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Abstract: The application of Fourier transform infrared spectroscopy to the simultaneous analysis of
heavy metal concentration in soil samples was demonstrated in this paper. Two spectral techniques,
namely, attenuated total reflectance (ATR) and diffuse reflectance (DRIFT), were applied and the
whole infrared spectral region, i.e., far IR, mid IR, and near IR were considered in this work. Spectral
data with reference to the results of laboratory analysis enabled the development of calibration partial
least squares (PLS) models. The PLS models for the ATR near IR were characterized by a good fit
and good prediction abilities. According to the results obtained, the most accurate description and
prediction were realized in the case of mid/far and near IR for the mercury and nickel concentration in
soil. Application of far IR slightly improved the prediction possibilities of the model. The construction
of PLS models based on the Fourier-transform infrared (FT-IR) spectra enables the perception of
FT-IR spectroscopy as a supplementary method that is useful in the estimation and monitoring of the
contamination level in soils.
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1. Introduction

The assessment of the degree of soil pollution with heavy metals is still a serious challenge for
scientific departments dealing with this problem. The recognition of areas potentially contaminated
with heavy metals is legally sanctioned in many countries. An exemplary document that is in force
in the European Union is Directive No. 2010/75/EU [1] and the resulting Regulation (Dz.U. 2016 poz.
1395 (2016) in Polish law) [2]. A typical procedure for determining the degree of contamination of soil
is based on sampling in accordance with the designated grid, an analysis of the contamination levels in
the laboratory, and the interpretation of test results based on geostatistical methods. Commonly used
methods for determining heavy metal content, such as inductively coupled plasma optical emission
spectrometry [3], are time-consuming and expensive. In the case of the need to recognize the scale
of pollution of a large area, the cost and time needed to perform the necessary research increases
significantly. In connection with the above, potential use of infrared spectroscopy as a new, less
time-consuming, and less expensive method for determining the physicochemical parameters of soils
has been studied for several years.

Infrared spectroscopy is a useful tool for investigating soil parameters such as total carbon, total
nitrogen, the C/N ratio, lignin, dissolved OC, carbonyl-C, aromatic-C, O-alkyl-C, and alkyl-C contents.
A review of the applications of Fourier-transform infrared (FT-IR) spectroscopy for the analysis of soil
samples was presented by Tinti et al. [4]. Nocita et al. [5] presented the state of the art in the field
of the application of infrared spectroscopy in soil analyses as an alternative to traditional so-called
“wet” methods. The authors considered both the advantages and limits of this technique. Shepherd
and Walsh [6] presented a review of the application of infrared spectroscopy to agricultural and
environmental management.
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Previous studies have shown various possible applications of infrared spectroscopy for soil
analysis. Viscarra Rossel et al. [7] examined different soil properties, including pH, organic carbon, slay,
silt, sand, cation exchange capacity, exchangeable calcium, exchangeable aluminum, nitrate nitrogen,
available phosphorus, exchangeable potassium, and electrical conductivity. The authors compared
PLS calibration models based on spectra obtained using the technique of diffuse reflectance (DRIFT)
both separately and jointly in different infrared regions. Ng et al. [8] evaluated the use of field portable
and laboratory benchtop infrared spectrometers in the range of near infrared (NIR) and mid infrared
(MIR) for the rapid nondestructive assessment of petroleum-contaminated soils. FT-IR has also been
used for the analysis of the heavy metal concentration in soils. Chodak et al. [9] studied the ability
of near-infrared spectroscopy to detect the effects of heavy metals on the chemical composition of
forest soil. The authors underlined that some concentrations (especially high concentrations) of heavy
metals obtained using NIR spectroscopy were lower than in reality due to the fact that heavy metals
in industrial samples are partially present in the inorganic form. Similar results were obtained by
Siebielec et al. [10] for soil metal content in highly contaminated soil samples obtained from industrial
regions. The authors concluded that using mid-infrared lead to more accurate models compared to
NIR. Gholizadeh et al. [11] assessed the usefulness of the VIS-NIR method in the monitoring of toxic
elements in soil samples from reclaimed dumpsites. Chen et al. [12] applied visible and near infrared
for fast analysis of cadmium pollution of soils. Niazi et al. [13] used the DRIFT mode in the MIR range
combined with PLS to estimate the contamination of soil with arsenic. Chakraborty et al. [14] used
Mid-IR and the DRIFT mode in combination with artificial neural network (ANN) models to assess
lead concentration in soil samples collected from an urban landfill agricultural site.

