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Featured Application: A unified frequency-domain modelling and stability analysis is presented
to predict the impact of mutual interactions between a wind power plant and a weak grid on the
stability margin.

Abstract: It is important to develop modelling tools to predict unstable situations resulting from
the interactions between the wind power plant and the weak power system. This paper presents
a unified methodology to model and analyse a wind power plant connected to weak grids in the
frequency-domain by considering the dynamics of the phase lock loop (PLL) and controller delays,
which have been neglected in most of the previous research into modelling of wind power plants
to simplify modelling. The presented approach combines both dq and positive/negative sequence
domain modelling, where a single wind turbine is modelled in the dq domain but the whole wind
power plant connected to the weak grid is analysed in the positive/negative sequence domain. As the
proposed modelling of the wind power plant is systematic and modular and based on the decoupled
positive/negative sequence impedances, the application of the proposed methodology is relevant
for transmission system operators (TSOs) to assess stability easily with a very low compactional
burden. In addition, as the analytical dq impedance models of the single wind turbine are provided,
the proposed methodology is an optimization design tool permitting wind turbine manufacturers to
tune their converter control. As a case study, a 108 MW wind power plant connected to a weak grid
was used to study its sensitivity to variations in network short-circuit level, X/R ratio and line series
capacitor compensation (Xc/Xg).

Keywords: wind power plants; wind turbines; weak grids; impedance-based modelling;
small-signal stability

1. Introduction

With the increasing number of solar and wind power plants in the electrical grid, the installation
ratio of traditional synchronous generators to the total production capacity is significantly decreasing,
which is leading to weak transmission grids [1]. Worldwide, the transmission system operators are in the
process of updating their grid connection requirements for generation units to ensure that transmission
networks can continue to be operated in a secure manner when renewable energy resources replace
traditional thermal generation units. It is important to have simulation models, which can reliably
predict the stability margins under contemporary operational conditions. The grid-stability of such
systems can be improved in multiple ways through combinations of properties of the generation units
and an additional balance of plant equipment such as STATCOMS, battery storage, etc.
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In the literature, time-domain analysis [2,3] and frequency-domain analysis [4,5] have been used
to model and analyse different power electronics-based power systems. Linearised frequency-domain
analysis is accurate around an operating point for an intended frequency range. It requires much
less computational power than non-linear time-domain simulations [6]. State-space modelling and
impedance-based modelling are two popular approaches in the frequency-domain [7,8]. In these
approaches, the stability can be analysed based on poles, eigenvalues, Nyquist plots or Bode plots.
So far, state-space and impedance-based modelling have been used in different power electronics-based
power systems like microgrids, wind power plants, solar plants, parallel current source converters
and voltage source inverters. In the following section, papers, which are based on the state-space and
impedance-based methods, are reviewed.

In general, there are three methods for state-space modelling: state-space averaging method,
harmonic state-space (HSS) method and component connection method (CCM). State-space averaging
modelling is a basic method to model and analyse a dynamic system. In this method, a linearised
system is presented by the state variable matrix, input matrix and output matrix. In the literature,
various power electronic systems like wind power plants and microgrids have been modelled
based on this approach [9,10]. However, as this method is not modular, it can be complex for
large-scale power electronic systems [11]. In the linear time-periodic (LTP) systems, where there are
couplings between different frequencies, a powerful analysis tool is the harmonic state-space (HSS)
method [12,13]. The harmonic state-space model of an LTP system can generally be written based on
the Fourier coefficients of the state matrices [13]. Compared to the state-space averaging method, the
harmonic state-space method is more accurate but also more complex, as this approach models the
frequency-couplings in the system. In the component connection method (CCM), first a dynamic system
is divided into some smaller subsystems and each subsystem is modelled based on the state-space
method. Then, all individual matrices will be placed in new diagonal matrices. For large-scale
dynamic systems, CCM is much more systematic and modular compared to the state-space averaging
method [14–16].

