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Abstract: With the growing threat of the side-channel attack (SCA) to the cryptographic algorithm’s
implementations, the masking method has become one of the most promising SCA countermeasures
for securely implementing, for example, block ciphers. The basic principle of the masking method
is that if the sensitive variable (which, by definition, depends on sensitive information) is split into
some random variables and they are manipulated in a secure manner, then the relationship between
the random variables and the corresponding side-channel information may look independent from
the outside world. However, after the introduction of the glitch attack, there has been a lot of
concern about the security of the masking method itself. And, to mitigate the threat of the glitch
attack, the threshold implementation (TI) and G-equivariant gates were independently introduced as
countermeasures. In this paper, we consider the main notions of two such independent glitch attack’s
countermeasures, say, non-completeness and G-equivariance, and investigate their relationship.
The contribution of this paper is three-fold. First, we show that the widely-circulated proof that
the non-complete TI with uniform inputs guarantees the security against the 1st order DPA even
in the presence of glitches is not satisfactory. Next, using the extended notion of G-equivariance to
the higher-order setting, we prove that non-completeness implies G-equivariance, which, in turn,
means that the non-complete TI with uniform inputs has resistance against the glitch attack. Thirdly,
we prove that the set of non-complete gates is a proper subset of the set of G-equivariant gates by
showing there is a gate that is G-equivariant but not non-complete.

Keywords: threshold implementation; G-equivariance; side-channel attack; masking method;
glitch attack

1. Introduction

With the growing threat of SCA (Side-Channel Attack, [1–4]), many countermeasures have been
proposed accordingly, and the masking method has been one of the most promising power attack
countermeasures for securely implementing block ciphers [5,6].

The basic principle of the masking methods is that if the sensitive variable (which depends on
key material and some known information by definition) is split into some random shares and then is
manipulated in a secure manner, the relationship between the behavior of internal variables and the
corresponding side-channel information may look independent from the outside world. However,
after the introduction of the glitch attack, there has been a lot of concern about the security of the
masking method itself [7–9].

The glitch attack primarily utilizes a specific hardware (HW) criterion, say, the glitch.
More precisely, most of the HW-based masking schemes prior to the glitch attack were mainly
based on the assumption that all gates’ input signals arrive at the gate simultaneously. However,
that is not true in practice. That is, the gate delay and the variable path lengths are very common in
semiconductor technologies, so each input signal arrives at a gate at different times. And, with this
phenomenon in hand, the state of the gate’s output signal fluctuates within a clock cycle until it is
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finally stabilized at a certain value, which is called a glitch. In particular, the glitch phenomenon highly
affects the amount of electrical power consumed by the circuit, and, moreover, the consumed power is
highly related to the circuit’s input. The glitch attack analyzes this relationship to retrieve some secret
information in cryptographic devices. Unfortunately, most masking schemes prior to the glitch attack
have been shown to possess some inherent vulnerabilities to the attack.

To mitigate the devastating effect of the glitch attack, the authors in [10–13] introduced the
concept of TI (Threshold Implementation), which is based on the techniques of secret-sharing and
multi-party computation and is believed to be provably secure against a first-order differential power
attack (DPA). Basically, TI is a Boolean masking scheme which satisfies three specific properties, say,
correctness, non-completeness, and uniformness. The correctness implies that the (Boolean) sum of
the output shares is equal to the original output. And, the (d-th order) non-completeness means that
processing any combination of up to d output masks altogether does not require at least one input share.
The uniformness requires that the output distribution is preserved when a function is implemented in
a shared form. The exact definition of these three properties is given in the next section. The most
important characteristic of TI is that (first-order) TI is provably secure against the 1st-order differential
power attack even in the presence of glitches [11].

As another glitch attack countermeasure, the authors in [14] proposed a new kind of gates, say,
G-equivariant gates. Simply speaking, the G-equivariant gate is the gate, the toggling count of whose
output is independent with the arrival order of the gate’s input signals. After all, the independency is
believed to successfully prevent the 1st-order side-channel DPA regardless of the arrival order of the
input signals. However, it was also shown in [14] that there are no G-equivariant gates which have
two input shares and the XOR sum in which two output shares is equal to the logical AND evaluation
of its original inputs.

