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Abstract: We re-examine the theory of electronic and vibrational circular dichroism spectroscopy in
terms of the formalism of frequency-dependent molecular polarizabilities. We show the link between
Fermi’s gold rule in circular dichroism and the trace of the complex electric dipole–magnetic dipole
polarizability. We introduce the C++ code polar to compute the molecular polarizability complex
tensors from quantum chemistry outputs, thus simulating straightforwardly UV-visible absorption
(UV-Vis)/electronic circular dichroism (ECD) spectra, and infrared (IR)/vibrational circular dichroism
(VCD) spectra. We validate the theory and the code by referring to literature data of a large group
of chiral molecules, showing the remarkable accuracy of density functional theory (DFT) methods.
We anticipate the application of this methodology to the interpretation of vibrational spectra in
various measurement conditions, even in presence of metal surfaces with plasmonic properties.
Our theoretical developments aim, in the long run, at embedding the quantum-mechanical details
of the chiroptical spectroscopic response of a molecule into the simulation of the electromagnetic
field distribution at the surface of plasmonic devices. Such simulations are also instrumental to the
interpretation of the experimental spectra measured from devices designed to enhance chiroptical
interactions by the surface plasmon resonance of metal nanostructures.

Keywords: computational molecular spectroscopy; density functional theory; VCD intensity;
dissymmetry factor g(ω); Intensity Carrying Modes (ICM)

1. Introduction

The steady and exciting development of quantum chemistry and, notably, density functional
theory (DFT) methods has greatly enhanced our capabilities in understanding molecular spectra [1].
Current quantum chemistry computer codes can be used very reliably to assign the features observed
in molecular spectra to electronic or vibrational transitions, with increasingly accurate levels of
theory [2–9]. Notable advances in tools available for computational spectroscopy have appeared in the
recent literature [10–19]. These are commonly based on existing quantum chemistry engines, and their
development often enhances the accuracy of the existing approaches. For instance, the harmonic
approximation can be improved to deal with anharmonic effects [20–23]. Within the rich and evolving
scenario of computational spectroscopy, it is interesting to discuss approaches complementary to those
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most often employed to simulate spectra, which have been in use for a long time, and basically consist
in weighted sums of selected lineshape functions [24] (ultimately, the weights of such sums are related
to transition moments computed by quantum chemistry—see, for instance, [25]). In fact, one of the
aims of the developments of our work is the embedding of the quantum-mechanical details of the
chiroptical spectroscopic response of a molecule (which requires its complex electric dipole–magnetic
dipole polarizability) within the simulation of the electromagnetic field distribution at the surface of
plasmonic devices. Such simulations are instrumental to the interpretation of the experimental spectra
measured from devices designed to enhance chiroptical interactions by the surface plasmon resonance
of metal nanostructures [26]. The role of molecular polarizability is well recognized in the field of
linear and non-linear spectroscopy, and led to the development of insightful computational tools for
non-linear optics (e.g., [27–29]). Interestingly, polarizability was also introduced in the context of
electronic CD aiming to calculate CD spectra of large molecules from the polarizability characterization
of fragments [30].

We have investigated polarizability from the principles of quantum mechanics and light–matter
interaction [31] adopting the notation used in [24]. The paper is organized as follows. We first illustrate
the connection of CD with the polarizability tensor to obtain the relevant equations which relate
the quantum mechanical transition rate to the trace of molecular polarizability (i.e., Equation (9)).
Thereafter we show the use of the polar code, which has been written to implement such equations,
for both electronic and vibrational transitions, based on the transition matrix elements obtained from
quantum chemistry codes such as Gaussian [5]. For the benchmark of the electronic polarizability
we consider a set of rigid molecules, thus avoiding conformational issues (which are irrelevant to
the present study). Hence, π-conjugated molecules offer a rich playground, with reliable reference
theoretical and experimental data available for comparison. For vibrational polarizability, we have
considered another set of small and rigid chiral molecules, which have been very well characterized
in the VCD literature, both experimentally and theoretically. In the final part of this work, we show
how the Intensity Carrying Modes, which were pioneered by Torii et al. in the context of vibrational
polarizability and IR spectroscopy [32,33], can be smoothly extended to VCD spectroscopy as well.

Before describing our results, let us introduce the needed complex polarizabilities αee, αem, and
αmm. This notation resembles the one adopted in theoretical investigations of antennas (e.g., [34]). It is
also a notation that fits computer coding, and has fostered the development of the polar program.
In the context of chiroptical spectroscopy, the αem tensor is often denoted G̃ [35]. Similarly, the αmm

tensor represents the magnetic susceptibility χ̃ [35,36]; the electric polarizability αee is typically written
as α̃ [35]. We remark that the electric dipole–magnetic dipole polarizability αem was repeatedly written
as sum over states in the literature [35,37–40], even though with different purposes and different
notation. In the present work, we neglect the dipole–quadrupole contribution (denoted Ã [35]), which
is relevant in presence of anisotropic systems and/or gradients of the electric field. Such contribution,
which can be relevant, e.g., in plasmonics, can be evaluated in perspective by a natural extension of
the proposed approach.