In addition to state-space modelling, impedance-based modelling is another useful tool for
frequency-domain analysis [17]. In this method, the grid output impedance (Zs) and the converter
input impedance (Zl) are required for stability analysis [5,18]. The impedance/admittance matrices can
be calculated in the dq domain or in the sequence domain. In the sequence domain, by perturbing
a three-phase power converter at a frequency fp + f1 in the positive sequence and a frequency fp −
f1 in the negative sequence, the small-signal relationship between the output current and voltages
can be written by a 2 × 2 impedance/admittance matrix [19]. As the coupling between negative and
positive sequence is very small, off-diagonal elements of the impedance matrix can be neglected for
stability analysis [5,20]. In the dq domain, the three-phase converter is disturbed in the dq frame, where
three-phase variables can be transformed into the dq domain by the Park’s transformation. Similar to
the sequence domain, the small-signal impedance/admittance of the converter can be written by a 2 × 2
impedance/admittance matrix [21,22]. In the dq domain, there is a high-coupling between d-axis and
q-axis. Therefore, for the stability analysis, off-diagonal impedance matrix elements cannot be neglected
like they can in the sequence domain [23–25]. As the converter controller is usually implemented in
the dq frame, dq domain modelling is simpler and more efficient for the controller design compared to
the sequence domain modelling. However, for a stability analysis of the whole system, dq domain
impedance-based modelling is a more complex method because of high-coupling between the d-axis
and q-axis. As the impedance data of the grid is usually available in the positive/negative sequence
domain and the sequence domain impedance matrix is almost decupled, it is more efficient to do a
stability analysis of a large system in the sequence domain. In order to have both the advantages of dq
domain and sequence domain modelling, this paper presents a systematic and modular method, where
the wind turbine is modelled in the dq domain and where stability analysis of the wind power plant is
analysed in the sequence domain. In fact, for stability analysis, dq domain impedance is transferred to
the sequence domain using a transformation matrix. The equivalent positive sequence impedance
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is used to analyse the wind power plant stability based on the system poles and based on Nyquist
criterion of the open-loop system. The presented method is scalable and adaptable to different scales
of the power system along with a low computational burden.

In the following section, a wind turbine with full-scale converter configuration is considered to
be modelled. The dynamics of the PLL and the time delay, which have been usually neglected in the
literature on wind power plant stability analysis [24], are also included to have a more accurate model.
Then, a 108 MW wind power plant connected to a weak grid is analysed under different conditions.

2. Full-Scale Converter-Based Wind Turbines

The full-scale converter configuration, which is shown in Figure 1, is one of the popular
configurations for variable speed wind turbines. In this configuration, the grid side converter usually
controls the dc-link voltage, and the machine side converter controls the active power [26]. If the small
oscillations of the dc-link voltage are neglected, the dynamics of the wind turbine around and above
the fundamental frequency can be predicted by modelling of the grid side converter [27]. Therefore,
the dynamics of the machine side converter can be neglected in this paper.
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Figure 1. Simplified representation of full-scale converter-based wind turbine connected to the 

network. 

Figure 2 shows the grid side converter of a wind turbine with its control in the dq frame. The 
grid side converter is a voltage source converter, and its control consists of four main parts: grid 
synchronization, dc-link voltage controller, current controller and pulse width modulation (PWM) 
[28]. The grid synchronization loop estimates the phase angle of the point-of-connection (PoC) 
voltage, and this angle is used to transform the signals between the abc frame and the dq frame [29]. 
The current references (Id ref and Iq ref) are generated from the dc-link voltage and reactive power 
controller. The error of these references is compared to the measured grid currents (Id and Iq) and fed 
to proportional integral (PI) controllers (Gcc). 
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Figure 1. Simplified representation of full-scale converter-based wind turbine connected to the network.