Contribution of this paper. As noted before, the most notable characteristic of TI is that it is
provably secure against the 1st-order DPA even in the presence of glitches. And, the main concern of
this paper lies at the security proof itself. That is, we re-investigate the proof that TI is secure against
the 1st-order DPA even in the presence of glitches, and conclude that the proof has some missing points.
To remedy it, we then propose to utilize the concept of G-equivariance. More precisely, while the
original concept of G-equivariance is defined for 2-share masking setting, we use the extended notion
of G-equivariance to an arbitrary number of shares and prove that the non-complete masked circuit is
actually G-equivariant, which, in turn, implies that any non-complete TI can successfully prevent the
glitch attack. Finally, we show that there are some G-equivariant gates that are not non-complete; thus,
the notion of G-equivariance is broader than that of non-completeness. Consequently, the contribution
of this paper is three-fold. First, we review the proof in [14] that any non-complete TI with uniform
input sharing is secure against the 1st order DPA even in the presence of glitches and claim that the
proof is not satisfactory by introducing a contradictory example. Next, extending the definition of
G-equivariance, this paper proves that non-completeness implies G-equivariance, which fills the gap
in the security proof in [14]. Finally, we give some exemplary gates which are not non-complete but
are G-equivariant.

The paper is organized as follows. In Section 2, we review some prerequisite knowledge for
our subsequent discussions. In Section 3, we show why the proof that non-completeness guarantees
the 1st-order DPA-resistance is not satisfactory. Then, in the next section, we will prove that
non-completeness implies G-equivariance and give some examples that are G-equivariant without
being non-complete. The conclusion is given in Section 5.

2. Prerequisite

2.1. Notation

In this paper, small letters (possibly with superscripts) stand for elements of finite fields or
functions over finite fields and small letters (possibly with superscripts) with subscripts are used
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for denoting a component element of a finite field element (when the finite field is considered as a
vector space over a base field), a component function of a vectorial function, or an input parameter
of a multivariate function. For example, a ∈ GF(2n) can be written as a = (a0, a1, . . . , an−1) for
ai ∈ GF(2). The n-th order mask of a ∈ GF(2n) (which will more precisely be defined later) is denoted
as (a0, x1, . . . , an−1) for ai

∈ GF(2n).

2.2. Masking Method

Power attack, which was first introduced by P. Kocher et al. can retrieve sensitive information
in cryptographic devices using devices’ power consumption patterns ([2]). Various techniques were
introduced as power attack countermeasures, among which the masking method is representative for
securely implementing, for example, block ciphers against DPA(differential power attack).

To apply the (Boolean) masking method to a function z = f (x) : GF(2n)→ GF(2m), one should
first determine the input masking order din and the output masking order dout and then should take
the following procedure: for given x ∈ GF(2n),

(1) Randomly choose x1, . . . , xdin ∈ GF(2n).
(2) Compute x0 = x⊕ x1

⊕ · · · ⊕ xdin , where ⊕ denotes the bitwise eXclusive-OR operation.

(3) From (x0, x1, . . . , xdin), compute (z0, z1, . . . , zdout) ∈ GF(2m)dout+1 with z0
⊕ z1
⊕ . . .⊕ zdout = f (x)

in the manner that any information about the original input x is not leaked during the computation.

The procedure above is usually called the (din, dout) -order masking scheme for z = f (x) and,
if din = dout = d, it is also called the d-th order masking scheme. The vector (x0, x1, . . . , xdin) is called
the din-th order mask (or, sharing) of x or the din-th order input mask of z = f (x) and each xi is called a
share of x. Similarly, (z0, z1, . . . , zdout) is called the dout-th order mask of z or the dout-th order output
mask of z = f (x), and each zi is called a share of z. Importantly, the quantities din and dout are closely
related to the effort an attacker has to pay to break the masking scheme. For example, to successfully
recover a key from the masking scheme with din-th input order, it is believed that an attacker needs to
observe at least din + 1 individual shares or statistical moments.

The function computing the output mask (z0, z1, . . . , zdout) given the input mask (x0, x1, . . . , xdin) is
denoted as ( f 0, . . . , f dout) and is called a shared implementation of z = f (x), thus f i(x0, x1, . . . , xdin) =

zi for each i.
Devising a masking scheme for linear or affine functions is known to be an easy task. For example,

if z = f (x) is linear (with respect to ⊕) and x = x0
⊕ x1
⊕ · · · ⊕ xdin , then f (x) = f (x0

⊕ x1
⊕ · · · ⊕ xdin) =

f (x0) ⊕ · · · ⊕ f (xdin), thus letting f i(x0, x1, . . . , xdin) = f (xi) gives a well-established masking scheme
for f . However, designing a masking scheme for non-linear functions, such as block ciphers’ S-box,
is non-trivial, and the gate-level masking method was introduced to address this issue, especially in
the hardware masking scheme design [15].