Infrared spectroscopy has shown great potential for use in the analysis of different soil properties
and contamination levels, but the problem of a choice of the optimal measurement methodology
remains unresolved. The choice of the infrared range is important problem in the area of spectral soil
analyses. Equally important question refers to the important issue of representativeness of samples for
spectral analyses and comparison of the measurements in the laboratory after sample preparation or
directly in the field (in-situ). Other issues relate to the choice of spectral techniques, the impact of the
variation of the material studied on the results, or the choice of chemometric techniques to create a
prediction model.

It was indicated that spectral analysis in the mid infrared region enables one to obtain more
accurate models than in the near infrared region [15]; however, visible and near infrared radiation
(VIS-NIR) has been usually considered for application in on-line measurements. Jiminez-Donaire
et al. [16] presented an application of a diffuse reflectance mode and PLS calibration model in the
on-line measurement of moisture content, soil organic carbon, pH, and total nitrogen. The specially
designed on-line measurement system was mounted onto a tractor, with spectral data collected while
moving across the landscape with a velocity of 2 km/h. He et al. [17] used near-infrared reflectance
spectroscopy for the estimation of nitrogen and organic matter content in soil samples. The authors
indicated that this is a useful rapid technique for in situ application, which can be combined with GIS.
Additionally, Martin et al. [18] used near-infrared spectroscopy for a rapid analysis of organic carbon
and nitrogen within a single field. This method was useful for analyzing carbon content in a range
of 0–40 mg/g, however, the authors reported that they did not succeed in determining the nitrogen
concentration. On the other hand, recent technological development of semiconductor technologies
contributes in the development of mid-infrared (mid-IR) portable spectrometers.

Reeves J.B. [19] compared the application of near and mid infrared in soil analyses and their
related advantages and disadvantages. They also considered several questions concerning laboratory
and on-site analysis, the effect of moisture and particle size on accuracy, and the effect of different soil
types and compositions on calibration. He stated that DRIFT is not useful in on-site application but is
advantageous in the laboratory after sample drying and grounding. D’Acqui et al. [20] described an
exemplary procedure of sampling for application of mid-infrared diffuse reflectance Fourier transform
(MIR-DRIFT) spectroscopy, with partial least squares (PLS) regression, for the determination of
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variations in soil properties. After removal of the debris from the surface (twigs, litter, and rocks), the
samples were taken from the surface to a depth of 20 cm, then for analysis were dried at 40 ◦C, and
ground by a mill and sieved to <100 µm particle diameter. The authors collected 198 samples, and to
obtain each representative sample, three subsamples were collected and mixed. Application of different
techniques of mid infrared spectroscopy: diffuse reflectance spectroscopy, attenuated total reflectance
spectroscopy, and Fourier transform infrared photoacoustic spectroscopy (PAS) for investigation of
soil properties was analyzed and compared by Ma et al. [21].

Raw spectra are often processed before use as an input into a chemometric model development
using various techniques, such as absorbance transformation log (1/R), mean centering, detrend,
standard normal variate (SNV), Savitzky-Golay smoothing, first or second derivatives, and
multiplicative scatter correction (MSC) [7,11]. A review of the spectral preprocessing methods
is presented by Tinti et al. [4] and Chen et al. [12]. The methods that are frequently combined with
infrared spectroscopy are partial least square regression (PLS), principal component analysis (PCA),
and artificial neural networks (ANN).

A literature review showed that extensive research was performed in the field of spectral
rapid assessment of soil properties, especially with emphasis on properties that are important for
agriculture–organic matter content, nitrogen content, pH etc. A much narrower group of papers
considered heavy metal concentration in soil. Measurements were conducted on NIR, Vis-NIR, and
less often on MIR. The far-IR region was not investigated in term of its usefulness for soil metal analysis.
Frequencies of oscillations of heavy metal bonds are lower because of the mass. The crystal structure of
inorganic compounds can be affected in the presence of heavier cations. Thus, analyzing the possibility
of use of the FIR region for metal concentration analysis is justified.