Figure 2 shows the grid side converter of a wind turbine with its control in the dq frame.
The grid side converter is a voltage source converter, and its control consists of four main parts: grid
synchronization, dc-link voltage controller, current controller and pulse width modulation (PWM) [28].
The grid synchronization loop estimates the phase angle of the point-of-connection (PoC) voltage, and
this angle is used to transform the signals between the abc frame and the dq frame [29]. The current
references (Id

ref and Iq
ref) are generated from the dc-link voltage and reactive power controller. The error

of these references is compared to the measured grid currents (Id and Iq) and fed to proportional
integral (PI) controllers (Gcc).

The outputs of the current controllers are fed to the PWM modulator to generate the final switching
signals of the insulated-gate bipolar transistors (IGBTs). The time-delay of the PWM and the discrete
control can be modelled by using the Padé approximation [30].
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Figure 2. Grid side converter and its control, as typically used in wind turbines.

3. Small-Signal Admittance Model in dq-Domain

Figure 3 shows the model of the current controller, the feedforward terms, the PWM modulator
and the filter choke of the grid side converter in the dq frame. The measurement delay is very
small compared to the PWM delay and can be neglected. An outer dc-link voltage control loop is
implemented in the GSC and is responsible to keep the dc-link voltage constant. The bandwidth of
this outer control loop is very low compared to the fundamental frequency. This paper focuses on
the oscillations around and above the fundamental frequency. Therefore, such low-bandwidth outer
loops can be neglected [13]. As it is assumed that the dc-link voltage is constant, the dynamics of the
dc-link controller have been neglected. Because of the dynamics of the grid synchronization loop,
the dq domain model comprises a fixed global frame and a local controller frame. In the model, the
measurement delay is neglected, but the PWM delay (Gd) is included as defined in [30]. The grid
voltage is added to the output current controller (Gcc) through a high-pass/low-pass filter (Gf).
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Figure 3. Dq small signal model of the current controller, PLL and the filter inductance (Lf). 
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According to Figure 3, the small signal output currents and dq output voltage can be obtained by
the following matrices:[

sL f −ω0L f
+ω0L f sL f

][
∆ig

d
∆ig

q

]
=

[
Gd 0
0 Gd

] ∆vinv−g
d

∆vinv−g
q

+ [ −1 0
0 −1

][
∆vg

d
∆vg

q

]
(1)

[
∆vinv−c

d
∆vinv−c

q

]
=

[
−Gcc 0

0 −Gcc

] [
∆icd
∆icq

]
+

[
G f 0
0 G f

][
∆vc

d
∆vc

q

]
(2)

By neglecting the dynamics of the grid synchronization loop, e.g., PLL, the dq frame of the plant
and the dq frame of the controller would be the same, i.e.,

[
∆icd
∆icq

]
=

[
∆ig

d
∆ig

q

]
=

[
∆id
∆iq

] [
∆Vc

d
∆Vc

q

]
=

[
∆Vg

d
∆Vg

q

]
=

[
∆Vd
∆Vq

]  ∆Vinv−g
d

∆Vinv−g
q

 = [ ∆Vinv−c
d

∆Vinv−c
q

]
=

[
∆Vinv

d
∆Vinv

q

]
(3)

By substituting (2) and (3) in (1), the admittance matrix can be obtained as

−

[
∆id
∆iq

]
= Ydq

[
∆vd
∆vq

]
⇒ Ydq = −

[
sL f + GdGcc −ω0L f

+ω0L f sL f + GdGcc

]−1[
GdG f − 1 0

0 GdG f − 1

]
(4)

where the dynamics of the grid synchronization loop are ignored.
For the grid synchronization loop, the synchronous reference frame phase-locked loop (SRF-PLL)

can be used and the small signal model is shown in Figure 4.
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When small-signal perturbations are added to the Vg voltage, the estimated angle will have a
small error (∆θ) between the local (controller) and global (plant) frames because of the PLL dynamics.
In Figure 4b, fdq

c corresponds to the estimated angle and fdq
g corresponds to the actual angle. Based

on Figure 4, the voltage and current in the controller frame and plant frame under small-signal
perturbations can be derived as[

