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Featured Application: Temperature dependent in-situ Raman spectroscopy was applied to study
the structure of coals at high temperature.

Abstract: Raman spectroscopy can be used to record the characteristic spectra of carbonaceous
materials. The D and G bands are the most popular and most important spectral characteristics when
discussing carbonaceous materials. In this paper, a Raman spectroscopic study of different coals
was first carried out using a 355 nm wavelength laser beam as an excitation source. The spectral
parameters of the resultant spectra were evaluated and analyzed. Raman spectral characteristics
of different kinds of coals were explored. The high temperature-dependent Raman spectra of the
coals were further collected in a temperature range from 298 to 1473 K in order to investigate the
transformations of the internal structure of the coals during the pyrolysis process. An abnormal
blue shift of the G band occurred at moderate temperature (600–900 K), and the intensity of the G
band became weaker at high temperatures, indicating pyrolysis and graphitization of the sample at
moderate and high temperature, respectively.
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1. Introduction

Raman spectroscopy has been used to study carbonaceous materials since the 1970s [1]. As a
unique type of spectroscopy, Raman spectroscopy has many advantages in coal structure analysis over
other techniques [2]. Raman spectroscopy can provide fast, simple, repeatable, and lossless qualitative
and quantitative analysis of defects, and has been widely used in the coal chemical industry. Raman
spectroscopy can be used to analyze the structure of coal and the quality of organic matter in order to
characterize the catalysts in the coal chemical process and to detect heavy fraction leaching [3].

Green et al. [4] have studied the identification of minerals in coals, one of the principal areas of
the field, and identified calcite, pyrite, and dolomite by using a micro-Raman spectrometer. Tuinstra
and Koenig [5] and Friedel and Carlson [6] have published the first Raman spectrum of coal and
reported G (1575–1620 cm−1) and D-bands (1355–1380 cm−1). Tuinstra and Koenig have suggested
that the 1575 cm−1 band can be assigned to the graphite E2g mode with D4

6h crystal symmetry, that
the band at 1370 cm−1 can be assigned to the A1g mode, and that the ratio ID/IG relates to the average
graphite domain dimension. La. Friedel and Carlson have debated the origin of the band at 1580 cm−1

by investigating IR absorption and the Raman scattering of very finely ground graphite (C–C bonds
broken), coal, and carbon black. They have suggested that the band at 1350 cm−1 most likely arises
from graphitic structures, and not from aromatic or conjugated carbonyls, as had been suggested
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earlier. Johnson and Thomas [7] have found that the width of the D-band for chars originates from
various ranks of coals and decreases with increasing heat treatment temperature (from 240 cm−1 at
500 ◦C, with La = 2 nm, to 40 cm−1 at 1900 ◦C, with La = 7 nm). On the other hand, Benny-Bassez
and Rouzaud [8] have found that the G+D’ band of different coals decreases with increasing coal
rank, although they did not observe a trend (the D’ peak located around 1620 cm−1 is due to irregular
carbon and often appears with the G peaks). Angoni [9] has postulated a simple qualitative analysis in
order to distinguish carbonaceous materials with low, medium, and high structural organization by
analyzing 15 samples that included graphite, coke, coal and anthracite. He has found that the width of
the D band relates to the degree of its disorder, but that neither the D nor the G bands can explain the
degree of this disorder.

After analyzing chars generated from the pyrolysis and gasification of Australian brown coal
by Raman spectroscopy, Chunzhu Li et al. [10] have identified 10 characteristic bands that they
believe are attributable to the highly disordered carbon structure of coal [11]. Sheng [12] has studied
the relationship between the microstructure and the combustion reactivity of coal char by Raman
spectroscopy [13].

Recently, much research has been carried out on the application of Raman spectroscopy to coal.
Raman spectroscopy has been applied to rapidly determine organic matter maturity and value the
chemical structure and thermal maturity of vitrinite [14,15]. The relationship between coal structures
and combustion characteristics has been investigated by micro-Raman spectroscopy, which can provide
a new approach to rapidly predicting the coal properties by observing the reasonable correlations
between the Raman spectral parameters and Vdaf [2]. In addition, Raman spectroscopy has been used
to distinguish components of graphitized coals and quantitatively evaluate vitrinite reflectance in
shale [16,17].

An in-situ study at high temperature [18] can provide valuable information concerning structural
evolution for fundamental research on coal pyrolysis. The changes in chemical bonds identified by
in-situ infrared spectroscopy studies of coal pyrolysis [19,20] provided useful information on chemical
bond dissociation. An in-situ high temperature Raman technique can also offer a unique tool for
observing different characteristics of coal. In-situ Raman spectroscopy [21] has been widely used in
many fields. However, research on temperature-dependent in-situ Raman spectroscopy of carbon
materials is lacking. This paper describes an in-situ high temperature Raman spectroscopy study on
selected coals and the evolution of the internal structural of coal during heating.