The aim of this paper was construction of the PLS models for simultaneous analysis of various
heavy metal concentrations in soil samples based on FT-IR spectra. Two spectral techniques, namely
ATR and DRIFT, as well as the whole infrared region, were investigated during the study. Accuracy
and prediction abilities of models were compared for as many as 13 harmful metals. Samples were
taken from the polluted area, thus the range of concentrations of metals is very large. Moreover in this
paper, the region of far-IR spectroscopy was considered as the method to improve the detection of
heavy metals in soil. According to the knowledge of the authors, this region had not been investigated
before in terms of soil metal concentration prediction.

2. Materials and Methods

2.1. Samples

The soil material used in the IR studies was selected from samples taken in the vicinity of the
copper smelter “Głogów” (Poland) (Figure 1). Samples were collected according to the PN-ISO 10381-5
standard. The collected samples were air-dried and sieved through a 2-mm sieve to separate the
coarse fraction. The fine fraction was homogenized, ground in a planetary mill (zirconium oxide
grinding bowl), and passed through a 200-µm sieve. The coarse fraction was discarded. Selected
physicochemical parameters were determined in the Laboratory of Solid Waste Analyses, Central
Mining Institute, Poland. Mercury content was determined by CVAAS (MA2000, NIC) according to an
internal procedure SC-1.PB.23. The remaining trace elements were determined by ICP-OES (Optima
5300DV, PerkinElmer), after microwave mineralization in aqua regia, according to internal procedure
SC-1.PB.11.



Appl. Sci. 2019, 9, 4705 4 of 15

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 17 
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measurement, the infrared radiation propagates through the crystal with such an angle that enables 
one to obtain internal reflectance. Infrared radiation is reflected but penetrates into the surface of a 
sample pressed onto the crystal. The second technique, the diffuse reflectance infrared Fourier 
Transform (DRIFT) technique, was used in the mid infrared (MIR) range. The absorption and 
scattering of light by the sample in all directions (diffuse reflectance) was measured in the DRIFT 
technique. Samples were placed in a stainless steel cup, located in a diffuse reflectance accessory and 
scanned. The spectrometer was equipped with a DLaTGS (deuterated L-alanine doped triglycene 
sulphate) detector and a KBr beam splitter for mid IR and solid substrate for far IR. In the near IR 
region, a Thermo Scientific NIR Integrating Sphere equipped with an InGaAs detector and CaF2 
beamsplitter was used. The sample was placed on the sapphire window. In the module, 
near-infrared energy passes through the window and is diffusely reflected by the sample. Then the 
reflected light is efficiently collected by the sphere and directed onto the dedicated InGaAs detector. 

All spectra were collected after a nitrogen purge. The spectrum for air was used as a 
background in the ATR technique, and as a pure potassium bromide (KBr) in the DRIFT and NIR 
techniques. The number of scans was set at 64 with a resolution of 4 cm−1. Spectra were measured 
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Figure 1. The location of the copper smelter “Głogów” (Source: Google Map).