∆icd
∆icq

]
=

[
∆ig

d
∆ig

q

]
+

 0 GpllIq

0 −GpllId

 [ ∆Vg
d

∆Vg
q

] [
∆Vc

d
∆Vc

q

]
=

[
∆Vg

d
∆Vg

q

]
+

 0 GpllVq

0 −GpllVd

 [ ∆Vg
d

∆Vg
q

]
 ∆Vinv−g

d
∆Vinv−g

q

 = [ ∆Vinv−c
d

∆Vinv−c
q

]
+

 0 −GpllV
inv
q

0 GpllV
inv
d


[

∆Vg
d

∆Vg
q

] (5)
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where Id, Iq, Vd, Vq, V
inv
d and V

inv
q are the operating point values of the converter. ∆θ can be derived as

∆θ = Gpll∆Vg
q =

GPLL
PI

Vnom + GPLL
PI Vd

∆Vg
q GPLL

PI = Kpll
p +

Kpll
i
s

(6)

Using (1), (2), (5) and (6) and some simplifications, the small signal admittance matrix can be
obtained by

Ydq =

[
ydd(s) ydq(s)
yqd(s) yqq(s)

]
= −

[
∆Vg

d
∆Vg

q

]−1

×

[
∆ig

d
∆ig

q

]
= −

[
sL f + GccGd −ω0L f

+ω0L f sL f + GccGd

]−1

×

 G f Gd − 1 −GccGdGpllIq + G f GdGpllVq −GpllGdV
inv
q

0 GccGdGpllId + G f Gd −G f GdGpllVd + GpllGdV
inv
d − 1


(7)

4. Equivalent Small-Signal Admittance Model in Sequence Domain

In the previous section, the small-signal admittance model of the converter in the dq domain has
been obtained. However, the admittance model can also be obtained in the positive-negative sequence
domain [18,20]. The small-signal admittance matrix in the sequence domain can also be written by a
2 × 2 admittance matrix, where its off-diagonal elements show a coupling between the positive and
negative components. This coupling is very small and can be neglected [7]. The relationship between
the sequence domain admittance definition and dq domain admittance definition [20] can be obtained
by the following equation as derived in Appendix A.[

ypp(s) ypn(s)
ynp(s) ynn(s)

]
=

[
1 1
− j j

]−1[
ydd(s) ydq(s)
yqd(s) yqq(s)

][
1 1
− j j

]
(8)

The detailed form of Equation (8) is obtained by substituting Equation (7). In this paper, the dq
domain admittance is obtained, and then the equivalent sequence admittance is derived based on (8).
For the linear stability analysis of the wind power plant in the sequence domain, the coupling terms
may be neglected, and the conventional positive impedance is calculated as:

Zp(s) =
1

ypp(s− jω1)
(9)

5. Total Wind Turbine Thévenin Impedance

As shown in Figure 5, there is a filter capacitor and a transformer in the output circuit of the wind
turbine. Therefore, the total Thévenin impedance of the wind turbine can be equated to

ZW = K2
[
(

Zc f Zp

ZC f + Zp
) + ZLg

]
= K2

ZC f Zp + ZLgZp + ZC f ZLg

ZC f + Zp
(10)

where Zp is the equivalent small-signal positive impedance of the wind turbine, Zcf is the filter capacitor
impedance, Zlg is the leakage impedance transformed in the primary side, and K is the transformer
voltage ratio. As can be seen, Zp is in parallel with Zcf and they are in series with Zlg. Then this
equivalent impedance is transferred to the high-voltage side by the transformer ratio to the power of
two (K2).
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6. Case Study of a Wind Power Plant Connected to a Weak Grid