The idea of the gate-level masking method is very simple: after decomposing any function (or
circuit) into basic gates, like AND, XOR and so on, and individually applying an appropriate masking
scheme to the corresponding basic gates, the resulting circuit will serve as the masking scheme for
the original function. Especially, since AND, OR, NAND, and NOR gates are the only non-linear
basic gates, and OR, NAND, and NOR gates can be constructed with the composition of AND, XOR,
and NOT gates; the main research of the gate-level masking method focuses on how to apply the
masking method to the AND gate. For example, Figure 1 shows the masking scheme for the 2-input
AND gate proposed by E. Trichina [15], which can be mathematically described as: for a random bit r,

(x0, x1, y0, y1)→ (z0, z1) = ((((r⊕ x0y0) ⊕ x1y0) ⊕ x0y1) ⊕ x1y1, r). (1)
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Figure 1. Masked AND gate by E. Trichina.

2.3. Glitch Attack and Countermeasures

Most of the previous gate level masking methods prior to the glitch attack implicitly or explicitly
assumed that all input signals of any gate arrive at the gate simultaneously. However, the idealized
assumption is shown not to hold in practice. That is, due to the gate delay and the variable path
lengths, which are very common in the semiconductor technology, each input signal arrives at the gate
at different times. Moreover, eliminating such the arrival time variation is known to be a hard task,
especially for CMOS, the most widely used semiconductor technology. And, when input signals get to
a gate at a different time, the state of the gate’s output signal fluctuates within a clock cycle until it is
finally stabilized at a certain value. This phenomenon is called the glitch or the hazard.

The glitch phenomenon highly affects the amount of electrical power consumed by circuits.
Moreover, the amount of consumed power is highly related to the circuit’s input. And, the power
analysis attack which analyzes the relationship between the glitch phenomenon and the power
consumption pattern is called the glitch attack [7–9]. Unfortunately, many gate-level masking schemes
are known to be vulnerable to the glitch attack. Various countermeasures have been proposed since the
glitch attack was introduced, and this paper focuses on the G-equivariant gates [14] and the threshold
implementation [10–13].

The notion of G-equivariant gates relies on the belief that if a (averaged) toggling count of the
gate’s output is constant regardless of the arrival order of the gate input signals [14], the gate’s power
consumption pattern will not be influenced by the glitch phenomenon so that the glitch attack can be
prevented. Unfortunately, as noted in [14], there are no 2-share G-equivariant gates in which the XOR
sum gives rise to the AND-gate evaluation of the original input values. More precisely, there are no
G-equivariant gates g0, g1 : GF(2)4

→ GF(2) satisfying

g0(x0, x1, y0, y1) ⊕ g1(x0, x1, y0, y1) = (x0
⊕ x1)(y0

⊕ y1). (2)

To remedy this undesirable situation, the authors introduced the concept of semi-G-equivariance
with the weakened condition that, in the Equation (2), x0, x1 arrives at the gate at the same time and
y0, y1 arrives at the gate simultaneously. However, even though there are some semi-G-equivariant
gates that are available for glitch-attack-resistantly constructing the AND gate, there have been some
doubts about the appropriateness of such weakened conditions.

TI (Threshold Implementation, [10–13]) was proposed as another glitch attack countermeasure
and is said to be provably secure even in the presence of glitches. TI is defined to be a masking scheme
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satisfying three specific properties: correctness, non-completeness, and uniformness. Given a function
z = f (x), the shared implementation ( f 0, . . . , f dout) of f is said to be correct if

f 0(x0, x1, . . . , xdin) ⊕ · · · ⊕ f dout(x0, x1, . . . , xdin) = f (x0
⊕ x1
⊕ · · · ⊕ xdin)

for any mask (x0, x1, . . . , xdin) of x. And ( f 0, . . . , f dout) is defined to be d-th order non-complete if
any processing of up to d component functions f i does not require at least one input share. Thus,
for example, the following ( f 0, f 1, f 2) is the first-order non-complete shared implementation of the
AND gate: for x0, x1, x2, y0, y1, y2

∈ GF(2),

f 0(x0, x1, x2, y0, y1, y2) = x1y1
⊕ x1y2

⊕ x2y1

f 1(x0, x1, x2, y0, y1, y2) = x2y2
⊕ x2y0

⊕ x0y2 (3)

f 2(x0, x1, x2, y0, y1, y2) = x0y0
⊕ x0y1

⊕ x1y0.

That is, f 0(x0, x1, x2, y0, y1, y2) ⊕ f 1(x0, x1, x2, y0, y1, y2) ⊕ f 2(x0, x1, x2, y0, y1, y2) = xy for x =

x0
⊕ x1
⊕ x2, y = y0

⊕ y1
⊕ y2 and the computation of f i does not involve xi nor yi for each i = 0, 1, 2.