2.2. Fourier Transform Infrared Spectroscopy

FTIR analyses of the 100 soil samples were carried out in the laboratory of Central Mining
Institute (Katowice, Poland) using a Thermo Scientific Nicolet iS50 spectrometer. Spectral analyses
were performed using samples prepared according to the procedure described earlier: dried, grounded
and sieved. Two spectral techniques based on attenuated total reflectance and diffuse reflectance were
applied to samples, as these techniques enable direct measurements of the surface of solid samples
without a need for pellet preparation; thus, potential application of these techniques in rapid estimation
is considered. The first technique, the attenuated total reflectance (ATR) was used in the far infrared
(FIR) range. The Nicolet iS50 FT-IR spectrometer has built-in diamond iS50 ATR sampling station. A
sample was placed on a crystal diamond and then pressed onto the top surface of the crystal. In this
technique, the attenuated reflectance is measured. During the measurement, the infrared radiation
propagates through the crystal with such an angle that enables one to obtain internal reflectance.
Infrared radiation is reflected but penetrates into the surface of a sample pressed onto the crystal. The
second technique, the diffuse reflectance infrared Fourier Transform (DRIFT) technique, was used in
the mid infrared (MIR) range. The absorption and scattering of light by the sample in all directions
(diffuse reflectance) was measured in the DRIFT technique. Samples were placed in a stainless steel
cup, located in a diffuse reflectance accessory and scanned. The spectrometer was equipped with a
DLaTGS (deuterated L-alanine doped triglycene sulphate) detector and a KBr beam splitter for mid
IR and solid substrate for far IR. In the near IR region, a Thermo Scientific NIR Integrating Sphere
equipped with an InGaAs detector and CaF2 beamsplitter was used. The sample was placed on the
sapphire window. In the module, near-infrared energy passes through the window and is diffusely
reflected by the sample. Then the reflected light is efficiently collected by the sphere and directed onto
the dedicated InGaAs detector.

All spectra were collected after a nitrogen purge. The spectrum for air was used as a background
in the ATR technique, and as a pure potassium bromide (KBr) in the DRIFT and NIR techniques.
The number of scans was set at 64 with a resolution of 4 cm−1. Spectra were measured over a far
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infrared range of 1800–100 cm−1, a mid-infrared range of 4000–400 cm−1, and a near-infrared range
of 12,500–4000 cm−1. Data obtained from the laboratory analyses together with the collected spectra
were used to develop and validate the partial least squares regression models. The spectra in the form
of csv files were the input to the model created in MATLAB. Spectra were not modified before the
development of PLS models.

2.3. Spectral Preprocessing and PLS

To find a relationship between the metal content in soils and the spectral properties of soils,
multivariate calibration methods should be used. Partial least squares (PLS) is one of the most often
used multivariate calibration methods [22–28], which can be used for data sets in which the measured
parameters are intercorrelated. PLS overcomes the problem of correlated variables by constructing
new orthogonal variables; this process maximizes the description of the covariance between X and y.
The proper complexity of the PLS model was determined based on cross-validation (CV) [29]. This
means that the correct constructed PLS model should be characterized by a good fit to the data used
for the model construction and good prediction abilities for new variables. For a correct assessment
of the model fit to the data used for their construction as well as the model prediction abilities, the
root mean square error (RMS) (see Equation (1)) and the root mean square error of cross validation
(RMSCV) (Equation (2)) were calculated, respectively, as follows:

RMS =

√∑m
i=1(yi − ŷi)

2

m
(1)

where yi and ŷi. denote the experimental values for the dependent variable for a model set and their
predicted values, respectively, while m denotes the number of objects in the model set;

RMSCV(A) =

√∑m
i=1 (yt

i − ŷ.ti(A))
2

m
(2)

where yi
t and ŷ.it(A) denote the values from the test set and their values provided by the model for the

complexity A, respectively.

3. Results

3.1. Qualitative Description of FT-IR Spectra

Soil is very complex, it contains both inorganic components, such as silicates, carbonates, sulfates,
nitrates, as well as phosphates, and organic compounds such as humic and fulvic acids. In Figure 2, an
exemplary structure for the organic matter of soil is presented.

Bands related to various functional groups, such as phenolic, carbonyl, carboxylic, anhydrides,
and nitrogen-containing groups, are expected in the infrared spectrum of a soil sample.