In order to perform an impedance-based stability analysis, an aggregated model of the wind
power plant is required. For example, Figure 6 shows a 108 MW wind power plant with three strings
and ten 3.6 MW wind turbines installed on each string. All wind turbines in the wind power plant are
assumed to have the same structure. Therefore, the impedance equivalent of the aggregated wind
turbines can be obtained based on per-unit values.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 15 
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If it is assumed that the voltages and currents of the wind turbines are the same, ten 3.6 MW
wind turbines of each feeder can be aggregated into one 36 MW wind turbine (see Figure 7), where its
equivalent series cable parameter can be obtained [31,32] by

ZAT =

10∑
m=1

m2Zm

102 BAT =
10∑

m=1

Bm (11)
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Figure 8. Aggregated wind power plant model connected to weak grid.

ZAT is the equivalent series impedance, and BAT is the equivalent shunt susceptance, respectively.
Finally, three 36 MW parallel aggregated wind turbines can be aggregated as one 108 MW wind turbine
(shown in Figure 7), where its equivalent series parameter can be calculated by

ZT =
ZAT

3
BT = 3BAT (12)

6.1. Stability Analysis

By obtaining the equivalent wind power plant impedance and the equivalent grid impedance,
Figure 8 can be used for stability analysis. Based on this figure, the transfer function for the current can
be obtained as

I(s) =
Vwt −Vgrid

Zwt + Zgrid
= (

Vwt −Vgrid

Zwt
)(

1
1 + Zgrid/Zwt

) (13)

For the stability analysis, the poles of the system can be obtained by solving the following equation:

Zwt + Zgrid = 0 (14)

As the wind power plant is stable when connected to a strong grid, i.e., Vwt/Zwt has no right-half
plane poles, an alternative option for the stability analysis is to assess the Nyquist stability criterion for
Zgrid/Zwt.

A weak grid model is considered here including inductive reactance (Xg), resistance (R), and
series capacitive reactance (Xc) for compensation. To illustrate sensitivity to variation in the network,
short-circuit level, Xg/R ratio and line series compensation, three scenarios, are studied, all based on
a fictitious wind turbine converter controller, the parameters of which are listed in [21]. The wind
turbine has been tuned for a strong grid. In Appendix B, all the variables and parameters used in the
figures are summarized.
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6.1.1. Short Circuit Ratio (SCR) Variations for Xg/R = 20 and Xc/Xg = 0

In this scenario, the SCR is changed from 1.25 to 1.5, Xg/R = 20 and Xc/Xg = 0 (without series
compensation). Some poles of the system are shown in Table 1. As it can be seen, there is an unstable
pole for SCR = 1.25.

Table 1. Poles for short circuit ratio (SCR) variations for Xg/R = 20 and Xc/Xg = 0.

SCR P1 P2 P3

1.25 123 + j184 4.61 + j449 −240 + j596

1.5 −117 + j189 −30.6 + j446 −297 + j669

Nyquist criterion-based stability analyses for SCR = 1.25 and SCR = 1.5 are shown in Figure 9.
When the SCR = 1.25, there is an encirclement of the point −1, which shows that the system is unstable.
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6.1.2. Xg/R variations for SCR = 1.25 and Xc/Xg = 0

In this scenario, Xg/R is decreased from 20 to 5 and to 2.5, when the SCR = 1.25. As it can be seen
from the pole analysis in Table 2 and the Nyquist analysis in Figure 10, the system becomes more stable
by decreasing the Xg/R ratio.

Table 2. Poles for Xg/R variations for SCR = 1.25 and Xc/Xg = 0.

Xg/R P1 P2 P3

20 −123 + j184 4.61 + j449 −240 + j596

5 −124 + j189 2.07 + j438 −255 + j596

2.5 −125 + j196 −2.97 + j427 −245 + j596
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6.1.3. Xc/Xg Variations for SCR = 1.25 and Xg/R = 20

Table 3 and Figure 11 show the corresponding poles and Nyquist criteria under Xc/Xg variations
for SCR = 1.25 and Xg/R = 20. It can be seen that the real part of the pole around 70 Hz becomes more
negative (more stable) along with more compensation.