Finally, the shared implementation ( f 0, . . . , f dout) of f is said to be uniform if, for any output
mask (z0, z1, . . . , zdout), the probability that f j(x0, x1, . . . , xdin) = z j for all 0 ≤ j ≤ dout, is constant if
z0
⊕ · · · ⊕ zdout is fixed. For example, the following shared implementation of the AND gate is uniform

as Table 1 shows: for random bits r, s and x0, x1, x2, y0, y1, y2
∈ GF(2),

f 0(x0, x1, x2, y0, y1, y2) = z0 = x1y1
⊕ x1y2

⊕ x2y1
⊕ r

f 1(x0, x1, x2, y0, y1, y2) = z1 = x2y2
⊕ x2y0

⊕ x0y2
⊕ s (4)

f 2(x0, x1, x2, y0, y1, y2) = z2 = x0y0
⊕ x0y1

⊕ x1y0
⊕ r⊕ s.

Table 1. Probability distribution of (z0, z1, z2) in (4).

z0
⊕ z1
⊕ z2 0 1

(z0, z1, z2) (0,0,0) (0,1,1) (1,0,1) (1,1,0) (1,0,0) (0,1,0) (0,0,1) (1,1,1)

Prob. 3/16 3/16 3/16 3/16 1/16 1/16 1/16 1/16

3. Non-Completeness Implies 1st-Order DPA Security?

As stated in Section 2, Threshold Implementation is known to be provably secure against the
1st-order differential power attack even in the presence of glitches, and it is usually referenced that
the corresponding security proof is given in Theorem 2 and Corollary 1 of [11]. Unfortunately, as
indicated below, the proof is not satisfactory in the sense that there is a counter-example of not being
secure against the glitch attack while satisfying the condition presented in [11]. For easy reference,
here, we re-state the theorem.

Theorem 1 (same with Theorem 2 in [11]). For a shared implementation ( f 0, . . . , f dout) of z = f (x), if the
input shares are uniform and ( f 0, . . . , f dout) is correct and non-complete, then each output share zi is statistically
independent of the original input x and the original output z. And, the same holds for any intermediate result that
is appearing during the computation of ( f 0, . . . , f dout) and for any physical quantities like power consumption,
electro-magnetic radiation, etc., which are a function of these intermediate results.

Note that the original theorem in [11] was stated for the multi-input and multi-output function,
while Theorem 1 above assumes that f has a single input and single output. However, the difference
does not affect the validity of the argument below.
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In [11], for proving the theorem above, the authors showed that, for any variable τ appearing in
the computation of ( f 0, . . . , f dout) and any input x of f ,

Pr(τ) = Pr(τ
∣∣∣x). (5)

Clearly, the Equation (5) implies that τ and x are statistically independent. And then, [11] presented
the following corollary:

Corollary 1 ([11]). For a shared implementation ( f 0, . . . , f dout) of z = f (x), if the input shares are uniform
and ( f 0, . . . , f dout) is correct and non-complete, then the expected value of the power consumption of a circuit
implementing ( f 0, . . . , f dout) is independent of x and z, even in the presence of glitches or the delayed arrival of
some inputs.

Now, in proving the corollary above, the authors of [11] stated that “Since the proof of Theorem 2
makes no assumption on the behavior of the circuit and/or the presence of glitches, the theorem holds
for each sub-circuit computing one of the y j

i , also in the case of delayed inputs or glitches. Furthermore,
the mean power consumption of the whole circuit is the sum of the mean power consumptions of the
sub-circuits and expectation is a linear operation” [11]. After all, [11] used the argument that, if all the
intermediate variables of the shared circuit are statistically independent of the input and the output,
the shared implementation is secure against the 1st-order DPA even in the presence of a glitch. However,
this argument is not true, in general. That is, there are some shared circuits whose intermediate variables
are statistically independent of the input and the output, but that are not secure against the glitch attack.
For example, consider the masking scheme by Trichina described in Figure 1. First, it can be proved
that all the intermediate results of the scheme, say, x0y0, x1y0, x0y1, x1y1, r ⊕ x0y0, (r⊕ x0y0) ⊕ x1y0,
((r⊕ x0y0) ⊕ x1y0)⊕x0y1, (((r⊕ x0y0) ⊕ x1y0) ⊕ x0y1)⊕x1y1 are statistically independent of the original
input and output. More precisely, for any α, β ∈ GF(2), if τ ∈

{
x0y0 , x1y0, x0y1, x1y1

}
, then Pr(τ = 0) =

Pr(τ = 0
∣∣∣(x, y) = (α, β) ) = 3

4 , while if τ ∈
{
r⊕ x0y0, (r⊕ x0y0) ⊕ x1y0, ((r⊕ x0y0) ⊕ x1y0) ⊕ x0y1,

(((r⊕ x0y0) ⊕ x1y0) ⊕ x0y1) ⊕ x1y1
}
, then Pr(τ = 0) = Pr(τ = 0

∣∣∣(x, y) = (α, β) ) = 1
2 .