Spectra measured in the mid-infrared region represent fundamental vibration modes and enable
one to identify different bonds and functional groups present in the sample. Spectra for all soils
were found to be generally similar with differences resulting from the content of clay, quartz, organic
compounds, and both fulvic and humic acids in the soils. Two exemplary Mid-IR spectra are presented
in Figure 3.
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Bands due to the organic and inorganic compounds overlap; thus, their assignment to functional
groups is difficult. However, some of them can be assigned to individual bonds and functional
groups during a qualitative analysis of the spectra [4,30,31]. A broad band observed in the region
from 3700 to 3000 cm−1 is related to the stretching of the associated H-bonded hydroxyl group in the
OH group of alcohols and the Si-OH group. The peaks at 3697 and 3624 cm−1 are associated with
vibrations of the Si-O-H bond. The peaks at approximately 2934 cm−1 are attributed to vibrations
of aliphatic CH2 and the CH3 group. Vibrations of amides and aromatic C=C bonds are observed
in the region of 1700 to ~1500 cm−1. The peak observed at 1988 cm−1 is connected to vibrations of
cumulative C=C bonds or aromatic C-H. The peaks at approximately 1870 and 1794 cm−1 can relate to
anhydrides or the free COOH group. The peak with a maximum at 1610 cm−1 is related to vibrations
of aromatic C or conjugation of C=C with the C=O bond. The peak at 1159 cm−1 can be ascribed to the
stretching vibrations of the C-O bond in anhydrides, or Si-O-C and Si-O-Si in siloxanes. The peaks
at approximately 1390 cm−1 and 917 cm−1 represent in plane and out of plane bending of the OH
group. In the region 1400 to 950 cm−1, vibrations due to various bonds containing oxygen are observed,
especially alcohols, phenols, ethers, acetates, and carbohydrates. Bands assigned to the vibration of
silicates SiO4

2− are expected in the range 1100–900 cm−1, carbonates CO3
2− approximately 1450–1410

and 880–800 cm−1, sulphates SO4
2− in the range 1130–1080 cm−1, nitrates NO3

− in the range 1410–1340
and 860–800 cm−1, and phosphates PO4

3− in the range 1100–900 cm−1 [30].
NIR and FIR spectra contain less information concerning the structure and functional groups.

Bands observed in the near IR are mainly assigned to overtones and combinations of fundamental
vibrational modes of groups containing C-H, O-H and N-H bonds. In the far infrared region, vibrations
with large amplitude, such as torsional modes, ring puckering, crystal lattice vibrations and heavy



Appl. Sci. 2019, 9, 4705 7 of 15

atom skeletal bending modes, and molecular rotation are mainly observed. Information for the
intermolecular forces is gained from the far IR spectra. Exemplary NIR and FIR spectra are presented
in Figure 4. In Figure 4a, ranges characteristic for overtone bands characteristic of excited vibrational
states and combined bands that are the sum of other fundamental vibrations are marked.
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The detailed interpretation of each band is impossible in such a complex sample. Moreover, the
presence of metals in a soil usually does not result in the appearance of new peaks in the spectrum.
Thus, the direct calibration and quantitative analysis of the metal concentration on the basis of the IR
spectra is impossible. However, metals impact the IR spectra of soils and observed spectral changes
can be used to measure metal concentration with the support of chemometric methods. The presence
of complexes of functional groups, especially complexes containing oxygen with metal ions, causes
frequency shifting and changes in the intensity and shape of bands, which can be used in the analysis
of the metal concentration in soil samples. Metal bonding in organometallic compounds weakens
the bonds and results in a lowering of the wavenumber value compared to the free groups. The
crystal structure of the inorganic compounds can be affected in the presence of heavier cations, causing
changes in the far IR. The PLS method enables one to investigate the relationship between the metal
concentration in soil samples and the measured FT-IR spectra.
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3.2. PLS Models for NIR, MIR, and FIR

For effective investigation of the impact of the metal concentration in soil samples on the infrared
spectra collected in the near, mid, and far infrared regions, PLS models were constructed. The PLS
models described the relationship between 13 metals in soil (dependent variable y), respectively,
with spectral data organized in the matrix X containing the value of the spectral signal measured for
different wavenumbers. The PLS models constructed for studying the metal concentration based on
separate spectroscopic measurements in the NIR, MIR, and FIR regions are presented in Figures 5–7.
The calculated RMS and RMSCV for the constructed PLS models are presented in Tables 1–3.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 17 
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data measured using the DRIFT in the MIR.



Appl. Sci. 2019, 9, 4705 10 of 15

Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 17 

 
Figure 7. The PLS model describing the relationship between the metal content in soil and spectral 
data measured using the Near Integrated Sphere and DRIFT technique in the NIR. 

In Table 4, errors achieved for each range were compared.  

