and initial conditions,
such that we could transport multiple bubbles with E-fields. Such a flexibilization is necessary to deal
with the laboratory experiments, see [29].

Figure 23. Transport of 10 bubbles in the E-field with the level-set function at the initialization t = 0.5.
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Figure 24. Transport of 10 bubbles in the E-field with the level-set function at time t = 50.

6.7. Bubble Formation: Oscillation of the Air-Bubbles of an Oscillating Electrical- Field (Coupled Version)

In the following, we extend the near-field and far-field computations with additional coupling
with an E-field, while we apply the cyclic computation of near- and far-field, see Figure 9. We apply
the coupled computation of the near- and far-field, as discussed in Section 5.2.

The oscillation E-field is given in Figure 25, with the function:

|E0|2 = 0.1 f (t), (71)

f (t) =

{
1, (n− 1) 10 ≤ t < n 10,
0, n 10 ≤ t < (n + 1) 10,

, where n = 1, 3, 5, . . . . (72)

1

40 50 60 700 10 20 30

Oscillating E−field

Figure 25. Oscillating E-field for the bubble formation.

We apply the same parameters as for the experiment of Section 6.6.
We apply the following algorithm, given in Figure 26 for computing the coupled E-field with the

bubble transport and formation.
We applied the update of the E-fields, which means that we computed several transport steps in a

switched-on the E-field, and applied several transport steps to a switched-off the E-field. While we
have a faster transport-scale, it is sufficient to update the E-field from time to time.

The numerical results of the oscillating bubbles are given in the Figures 27 and 28.
In the experiment, we deal with at least 10 bubbles, which are differently formatted and

transported via the multi-level-set method, see [13]. We apply an oscillating E-field and reinitialize
the level-set method with the new formatted bubbles for each 5–10 time-steps. As a result, we see
the oscillating bubbles in the E-field, which is important so apply the plasma-ignition, see [23].
The numerical experiments allow us to accelerate the formation and transport of such processes with a
reduction of updates of the E-field, such that we could redo costly laboratory experiments.
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Bubble−formation with E−field

t < T

t >=T

t =0

the Young−Laplace−equation

Initialisation/updating

the level−set equations

Initialisation/updating of

 of

Bubble−transport

Figure 26. Algorithm for updating a bubble formation with an oscillating E-field in a transport regime
based on level-set methods.

Figure 27. Transport of 10 bubbles with the level-set function: (top) t = 7.5 with E-field switched off
and (bottom) t = 15.5 with E-field switched on.
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Figure 28. Transport of 10 bubbles with the level-set function: (top) at t = 38.0 with E-field switched
off and (bottom) t = 45.5 with E-field switched on.

7. Conclusions

We present a bubble model, which is a coupled model based on a bubble formation and bubble
transport model. The decoupling into near- and far-field models allows us to apply optimal solver
and discretization methods. Such modeling allows us to close the gap of coupling scale-dependent
transport-problems. While we could reduce the computational time in the near- and far-field model
with the scale-optimized methods, we partly replace costly laboratory experiments. We apply
different numerical experiments of the near-field and far-field model and presented their benefit
in the simulations. Further, we present the oscillations of the charged bubbles in an electrical field, such
results are important for possible plasma-ignitions. In the future, we will consider the fully coupled
problem, while we deal with bubble density functions and the coupling between the formation and
transport process. This extension allows us to see the ruptures of the bubbles.
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Appendix A.

In the following, we give the parameters of the experiments in Sections 6.5–6.7.

Appendix A.1. Parameters of Section 6.5

• Input-parameters of the near-field bubbles computation:

– Bubble 1: r1(0) = 0.01, z1(0) = 0, r1(L) = 0, L = 2, ∆p1
σ1

= 0.2,
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– Bubble 2: r2(0) = 0.01, z2(0) = 0, r2(L) = 0, L = 2, ∆p2
σ2

= 0.4.

– Bubble 3: r3(0) = 0.01, z3(0) = 0, r3(L) = 0, L = 2, ∆p3
σ3

= 0.6.

– Bubble 4: r4(0) = 0.01, z4(0) = 0, r4(L) = 0, L = 2, ∆p4
σ4

= 0.8.

– Bubble 5: r5(0) = 0.01, z5(0) = 0, r5(L) = 0, L = 2, ∆p5
σ5

= 1.0.

– Bubble 6: r6(0) = 0.01, z6(0) = 0, r6(L) = 0, L = 2, ∆p6
σ6

= 1.2.

– Bubble 7: r7(0) = 0.01, z7(0) = 0, r7(L) = 0, L = 2, ∆p7
σ7

= 1.4.

– Bubble 8: r8(0) = 0.01, z8(0) = 0, r8(L) = 0, L = 2, ∆p8
σ8

= 1.6.