Similarly, we can prove that Pr(τ = 0) = Pr(τ = 0
∣∣∣xy = αβ) ) for anyα, β and τ ∈

{
x0y0 , x1y0, x0y1,

x1y1, r ⊕ x0y0, (r⊕ x0y0) ⊕ x1y0, ((r⊕ x0y0) ⊕ x1y0) ⊕ x0y1, (((r⊕ x0y0) ⊕ x1y0) ⊕ x0y1) ⊕ x1y1}. Thus,
the presupposition of Corollary 1 is satisfied for the Trichina’s scheme; however, the scheme is also
known to be susceptible to the glitch attack [7–9], which contradicts the conclusion of Corollary 1.

Remark 1. We note that the security guarantee of TI given in [11] is against the 1st-order univariate DPA.
Thus, the attackers are assumed to be able to utilize only the mean value of power traces gathered at a specific time
moment. And, the attackers who rely on the variance value of gathered power traces or power traces gathered
at several time moments are called the higher-order DPA attackers, and [11] and this paper do not consider
such attackers.

At this point, it is emphasized that we do not claim that the non-complete TI with uniform inputs
has some power attack weaknesses. Actually, the non-complete TI is shown to be very secure in
various leakage detection tests [10–13]. Thus, it is plausible that TI gives a lot of resistance to DPA,
even in the presence of glitches. However, as the previous argument shows, it is not clear why it gives
such security from a theoretical viewpoint. After all, the problem is that [11] does not contain any
theoretical explanation of how we can mitigate the glitch effect. And, as will be explained in the next
section, the G-equivariance [14] gives a useful instrument for how to mitigate such an effect. However,
G-equivariance also has its own drawbacks. Most notably, there are no (1st-order) G-equivariant
gates, the XOR sum in which the output gives rise to the ordinary 2-input AND gate evaluation, and
that is why we should use the extended concept of G-equivariance to the higher-order setting in [16].
More details can be found in Section 4.
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4. Non-Completeness Implies G-Equivariance

To solve the problem discussed in the previous section, we use the extended concept of the
G-equivariance in [16].

Originally, the G-equivariance was introduced as a glitch attack countermeasure, and a gate (or a
function) is defined to be G-equivariant if the energy consumption of the gate is independent of the
arrival order of input signals [14]. However, as paper [14] indicated, there are no G-equivariant gates
in which the Boolean sum is equal to the 2-input AND gate evaluation, and the authors loosened the
condition imposed on the G-equivariance to get the semi-G-equivariance. The semi-G-equivariance
(the exact definition of which can be found in [14]) requires the energy consumption of a gate to be
independent of the order of input signals with the constraint that some signals should arrive at the
gate simultaneously, and [14] proved that there are some semi-G-equivariant gates that summed up to
give the 2-input AND gate. For example, the gates g0, g1 with

g0(x0, x1, y0, y1) = x0
⊕ y0 (6)

g1(x0, x1, y0, y1) = x0
⊕ y0

⊕ x0y0
⊕ x0y1

⊕ x1y0
⊕ x1y1

have the property that they are semi-G-equivariant, that is, their energy consumption is independent
of the arrival order of input signals if x0 and x1 arrive at g0 or g1 at the same time and y0 and y1 arrive
at g0 or g1 simultaneously, and g0(x0, x1, y0, y1) ⊕ g1(x0, x1, y0, y1) = (x0

⊕ x1)(y0
⊕ y1). However,

there is a critical problem with semi-G-equivariant gates. It is not easy to satisfy the condition imposed
on the gates. That is, for example, it is very hard to make x0 and x1 (and y0 and y1 as well) in (6) arrive
at g0 or g1 at the same time. The custom design process may solve the issue; however, with a high cost.