Table 3. Poles for Xc/Xg variations for SCR = 1.25 and Xg/R = 20.

Xc/Xg P1 P2 P3

0 −123 + j184 4.61 + j449 −240 + j596

0.1 −119 + j182 −0.61 + j449 −239 + j600

0.3 −110 + j175 −11.1 + j450 −237 + j609
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Figure 11. Nyquist criteria under Xc/Xg variations for SCR = 1.25 and X/R = 206.1.4. Time-domain
simulation result.

In order to validate the frequency-domain analysis, a time-domain simulation was performed for
SCR = 1.25, Xg/R = 20 and Xc/Xg = 0. The current injected to the grid and its fast Fourier transform
(FFT) are shown in Figure 12. As it can be seen, some oscillations around 73 Hz (459 rad) are increased
until the wind turbine goes to trip. This result is matched with the frequency-domain result in Table 1,
which indicates there is one unstable mode as 4.61 + j449.
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7. Conclusions

This paper presents a unified impedance-based modelling and analysis tool to predict unstable
conditions resulting from the interactions between the wind power plant and the weak grid.
The proposed approach allows to have advantages of both the dq domain modelling and sequence
domain modelling. This enables transmission system operators (TSOs) to do stability analyses of large
power systems more efficiently, and it enables wind turbine manufacturers to optimise the controller
parameters to increase the stability margin under a weak grid connection. A 108 MW wind power
plant has been studied and the short circuit ratio (SCR) of the grid is considered to be 1.25 and 1.5.
The poles of the closed-loop system in the frequency-domain are calculated to find the frequency and
damping of the oscillatory modes. Nyquist criteria of the open-loop system are plotted to predict easily
the stability margin of the wind power plant connected to the weak grid. The results of a simulated
wind power plant have shown that a wind power plant which is tuned for a strong grid can become
unstable when connected to a weak grid. The proposed method is a valuable tool when adapting and
retuning the control system to actual grid conditions.

Author Contributions: E.E. and F.B. proposed the initial methodology, T.L. proposed how to apply the method
for weak grids, J.G.N. provided the data, and P.C.K. reviewed and edited the paper.

Funding: This research was funded by “Vestas Wind System A/S” and “Innovation Fund Denmark, grant number
8054-00023B”.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2019, 9, 4695 12 of 15

Appendix A

A Relationship between dq-domain admittance/impedance and sequence-domain
admittance/impedance.

In this part, the relationship between dq-domain admittance/impedance and sequence-domain
admittance/impedance is derived.

Following Park’s transformation is used to convert three-phase variables into a dq reference frame:

[
Xd
Xq

]
=

2
3

[
cos(θ) cos(θ− 2π

3 ) cos(θ+ 2π
3 )

− sin(θ) − sin(θ+ 2π
3 ) − sin(θ+ 2π

3 )

]
Xa

Xb
Xc

 (A1)

For θ = ω1t in (A1), three-phase perturbed voltages described in (29) can be transformed to the
dq-domain as[

∆vd + Vd

∆vq + Vq

]
= 2

3

[
cos(2π f1t) cos(2π f1t− 2π

3 ) cos(2π f1t + 2π
3 )

− sin(2π f1t) − sin(2π f1t + 2π
3 ) − sin(2π f1t + 2π

3 )

]
×

V1 cos(2π f1t + φv1) + v̂p cos
[
2π( fp + f1)t + φvp

]
+ v̂n cos

[
2π( fp − f1)t + φvn

]
V1 cos(2π f1t + φv1 −

2π
3 ) + v̂p cos

[
2π( fp + f1)t + φvp −

2π
3

]
+ v̂n cos

[
2π( fp − f1)t + φvn +

2π
3

]
V1 cos(2π f1t + φv1 +

2π
3 ) + v̂p cos

[
2π( fp + f1)t + φvp +

2π
3

]
+ v̂n cos

[
2π( fp − f1)t + φvn −

2π
3

]