Table 4. Comparison of RMS and RMSCV values for PLS models based on each infrared range. 
(highest values of errors were marked with dark colors). 

 

Figure 7. The PLS model describing the relationship between the metal content in soil and spectral
data measured using the Near Integrated Sphere and DRIFT technique in the NIR.



Appl. Sci. 2019, 9, 4705 11 of 15

Table 1. The root mean square error (RMS) and root mean square error of cross validation (RMSCV)
values for the PLS model based on ATR data in the FIR.

Metals Unit Range
Number

of
Variables

RMS RMSCV %
RMS

%
RMSCV

Co mg/kg [1.00,27.00] 5 3.5826 4.1119 13.78 15.82
Cr mg/kg [4.10,223.00] 4 25.5573 31.5102 11.68 14.39
Mo mg/kg [1.00,14.00] 4 1.9542 2.2132 15.03 17.02
Sn mg/kg [1.00,12.00] 5 1.8397 2.1310 16.72 19.37
Zn mg/kg [1.00,1530.00] 5 183.5097 244.4817 12.00 15.99
Ba mg/kg [22.00,2120.00] 5 293.3098 351.6731 13.98 16.76
Hg mg/kg [0.01,3.68] 10 0.2729 0.3954 7.44 10.77
As mg/kg [4.00,620.00] 4 66.5027 73.4838 10.80 11.93
Cd mg/kg [1.00,7.70] 7 0.9147 1.1523 13.65 17.20
Cu mg/kg [22.00,2840.00] 4 550.7588 601.2048 19.54 21.33
Ni mg/kg [3.10,67.00] 5 6.0862 6.9554 9.52 10.88
Pb mg/kg [18.00,2840.00] 4 337.6865 368.6658 11.97 13.06
Se mg/kg [2.00,7.00] 6 0.6485 0.7706 12.97 15.41

Table 2. The RMS and RMSCV values for the PLS model based on DRIFT data in the MIR.

Metals Unit Range
Number

of
Variables

RMS RMSCV %
RMS

%
RMSCV

Co mg/kg [1.00,27.00] 8 3.7606 4.4483 14.46 17.11
Cr mg/kg [4.10,223.00] 9 26.4988 33.0388 12.11 15.09
Mo mg/kg [1.00,14.00] 3 2.1376 2.2116 16.44 17.01
Sn mg/kg [1.00,12.00] 7 1.9682 2.2370 17.89 20.34
Zn mg/kg [1.00,1530.00] 7 215.4163 254.7562 14.09 16.66
Ba mg/kg [22.00,2120.00] 6 330.3738 386.9383 15.75 18.44
Hg mg/kg [0.01,3.68] 12 0.3643 0.5201 9.93 14.17
As mg/kg [4.00,620.00] 4 71.8133 75.3721 11.66 12.24
Cd mg/kg [1.00,7.70] 9 1.0321 1.3691 15.40 20.43
Cu mg/kg [22.00,2840.00] 4 593.1701 631.7240 21.05 22.42
Ni mg/kg [3.10,67.00] 11 5.9458 7.9458 9.30 12.43
Pb mg/kg [18.00,2840.00] 3 363.9935 376.5499 12.90 13.34
Se mg/kg [2.00,7.00] 7 0.7632 0.8864 15.26 17.73

Table 3. The RMS and RMSCV values for the PLS model based on ATR data in the NIR.

Metals Unit Range
Number

of
Variables

RMS RMSCV %
RMS

%
RMSCV

Co mg/kg [1.00,27.00] 4 4.4228 4.7491 17.01 18.27
Cr mg/kg [4.10,223.00] 10 9.8576 31.5702 4.50 14.42
Mo mg/kg [1.00,14.00] 6 1.9733 2.1884 15.18 16.83
Sn mg/kg [1.00,12.00] 9 0.9858 2.2671 8.96 20.61
Zn mg/kg [1.00,1530.00] 9 97.0534 224.6956 6.35 14.70
Ba mg/kg [22.00,2120.00] 10 135.9009 363.9009 6.48 17.35
Hg mg/kg [0.01,3.68] 9 0.2096 0.4168 5.71 11.36
As mg/kg [4.00,620.00] 1 75.3621 76.3621 12.23 12.40
Cd mg/kg [1.00,7.70] 9 0.6850 1.2343 10.22 18.42
Cu mg/kg [22.00,2840.00] 1 562.4353 573.5291 19.96 20.35
Ni mg/kg [3.10,67.00] 8 4.3375 6.9293 6.79 10.84
Pb mg/kg [18.00,2840.00] 10 96.2981 348.2871 3.41 12.34
Se mg/kg [2.00,7.00] 8 0.4981 0.8552 9.96 17.10