The G-equivariance and semi-G-equivariance in [14] were basically defined in the 1st-order setting.
More precisely, any input signal x of a gate is assumed to be decomposed as (x0, x1) with x = x0

⊕ x1.
However, there is no justification for why the input signals for the G-equivariant gate should have such
form. And, using the extended notion of G-equivariance to the higher-order setting in [16], this paper
assumes that every signal x is represented as (x0, x1, . . . , xd) with x = x0

⊕ x1
⊕ · · · ⊕ xd for a given

positive integer d.
In the subsequent, a gate with n inputs and 1 output is considered as a Boolean function

g : GF(2n)→ GF(2) , where GF(2) stands for the binary finite field with addition operation ⊕, and
GF(2n) is an extension field of degree n over GF(2), which can be considered as an n-dimensional
vector space over GF(2). For a positive integer n, we denote Map(n) as the set of all mappings from the
set {0, . . . , n− 1} into itself.

Definition 1 ([14,16]). Given a positive integer n, a gate g : GF(2n)→ GF(2) and i = 0, 1, . . . , n − 1,
the partial energy function Eg,i is defined as

Eg,i : GF(2n) ×GF(2n) ×Map(n)→ V (7)

((a, x), φ) ⊕ eg(bi)g(bi+1 )

where V stands for the 4-dimensional real vector space with the basis
{
e00, e01, e10, e11

}
and, for a =

(a0, . . . , an−1), x = (x0, . . . , xn−1) and φ ∈ Map(n), bi = (bi
0, . . . , bi

n−1) ∈ GF(2n) in (7) is defined by:
b0 = a and

bi+1
j =

x j i f φ( j) = i

bi
j otherwise

. (8)

In Definition 1, the basis vectors e00, e01, e10, e11 of V can actually be interpreted as the amount of
power consumed while g changes or holds its output. That is, when the output of g changes from 0 to
1, it is assumed that g consumes the energy e01, while g is assumed to consume the energy e10, if g
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changes its output from 1 to 0. And, when the output bit of g is fixed at 0 or 1, g is assumed to consume
the energy e00 or e11, respectively. Also, in the definition, φ ∈Map(n) was introduced to describe the
arrival order of the gate’s input signal. Thus, for example, φ( j) = i in (8) implies that the j-th input
signal a j arrives at the i-th order.

Since we are primarily interested in masking a 2-input AND gate, all the gates in the subsequent
are assumed to have 2 inputs.

Definition 2 ([14,16]). For a positive integer d and any input (a, b) ∈ GF(22) of a gate g : GF(22)→ GF(2) ,
the tuple (a0, a1, . . . , ad, b0, b1, . . . , bd) ∈ GF(22(d+1)) is called a d-th order masked signal of (a, b) if

(1) a = a0
⊕ a1
⊕ · · · ⊕ ad and b = b0

⊕ b1
⊕ · · · ⊕ bd

(2) Pr(ai = 1) = Pr(b j = 1) = 1
2 for any i, j = 0, 1, . . . , d

(3) For any i, j = 0, 1, . . . , d, ai and b j are statistically independent, considered as random variables.

Definition 3 ([14,16]). A d-th order masked gate of a gate g : GF(22)→ GF(2) is the tuple (g0, g1, . . . , gd)

satisfying the following:

(1) g0, g1, . . . , gd : GF(22(d+1))→ GF(2)
(2) For any input (a, b) ∈ GF(22) of g and any d-th order masked signal (a0, a1, . . . , ad, b0, b1, . . . , bd) ∈

GF(22(d+1)) of (a, b), we have g0 (̃a, b̃) ⊕ g1 (̃a, b̃) ⊕ · · · ⊕ gd (̃a, b̃) = g(a, b) for (ã, b̃) =

(a0, a1, . . . , ad, b0, b1, . . . , bd).

In this case, each gk of the d-th order masked gate (g0, g1, . . . , gd) is called a d-th order component masked gate
of g.

Definition 4 ([14,16]). Given a d-th order masked gate (g0, g1, . . . , gd) of a gate g : GF(22)→ GF(2) ,
a d-th order component masked gate, say gk : GF(22(d+1))→ GF(2) isd-th order G-equivariant if for any
φ ∈Map(2(d + 1)) and i = 0, 1, . . . , 2d+ 1, the expectation value E(Egk,i(((̃a, b̃), (x̃, ỹ)), φ)) is independent

of any choice of d-th order masked signals (̃a, b̃) = (a0, a1, . . . , ad, b0, b1, . . . , bd) of (a, b) ∈ GF(22) and
(x̃, ỹ) = (x0, x1, . . . , xd, y0, y1, . . . , yd) ∈ GF(22) of (x, y) ∈ GF(22).

In the sequel, a d-th order G-equivariant component masked gate is briefly called as a G-equivariant
gate, if there is no confusion.