(A2)

Based on trigonometric formulas and some simplification, (A2) can be simplified as[
∆vd + Vd

∆vq + Vq

]
=

[
V1 cos(φv1) + v̂p cos(2πfpt + φvp) + v̂n cos(2πfpt + φvn)

V1 sin(φv1) + v̂p sin(2πfpt + φvp) − v̂n sin(2πfpt + φvn)

]
=

[
V1 cos(φv1) + v̂p cos(2πfpt + φvp) + v̂n cos(2πfpt + φvn)

V1 cos(φv1 −
π
2 ) + v̂p cos(2πfpt + φvp −

π
2 ) − v̂n cos(2πfpt + φvn −

π
2 )

] (A3)

According to (A3), small-signal dq voltages can be obtained based small-signal positive-negative
voltages as [

∆vd
∆vq

]
=

[
v̂pe jφvp + v̂ne jφvn

− jv̂pe jφvp + jv̂ne jφvn

]
=

[
1 1
− j j

][
v̂pe jφvp

v̂ne jφvn

]
=

[
1 1
− j j

][
∆vp

∆vn

]
(A4)

The same relationship is valid for three-phase currents.[
∆id
∆iq

]
=

[
1 1
− j j

][
∆ip
∆in

]
(A5)

As already presented in this paper, the small-signal behaviour of a three-phase converter can be
modelled in dq domain by [

∆id
∆iq

]
=

[
ydd(s) ydq(s)
yqd(s) yqq(s)

][
∆vd
∆vq

]
(A6)

By substituting (A4) and (A5) in (A6) we get[
1 1
− j j

][
∆ip
∆in

]
=

[
ydd(s) ydq(s)
yqd(s) yqq(s)

][
1 1
− j j

][
∆vp

∆vn

]
(A7)

Equation (A7) can be rewritten as[
∆ip
∆in

]
=

[
1 1
− j j

]−1[
ydd(s) ydq(s)
yqd(s) yqq(s)

][
1 1
− j j

][
∆vp

∆vn

]
=

[
ypp(s) ypn(s)
ynp(s) ynn(s)

][
∆vp

∆vn

]
(A8)
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Based on (A8), the relationship between sequence-domain admittance definition and dq-domain
admittance definition can be obtained by[

ypp(s) ypn(s)
ynp(s) ynn(s)

]
=

[
1 1
− j j

]−1[
ydd(s) ydq(s)
yqd(s) yqq(s)

][
1 1
− j j

]
(A9)

Appendix B

In the following table, all the variables and parameters used in the figures are defined.

Table A1. Definition of the variables and parameters used in the figures.

Vdc dc-link voltage Qre f
g reactive power reference

L f filter chock Qg injected reactive power

C filter capacitor Vre f
dc

dc-link voltage reference

Zlg transformer leakage impedance Ire f
d

d-axis current reference

Vg filter capacitor voltage Ire f
q q-axis current reference

Ig wind turbine current Ts sampling time

K transformer ratio Vnom nominal voltage

VPoC point of connection voltage Kpll
p proportional gain of the PLL

Z1 cable impedance Kpll
i

integral gain of the PLL

B1 cable susceptance Zp
equivalent small-signal positive
impedance of the wind turbine

Rgrid grid resistance Zc f filter capacitor impedance

Zgrid grid impedance Zlg leakage impedance

Vgrid grid voltage Zw Thévenin impedance

Vd d-axis voltage of the grid ZT equivalent series cable impedance

Vq q-axis voltage of the grid BT equivalent shunt cable susceptance

θ grid voltage angle Zwt
Thévenin impedance of the aggregated

wind power plant

ω0 grid frequency
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