2. Experimental

2.1. Raman Spectrometer

Temperature-dependent Raman spectra were collected using a Horiba Jobin Y’von LabRam 800
HR Raman spectrometer. In comparison to inorganic materials such as alumino-silicates, carbonaceous
materials or other organic components behave less sensitively when subjected to a laser beam of a
short wavenumber and therefore have less cross-sectional penetration. The test sample was heated in
an Ar atmosphere by a Linkam 1500 heating stage with a temperature deviation of less than +/−1 K
in order to investigate the microstructure evolution of the samples. A charge-coupled-device (CCD)
detection system was used to record the Raman scattering light at an accumulated mode of 20 × 20
(20 times, each of 20 s). The samples were held at the targeted temperature for 60 min before collecting
Raman spectra in order to ensure they reached the targeted.

At first, 532 nm and 355 nm were selected as the excitation laser wavelengths for temperature-
dependent in-situ Raman spectra tests. Figure 1 shows the in-situ Raman spectra of the coal samples
using a 532 nm excitation laser. The spectra in the higher wavenumber range experienced interference
from the overwhelming fluorescence, which became more severe over time. The fluorescence appeared
dramatically when the temperature was higher than 1073 K and remained for a period of time. All coal
samples had similar fluorescence interference. Under the circumstances, D and G bands would be



Appl. Sci. 2019, 9, 4699 3 of 9

difficult to detect. As a result, 355 nm was selected as the excitation laser for the temperature-dependent
in-situ Raman spectra test. A 355 nm ultraviolet laser beam of about 20 mW was focused on the sample
as an excitation source through a 4× objective lens. A 355 nm laser excitation wavelength was used to
ensure a smaller penetration depth in order to collect relative structure information. It was estimated
that the penetration depth was several hundred nanometers within the coal samples under the 355 nm
laser radiation.
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Figure 1. In-situ Raman spectra of coal samples in Ar atmosphere by using a 532 nm excitation laser. 
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samples are shown in Table 1. The elemental content of the coal samples was measured by Elementar 
vario ELⅢ (Germany) and listed in Table 1. The coal samples were first ground to the size of 0.2 mm 
and then dried at 40 °C for 12 h. The dry coal powders were stored for further characterization by 
high temperature Raman spectrometry. 
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C6 1.84 77.02 4.62 0.44 11.80 

The spectral parameters (e.g., PG, PD, ID/IG, WD, and WG) were calculated from the deconvoluted 
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shown above indicate the average value. The curve-fitting procedure was deconvoluted by Origin 
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Figure 1. In-situ Raman spectra of coal samples in Ar atmosphere by using a 532 nm excitation laser.

2.2. Coal Samples and Preparation

Six coal samples of varying ranks and with different carbon contents were selected. These samples
are shown in Table 1. The elemental content of the coal samples was measured by Elementar vario
ELIII (Germany) and listed in Table 1. The coal samples were first ground to the size of 0.2 mm and
then dried at 40 ◦C for 12 h. The dry coal powders were stored for further characterization by high
temperature Raman spectrometry.

Table 1. Elemental composition of coal samples.

Sample ID N (%) C (%) H (%) S (%) O (%)

C1 1.84 79.69 4.67 0.27 11.50
C2 1.92 77.84 4.72 0.41 7.23
C3 1.81 78.56 4.50 0.58 11.00
C4 1.88 78.54 4.26 0.75 10.70
C5 2.12 76.63 5.36 0.64 9.76
C6 1.84 77.02 4.62 0.44 11.80

The spectral parameters (e.g., PG, PD, ID/IG, WD, and WG) were calculated from the deconvoluted
D and G bands and are discussed as below. All Raman spectra were fitted three times, and the data
shown above indicate the average value. The curve-fitting procedure was deconvoluted by Origin 8.0.

3. Results and Discussion

3.1. Room Temperature Raman Spectra of a Typical Coal Sample

Figure 2a shows a typical room temperature Raman spectrum obtained from one of the tested
coals (Coal C1). Due to the low transmission efficiency of the ultraviolet light used in the spectrometer
at 355 nm, a strong fluorescence interference, as evidenced by the sloping background with the Raman
shift, was observed. To avoid the interference from the background, the background was subtracted
using the baseline method. The background-subtracted spectrum is shown in Figure 2b.
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Figure 2. A typical room-temperature Raman spectrum of one of the tested coals, C1. 