Lemma 1 ([14,16]). Given a d-th order masked gate (g0, g1, . . . , gd) of a gate g : GF(22)→ GF(2) , a d-th
order component masked gate, say gk : GF(22(d+1))→ GF(2) is d-th order G-equivariant if and only if, for any
φ ∈ Map(2(d + 1)) and i = 0, 1, . . . , 2d + 1, the following 16 values S(a, b, x, y) are equal for any choice
a, b, x, y ∈ {0, 1}:

S(a, b, x, y) :=
∑

a0, a1, . . . , ad, b0, b1, . . . , bd, x0, x1, . . . , xd, y0, y1, . . . , yd

a0
⊕ a1
⊕ · · · ⊕ ad = a

b0
⊕ b1
⊕ · · · ⊕ bd = b

x0
⊕ x1
⊕ · · · ⊕ xd = x

y0
⊕ y1

⊕ · · · ⊕ yd = y

Egk,i((̃a, b̃), (x̃, ỹ), φ), (9)

where (̃a, b̃) = (a0, a1, . . . , ad, b0, b1, . . . , bd) and (x̃, ỹ) = (x0, x1, . . . , xd, y0, y1, . . . , yd).

Finally, we are at the moment when we can prove that non-completeness implies G-equivariance.
However, since the provable security is believed to hold for TI satisfying the first-order non-completeness
(in fact, the higher-order non-completeness does not guarantee the higher-order security, as shown
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in [17]), and the first-order non-completeness is generally realized in the 2nd-order masking
scheme ([10–13]), we will focus on the 2nd-order masked gate in the sequel.

Theorem 2. Given a 2nd order masked gate (g0, g1, g2) of a gate g : GF(22)→ GF(2) , if a 2nd order component
masked gate, say gk : GF(26)→ GF(2) is first-order non-complete, then it is 2nd-order G-equivariant.

Proof. Without loss of generality, assume that gk(x0, x1, x2, y0, y1, y2) is independent of x0 and y0

so that gk(x0, x1, x2, y0, y1, y2) can be denoted as gk(x1, x2, y1, y2). By Lemma 1, proving that gk

is 2nd-order G-equivariant is equivalent to showing that, for any φ ∈ Map(6) and i = 0, 1, . . . , 5,
S(a, b, x, y) = S(a′, b′, x′, y′) for any (a, b, x, y), (a′, b′, x′, y′) ∈ {0, 1}4, where S(a, b, x, y) is defined by

S(a, b, x, y) :=
∑

a0, a1, a2, b0, b1, b2, x0, x1, x2, y0, y1, y2

a0
⊕ a1
⊕ a2 = a

b0
⊕ b1
⊕ b2 = b

x0
⊕ x1
⊕ x2 = x

y0
⊕ y1

⊕ y2 = y

Egk,i((̃a, b̃), (x̃, ỹ), φ), (10)

where (̃a, b̃) = (a0, a1, a2, b0, b1, b2) and (x̃, ỹ) = (x0, x1, x2, y0, y1, y2). Note that (10) is equal to the
Equation (9) for d = 2. Now, rewriting the summation in (10), we have

S(a, b, x, y) =
∑

a1, a2, b1, b2, x1, x2, y1, y2

a0
⊕ a1
⊕ a2 = a

b0
⊕ b1
⊕ b2 = b

x0
⊕ x1
⊕ x2 = x

y0
⊕ y1

⊕ y2 = y

∑
a0, b0,x0, y0 Egk,i((̃a, b̃), (x̃, ỹ), φ). (11)

And the Equation (11) is equal to∑
a1, a2, b1, b2, x1, x2, y1, y2

a0
⊕ a1
⊕ a2 = a

b0
⊕ b1
⊕ b2 = b

x0
⊕ x1
⊕ x2 = x

y0
⊕ y1

⊕ y2 = y

∑
ã0, b̃0 ,̃x0, ỹ0

Egk,i((ã′, b̃′), (x̃′, ỹ′), φ), (12)

for ∆a = a ⊕ a′, ∆b = b ⊕ b′, ∆x = x ⊕ x′, ∆y = y ⊕ y′, ã0 = a0
⊕ ∆a, b̃0 = b0

⊕ ∆b, x̃0 =

x0
⊕ ∆x, ỹ0 = y0

⊕ ∆y, (ã′, b̃′) = (̃a0, a1, a2, b̃0, b1, b2) and (x̃′, ỹ′) = (x̃0, x1, x2, ỹ0, y1, y2) since
gk(x0, x1, x2, y0, y1, y2) is independent of x0 and y0, thus changing a0 and b0 to ã0 and b̃0 in
(̃a, b̃) = (a0, a1, a2, b0, b1, b2) and changing x0 and y0 to x̃0 and ỹ0 in (x̃, ỹ) = (x0, x1, x2, y0, y1, y2)

does not impact on evaluating gk and Egk,i. Finally, substituting a0 with ã0
⊕∆a, b0 with b̃0