The constructed PLS models were analyzed in terms of fit and prediction abilities. The constructed
models describing the relationship between the concentration and DRIFT spectra in the mid IR region
(Figure 6) were characterized by a good fit for cobalt, chromium, mercury, and nickel. Unfortunately, the
constructed PLS models for molybdenum, tin, arsenic, copper, and linear correlation were characterized
by a weak fit and weak prediction abilities.
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Comparison of results obtained using different infrared regions, namely, far infrared ATR
(1800–100 cm−1), and mid infrared DRIFT (4000–400 cm−1), which are presented in Figures 5 and 6
and in Tables 1 and 2, indicate slightly better results for the far IR range (lower values of %RMS and
%RMSCV for every metal). This result confirmed that the crystal structure of inorganic compounds was
affected in the presence of heavy metals, since heavy atom skeletal bending vibrations can be observed
in the far IR range. However, differences between these two ranges were not large, which suggested
that the common range of 1800–400 cm−1 was crucial for both ranges. In this range, interactions
between metal ions and organic functional groups (carbonylic, phenolic, alcoholic, and π-bonds) are
observed. Individual metals form complexes with organic groups of different energy. The stronger
new bond with metal is, the weaker organic group becomes, which results in a wider frequency shift
of the peak for the ‘pure’ organic group. The PLS models constructed for mercury and nickel were
characterized by a relatively good fit and prediction abilities (the lowest RMS and RMSCV among all
constructed models).

Calibration models describing the relationship between metal concentration and DRIFT spectra
in the near IR are shown in Figure 7. In comparison to the previous results presented here and
those obtained using FIR and MIR regions, in the case of the NIR region, a noticeable improvement
in calibration and the %RMS values is observed in the cases of chromium, tin, zinc, barium, lead,
selenium, as well as in mercury and nickel. However, analysis of the %RMSCV values indicates that the
prediction possibilities for the NIR DRIFT calibration models were smaller. The error values %RMSCV
were within the range 10.84–20.61%. The lowest values of %RMS and %RMSCV for the DRIFT NIR
calibration models were achieved for mercury, nickel, and lead.

In Table 4, errors achieved for each range were compared.

Table 4. Comparison of RMS and RMSCV values for PLS models based on each infrared range. (highest
values of errors were marked with dark colors).

Metal/Error RMS % RMSCV %

Range FIR MIR NIR FIR MIR NIR

Co 13.78 14.46 17.01 15.82 17.11 18.27
Cr 11.68 12.11 4.50 14.39 15.09 14.42
Mo 15.03 16.44 15.18 17.02 17.01 16.83
Sn 16.72 17.89 8.96 19.37 20.34 20.61
Zn 12.00 14.09 6.35 15.99 16.66 14.70
Ba 13.98 15.75 6.48 16.76 18.44 17.35
Hg 7.44 9.93 5.71 10.77 14.17 11.36
As 10.80 11.66 12.23 11.93 12.24 12.40
Cd 13.65 15.40 10.22 17.20 20.43 18.42
Cu 19.54 21.05 19.96 21.33 22.42 20.35
Ni 9.52 9.30 6.79 10.88 12.43 10.84
Pb 11.97 12.90 3.41 13.06 13.34 12.34
Se 12.97 15.26 9.96 15.41 17.73 17.10

Generally, all the investigated spectral techniques and infrared radiation ranges have similar
applicability for analysis of the metal concentration in soil. However, results indicated that there were
differences between models depending on IR ranges and metals.

The best results and errors below 10% were achieved for following metals: chromium, zinc,
barium, mercury, nickel, and lead. The highest linearity and lowest RMS values were achieved for the
NIR range.