Two bands are discernible at approximately 1360 and 1590 cm−1. These bands correspond to the 
D and G bands for graphite in Figure 2. Due to a disordered and defective diamond band or an sp3 
hybridization carbon, the D band was assigned to the A1g mode, which relates to the average graphite 
domain dimension, while the G band was assigned to the graphite E2g mode with D46h crystal 
symmetry and resulted from a graphitic, tangential band or sp2 hybridization [22]. However, unlike 
what observed for graphite, the bands were very diffuse and therefore overlapped, most likely due 
to the fluorescent background. In order to determine the wavenumber position, the relative peak 
intensity, and the width or full width at half maximum (FWHM), the overlapped Raman bands were 
further deconvoluted into two well-defined peaks using origin 8.0. (Lorentz function), as shown in 
Figure 2b. The deconvoluted peaks were then discussed to reveal the structural difference and 
structural evolution of the coals during pyrolysis. A typical room temperature Raman spectrum of 
the graphite is shown in Figure 3. In comparison to Figure 3, the coal in Figure 2b showed that both 
D and G bands had shifted slightly towards the red spectral range. 
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Figure 3. A typical room temperature Raman spectrum of the tested graphite. 
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of the G and D bands were calculated. 
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Figure 2. A typical room-temperature Raman spectrum of one of the tested coals, C1.

Two bands are discernible at approximately 1360 and 1590 cm−1. These bands correspond to
the D and G bands for graphite in Figure 2. Due to a disordered and defective diamond band or an
sp3 hybridization carbon, the D band was assigned to the A1g mode, which relates to the average
graphite domain dimension, while the G band was assigned to the graphite E2g mode with D4

6h crystal
symmetry and resulted from a graphitic, tangential band or sp2 hybridization [22]. However, unlike
what observed for graphite, the bands were very diffuse and therefore overlapped, most likely due
to the fluorescent background. In order to determine the wavenumber position, the relative peak
intensity, and the width or full width at half maximum (FWHM), the overlapped Raman bands were
further deconvoluted into two well-defined peaks using origin 8.0. (Lorentz function), as shown
in Figure 2b. The deconvoluted peaks were then discussed to reveal the structural difference and
structural evolution of the coals during pyrolysis. A typical room temperature Raman spectrum of the
graphite is shown in Figure 3. In comparison to Figure 3, the coal in Figure 2b showed that both D and
G bands had shifted slightly towards the red spectral range.
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Figure 3. A typical room temperature Raman spectrum of the tested graphite.

Furthermore, the difference in the band position of PG, PD, WD, and WG and the area ratio (ID/IG)
of the G and D bands were calculated.

3.2. Microstructure of Coals of Varying Ranks

Figure 4 shows the background subtracted Raman spectra of the tested coal samples. The coal
samples clearly showed similar spectral profiles, having two distinct diffuse and overlapped D and
G bands.
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Figure 4. Background subtracted spectra of coals of different ranks.

As shown in Figure 5a, as the carbon content of the coals increased, the deconvoluted D and G
bands shifted little. Within a certain range, the D and G bands of the coals seemed independent of the
carbon content. However, compared with the G band, the D band shifted more noticeably, suggesting
that the carbon content had a greater effect on the D band than on the G band. The D band represents
the defects in the lattice of the C atom, while the G band represents the in-plane stretching vibration of
the sp2 hybridization of the C atom. With the increase in carbon content, the C=C in the coal samples
increases, but the number of disordered substances decreases [23].
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the coal samples.
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Figure 5b shows the effect of carbon content on the area ratio ID/IG of the deconvoluted D and G
bands. As shown in Figure 5b, ID/IG increased linearly with the carbon content in the coals. The higher
the value of ID/IG, the greater the number of defects that appeared in the C atom. As a result, the
defects of the C atom increased with an increase of the carbon content [24].

The effect of the carbon content on the width (FWHM) of the deconvoluted G and D bands is
presented in Figure 5c. The D band became broader as the carbon content of the coals increased.
By contrast, the G band showed a negligible change. WG can reflect the degree of ordering of
carbon materials.

The parameters affected each other. ID/IG is used to quantitatively evaluate the degree of disorder
of carbon materials. All parameters of the peaks G and D were affected by the first coalification jump.

3.3. In Situ High-Temperature Study of Different Coals by RAMAN

Figure 6a shows the in-situ temperature-dependent Raman spectra of coal C1 under an
Ar atmosphere. The gas flow was monitored and controlled by the amount of bubbles from
water—approximately 160 bubbles per minute. When the sample temperature was lower than
473 K, the sample was heated at a rate of 30 K per min. The heating rate was increased to 50 K per min
when the sample temperature was higher than 473 K. The integral time and frequency were 20 × 20 and
were increased to 30 × 30 at a temperature of 873 K. A yellow substance was observed at a temperature
of approximately 673 K. This substance was believed to be tar oil [25]. The spectrum labeled as 873 K-2
appeared during the second recording, when the sample was reheated to 873 K after it was held at
873 K for 40 min. The sample was then cooled down at 50 K/min to room temperature. This cooling
allowed for the cleaning of the silica glass prior to measurement.
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using a 355 nm excitation laser.