⊕∆b, x0 with
x̃0
⊕ ∆x and y0 with ỹ0

⊕ ∆y, the Equation (12) is equal to∑
a1, a2, b1, b2, x1, x2, y1, y2

ã0
⊕ a1
⊕ a2 = a′

b̃0
⊕ b1
⊕ b2 = b′

x̃0
⊕ x1
⊕ x2 = x′

x̃0
⊕ x1
⊕ x2 = x′

∑
ã0, b̃0 ,̃x0, ỹ0 Egk,i((ã′, b̃′), (x̃′, ỹ′), φ), (13)
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which is again equal to

S(a′, b′, x′, y′) =
∑

ã0, a1, a2, b̃0, b1, b2, x̃0, x1, x2, ỹ0, y1, y2

ã0
⊕ a1
⊕ a2 = a′

b̃0
⊕ b1
⊕ b2 = b′

x̃0
⊕ x1
⊕ x2 = x′

ỹ0
⊕ y1

⊕ y2 = y′

Egk,i((ã′, b̃′), (x̃′, ỹ′), φ) (14)

And, this completes the proof. �

Corollary 2. The following 2nd-order component masked gates f 0, f 1, f 2 : GF(26)→ GF(2) give the shared
implementation ( f 0, f 1, f 2) of the 2-input AND gate whose energy consumption is independent of the arrival
order of input signals:

f 0(x0, x1, x2, y0, y1, y2) = x1y1
⊕ x1y2

⊕ x2y1

f 1(x0, x1, x2, y0, y1, y2) = x2y2
⊕ x2y0

⊕ x0y2 (15)

f 2(x0, x1, x2, y0, y1, y2) = x0y0
⊕ x0y1

⊕ x1y0.

In other words, the energy consumption of f 0, f 1, f 2 in (15) is independent of the arrival order
of input signals and f 0(x0, x1, x2, y0, y1, y2) ⊕ f 1(x0, x1, x2, y0, y1, y2) ⊕ f 2(x0, x1, x2, y0, y1, y2) =

(x0
⊕ x1
⊕ x2)(y0

⊕ y1
⊕ y2).

Proof. The claim is a direct consequence of Theorem 2 since f 0, f 1, f 2 are first-order non-complete. �

By Corollary 2, the set of first-order non-complete gates is a subset of the set of 2nd-order
G-equivariant gates. And, at this point, it may be questionable if there are any 2nd-order G-equivariant
but first-order complete gates that can be used for implementing the AND gate in a shared form.
Interestingly, the answer is yes. For example, it can be shown that the following gates g0, g1, g2 are
G-equivariant:

g0(x0, x1, x2, y0, y1, y2) = x0y0
⊕ x0y1

⊕ x1y0
⊕ x1y2

⊕ x2y1
⊕ x2y2

g1(x0, x1, x2, y0, y1, y2) = x0y2
⊕ x2y0

⊕ x2y2 (16)

g2(x0, x1, x2, y0, y1, y2) = x1y1
⊕ x2y2.

Also, the XOR sum of g0, g1, g2 in (16) gives the AND gate evaluation for the original
inputs, that is, g0(x0, x1, x2, y0, y1, y2) ⊕ g1(x0, x1, x2, y0, y1, y2) ⊕ g2(x0, x1, x2, y0, y1, y2) is equal to
(x0
⊕ x1
⊕ x2)(y0

⊕ y1
⊕ y2). However, since g0 involves all shares x0, x1, x2 of x for its computation, it

is not non-complete.

Remark 2. The G-equivariant gate is for ensuring the security only for the single gate; thus, it does not
guarantee the security of the composition of several gates. And, to get the security of composited gates,
the cryptosystem’s implementers must consider inserting some registers, for example, to eliminate the glitch’s
effect to not propagate through the several gates. However, we emphasize that the same undesirable increase of
circuit’s size from inserting registers is very common in most hardware masking schemes, including the threshold
implementation [10–13], mainly due to the glitch’s effect.

5. Conclusions

In this paper, we re-investigated the proof that TI is secure against the 1st-order DPA even in the
presence of glitches and argued that the proof is missing some points. To remedy it, we proposed to
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utilize the extended concept of G-equivariance to a higher-order setting. Also, this paper proves that
any non-complete masked gates are actually G-equivariant, which implies that any non-complete TI
can successfully prevent the glitch attack. Finally, we show that there are some G-equivariant gates
that are complete; thus, the notion of G-equivariance is broader than that of non-completeness.
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