Models created using spectra measured in the far-IR region allowed us to get better linearity and
lower RMS and RMSCV values there than for the MIR region. The model based on FIR spectra were
characterized by better prediction abilities than NIR only in case of cobalt (%RMS 13.78, %RMSCV
15.82). For the other metals, application of FIR region did not improve possibilities of the models in
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comparison to the NIR region. The %RMS values below 10% were achieved only for mercury (7.44%)
and nickel (9.52%). The values of %RMSCV for models based on FIR and NIR spectra were similar.

The satisfying model was not achieved for some metals like molybdenum and arsenic. Low
concentrations of tin were impossible to predict, and a higher concentration of tin fair linearity and low
RMS could only be observed in the NIR region. The outcome was similar for selenium – the linearity
of the model was poor, especially for low concentrations. The model created for the copper was also
not good – in the region of FIR and NIR for concentrations exceeding 1000 mg/kg predicted content
was underestimated. For lower concentrations, NIR and FIR linearity was poor and there was a large
spread of results. A similar observation was described for some heavy metals by Chodak et al. [9] and
Siebielec et al. [10]. They concluded that such underestimated results of high concentrations were due
to the fact that heavy metals in industrial samples are partially present in the inorganic form.

Comparison of the obtained results to the literature is difficult because of the broader scope of
this paper (13 metals) and the much higher metal concentrations used. For example, Gholizadeh et al.
(2015) considered the following ranges of concentrations in mg/kg: Cu 5.5 to 92.24, Cd 0.01 to 0.73,
Pb 0.90 to 49.60, Zn 6.60 to 213.11, and As 0 to 19. Maximum contents of this metals in this paper
were: Cu 2840, Cd 7.70, Pb 2840, Zn 1530, and As 620 mg/kg. Similarly, Chakraborty et al. (2015)
for lead and Chen et al. (2015) for cadmium considered lower concentrations in soil. Chodak et al.
(2007) investigated zinc concentration up to 4601 mg/kg which is much higher than in our paper. They
reported a value of standard error of cross validation of 770 and a standard error of calibration of 436.
Our results could be partly compared to the results presented by Siebielec et al. (2004) for lead (max.
ca. 2000 mg/kg – in our paper the equivalent is 2840 mg/kg) and nickel (max. 80 mg/kg – in our paper
67 mg/kg). They reported that root mean squared deviations in NIR/MIR range were 839/662 for lead
and 6.21/1.88 for nickel.

The spectroscopic methods were characterized by higher values for the calibration and prediction
errors than the reference techniques, i.e., the error values usually exceeded 10%. The described method
based on the FT-IR spectra is not an alternative to the ICP-OES method but rather can be perceived
as a supplementary method with great potential for application in the estimation and approximate
monitoring of soil contamination in large areas.

4. Conclusions

The application of FT-IR enables the simultaneous determination of several harmful metals in soil
samples, which impacts the cost, speed, and effectiveness of environmental monitoring. The accuracy
achieved with this method was good, but lower than that realized using conventional laboratory
analyses. Such results indicated that FT-IR can be considered as a supplementary method to other
traditionally used instrumental methods for determining metal content, such as ICP-OES. The PLS
models constructed from the FT-IR spectra for the studied dataset were useful in the estimation of
soil contamination by heavy metals. The results obtained indicated that both spectral techniques,
namely, attenuated total reflectance (ATR) and diffuse reflectance (DRIFT), and spectra collected to
each spectral region, namely far-IR, mid-IR and near-IR, enabled the construction of proper calibration
models for a large number of samples for a single region for following metals: Cr, Zn, Ba, Hg, Ni, and
Pb. Application of spectra for the far-IR slightly improved the prediction possibilities of the model in
comparison to the mid-IR region. The models based on NIR-spectra were characterized by slightly
better linearity than other ranges and the lowest RMS values. Attempts to create good models failed
for several metals: Mo, Sn, As, Se, and Cu. Taking into account calibration and prediction errors,
FT-IR spectroscopy could be applied in the monitoring of changes over time regarding heavy metal
concentrations or the mapping of contamination levels across large areas.
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