– Bubble 9: r9(0) = 0.01, z9(0) = 0, r9(L) = 0, L = 2, ∆p9
σ9

= 1.8.

– Bubble 10: r10(0) = 0.01, z10(0) = 0, r10(L) = 0, L = 2, ∆p10
σ10

= 2.0.

• Output-parameters of the near-field bubble computation:

– Bubble 1: abubble1 = 0.5141, bbubble1 = 0.9926.
– Bubble 2: abubble2 = 0.5219, bbubble2 = 0.9718.
– Bubble 3: abubble3 = 0.5295, bbubble3 = 0.9506.
– Bubble 4: abubble4 = 0.5369, bbubble4 = 0.9289.
– Bubble 5: abubble5 = 0.5443, bbubble5 = 0.9067.
– Bubble 6: abubble6 = 0.5514, bbubble6 = 0.8841.
– Bubble 7: abubble7 = 0.5584, bbubble7 = 0.8612.
– Bubble 8: abubble8 = 0.5651, bbubble8 = 0.8382.
– Bubble 9: abubble9 = 0.5717, bbubble9 = 0.8154.
– Bubble 10: abubble10 = 0.5780, bbubble10 = 0.7928.

Appendix A.2. Parameters of Sections 6.6 and 6.7

• Input-parameters of the near-field bubbles computation:

– Bubble 1: r1(0) = 0.01, z1(0) = 0, r1(L) = 0, L = 2, ∆p1
σ1

= 0.2,

– Bubble 2: r2(0) = 0.01, z2(0) = 0, r2(L) = 0, L = 2, ∆p2
σ2

= 0.4.

– Bubble 3: r3(0) = 0.01, z3(0) = 0, r3(L) = 0, L = 2, ∆p3
σ3

= 0.6.

– Bubble 4: r4(0) = 0.01, z4(0) = 0, r4(L) = 0, L = 2, ∆p4
σ4

= 0.8.

– Bubble 5: r5(0) = 0.01, z5(0) = 0, r5(L) = 0, L = 2, ∆p5
σ5

= 1.0.

– Bubble 6: r6(0) = 0.01, z6(0) = 0, r6(L) = 0, L = 2, ∆p6
σ6

= 1.2.

– Bubble 7: r7(0) = 0.01, z7(0) = 0, r7(L) = 0, L = 2, ∆p7
σ7

= 1.4.

– Bubble 8: r8(0) = 0.01, z8(0) = 0, r8(L) = 0, L = 2, ∆p8
σ8

= 1.6.

– Bubble 9: r9(0) = 0.01, z9(0) = 0, r9(L) = 0, L = 2, ∆p9
σ9

= 1.8.

– Bubble 10: r10(0) = 0.01, z10(0) = 0, r10(L) = 0, L = 2, ∆p10
σ10

= 2.0.

• Output-parameters of the near-field bubble computation (formation):

– Bubble 1: abubble1 = 0.5141, bbubble1 = 0.9926.
– Bubble 2: abubble2 = 0.5219, bbubble2 = 0.9718.
– Bubble 3: abubble3 = 0.5295, bbubble3 = 0.9506.
– Bubble 4: abubble4 = 0.5369, bbubble4 = 0.9289.
– Bubble 5: abubble5 = 0.5443, bbubble5 = 0.9067.
– Bubble 6: abubble6 = 0.5514, bbubble6 = 0.8841.
– Bubble 7: abubble7 = 0.5584, bbubble7 = 0.8612.
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– Bubble 8: abubble8 = 0.5651, bbubble8 = 0.8382.
– Bubble 9: abubble9 = 0.5717, bbubble9 = 0.8154.
– Bubble 10: abubble10 = 0.5780, bbubble10 = 0.7928.

• Output-parameters of the near-field bubble computation (in the E-field):

– Bubble 1: abubble1 = 0.5558, bbubble1 = 0.8698.
– Bubble 2: abubble2 = 0.5626, bbubble2 = 0.8468.
– Bubble 3: abubble3 = 0.5693, bbubble3 = 0.8239.
– Bubble 4: abubble4 = 0.5757, bbubble4 = 0.8013.
– Bubble 5: abubble5 = 0.5819, bbubble5 = 0.7789.
– Bubble 6: abubble6 = 0.5878, bbubble6 = 0.7571.
– Bubble 7: abubble7 = 0.5935, bbubble7 = 0.7359.
– Bubble 8: abubble8 = 0.5990, bbubble8 = 0.7153.
– Bubble 9: abubble9 = 0.6042, bbubble9 = 0.6953.
– Bubble 10: abubble10 = 0.6091, bbubble10 = 0.6760.
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