Figure 6b shows the in-situ temperature-dependent Raman spectra of coal C2 under an Ar
atmosphere. The integral time and frequency were set at 30 × 30 s in the entire heating process. From
Figure 6, it is clear that the peak position of the D band related to the low molecular weight carbon
organics, while the intensity of the D band changed negligibly with the increasing temperature [26,27].
This implies an increase in the graphitization degree along with the increase in temperature. The low
molecular weight carbon organics condensed considerably, starting to devolatilize at 673 K. Some of
these organics stayed on the coal samples in a liquid state for some time. Most heavy molecular weight
carbon organics seemed to condense and devolatilize starting at a temperature of 873 K. This suggests
that there could be more heavy molecular weight carbon organics condensing and devolatilizing
or moving from the coal samples in the range of 873 K to 1273 K, disappearing rapidly at 1473 K.
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By contrast, the G peak position showed a blue shift with an increase in temperature, and its intensity
became weaker due to the decreasing devolatilized content in the samples. This demonstrated that the
G peak position was affected by the devolatilization of the coal samples.

Generally, the Raman band would shift to a lower wavenumber and become smaller in intensity
with an increase in temperature if no phase transformation takes place.

From Figure 6b, it is clear that the spectrum at 673 K seemed quite different from the corresponding
spectrum of C1 in Figure 6a. This difference was the result of the appearance and extension of the
Rayleigh line. During pyrolysis, small liquid molecules on the surface where the sampling point
is focused can occasionally enhance Rayleigh scattering, but this phenomenon occurs differently
each time.

This finding may imply the presence of a liquid substance on the coal samples. A gas, liquid, and
solid three-phase coexistence was reported during coal pyrolysis from 673 to 873 K [15,28]. When the
temperature exceeded the curing temperature of 873 K, an adhesion phenomenon seemed to occurr,
resulting in the formation of tar oil or char [29,30], which covered the silica glass. The samples then
needed to be cooled down at 50 K per min, from 873 K to room temperature, which allowed the silica
glass to be cleaned. Finally, the samples were reheated to 873 K for further observation.

The effect of temperature on the peak position variations of the G band of the samples pyrolyzed
under an Ar atmosphere is shown in Figure 7. Generally, the spectral lines show a linear decline
trend as the temperature increases in the in-situ temperature-dependent Raman spectra [31,32]. As a
result of the condensation of the low molecular weight carbon organics that was discovered to be coal
tar [33], this variation in the peak position of the G band was complex and consisted of the coalification
processes of condensation, crystallization, coking, and devolatilization during the entire pyrolysis
process. As shown in Figure 7, from room temperature to 673 K, a blue shift was observed for the
G band as more coal tar that was generated and adhered to the coal samples evaporated. A critical
point was also observed at a temperature of 873 K. A red shift was observed, which was most likely
due to the normal displacement and the devolatilization of coal tar generated in large quantities on
the surface of the coal samples. This was followed by the coking stage from 873 to 1073 K and the
devolatilization stage from 1073 to 1473 K. At the same time, the peak positions of the G band at 1073
and 1273 K were quite different from the peak position of the second value at 873 K. This finding
confirms the results of the previous discussion [34].
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4. Conclusions

The carbon content has little effect on the positions of the D band and G band. The parameters
(PG, PD, ID/IG, WD, and WG) of the D and G bands were discussed. The parameters affected each other.
Among them, ID/IG is used to quantitatively evaluate the degree of disorder of carbon materials.
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During an in-situ high temperature-dependent pyrolysis process, the peak position of the D band
seems related to the low molecular weight carbon organics. Since the low molecular weight carbon
organics condensed and devolatilized, the intensity of the D band changed negligibly with an increase
in temperature. Meanwhile, the position of the G band was shifted to blue, and its intensity became
weaker with an increase in temperature, which was the result of aa decrease in devolatilized contents
in the samples. The G peak position variation was affected by condensation and devolatilization of the
low molecular weight carbon organics and the heavy molecular weight carbon organics inside the
coal samples. This variation in the peak position of the G band reflects the coalification processes of
condensation, crystallization, coking, and devolatilization during the entire pyrolysis process.

Raman spectroscopy has clear potential for the diagnostic identification of coal and for coking
optimization.
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