The proposed method to simulate molecular spectra is essentially a post-processing of outputs
from standard quantum chemistry packages (e.g., Gaussian in the present case, but interfaces to other
packages can be introduced straightforwardly). This approach is general, and it is meant to support
the simulation of spectra in selected experimental conditions without the need of re-computing the
molecular response from quantum chemistry. This also alleviates modifications at level of the source
code of the adopted quantum chemistry engine. Moreover, the calculation of the polarizability
elements is a crucial step in the implementation of effective chiral media within nano-optical
electromagnetic simulations.

2. Results

The theoretical description of CD phenomena entails both electric and magnetic effects. In a
detailed review [24], Schellman presented the theoretical description of circular dichroism and optical
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rotation for molecules in solution state. The central role is played by the perturbation operator V±
associated to left-handed (−) and right-handed (+) circularly polarized light, which is defined through
the electric (µ) and the magnetic (m) dipole operators. By making use of the results illustrated in
Ref. [24], for a given transition between states 0 and k, the expectation value of such operators is the
following:

|V±,0k|2 =
1
3

(
D0kE2

0 + G0kB2
0 ∓ 2R0kE0B0

)
=

2
3

I
cε0

(
D0k ∓

2R0k
c

+
G0k
c2

)
; (1)

D̃0k = µ0k · µk0 = (D0k, 0) electric dipole strength;

G̃0k = m0k ·mk0 = (G0k, 0) magnetic dipole strength;

R̃0k = µ0k ·mk0 = (0, R0k) rotatory strength,

where E0 and B0 are the electric and magnetic field amplitudes of the impinging light wave,
µ0k = 〈0|µ|k〉 is the electric transition dipole moment, and m0k = 〈0|m|k〉 is the magnetic transition
dipole moment. I represents the light intensity, c is the speed of light, and (a, b) indicates the
complex number z̃ = a + ib. Schellman’s review [24] adopts cgs units. For the reasons discussed by
McWeeny [41], in this work we prefer using atomic units for the numerical values of polarizabilities
and we consider the SI system for the description of the electromagnetic field. For the sake of simplicity,
we disregard solvent effects and adopt electromagnetic waves in vacuum. Therefore, the intensity of
the electromagnetic wave required by Schellman’s treatment (Equation (6) in Ref. [24]) is given by
I = 1

2 cε0 |E0|2, where the magnetic (B0) and electric field (E0) amplitudes are related one another by
the relation B0 = E0/c [42]. The electromagnetic energy absorbed per unit time as a consequence of
the 0→ k transitions promoted by the electromagnetic perturbation at frequency ω is given by [24]:

w0k(ω) =
π

2
ω

h̄
|V0k|2ρk(ω), (2)

where ρk(ω) is the density of states for the 0→ k transition, and it is normalized, i.e.,
∫

dω ρk(ω) = 1.
By substituting Equation (1) into Equation (2), one obtains:

w±,0k(ω) =
π

3
I

cε0

ω

h̄
ρk(ω)

[
D0k ∓

2R0k
c

+
G0k
c2

]
. (3)

To connect Equation (3) with the molecular polarizability tensors, it is instrumental to write the
inner products among the transition dipoles (Equation (1)) as traces of outer products:

D̃0k = Tr (µ0k ⊗ µk0) , (4)

G̃0k = Tr (m0k ⊗mk0) ,

R̃0k = Tr (µ0k ⊗mk0) .

We recall that the tensor (outer) product a⊗ b of two vectors a and b has matrix elements cij = aibj.
Therefore, the dot product a · b can be seen as a · b = ∑i aibi = ∑i cii = Tr(a⊗ b).

For a molecule with eigenstates |k〉 and transition energies h̄ωk from the ground state |0〉,
the electric polarizability can be written as a sum over states, with opposite sign damping Γ in
the resonance term (first term) and off-resonance term (second term) [35,43–45]:

αee
ij (−ω; ω) =

1
h̄ ∑

k

〈0|µi|k〉 〈k|µj|0〉
ωk −ω− iΓ/2

+
1
h̄ ∑

k

〈0|µj|k〉 〈k|µi|0〉
ωk + ω + iΓ/2

= (5)

=
1
h̄ ∑

k

〈0|µi|k〉 〈k|µj|0〉
ωk −ω− iΓ/2

+
1
h̄ ∑

k

〈k|µi|0〉 〈0|µj|k〉
ωk + ω + iΓ/2

.
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By recognizing in the second line of Equation (5), the numerators as the outer products of the
transition electric dipoles (namely, µ0k ⊗ µk0 and µk0 ⊗ µ0k), one can compactly write the polarizability
tensor as follows:

αee(−ω; ω) =
1
h̄ ∑

k

µ0k ⊗ µk0
ωk −ω− iΓ/2

+
1
h̄ ∑

k

µk0 ⊗ µ0k
ωk + ω + iΓ/2

. (6)

By introducing the formal substitution (µi → µi, µj → mj) in the expression of the
electric polarizability given by Equation (5), one can devise the expression of the complex electric
dipole–magnetic dipole polarizability αem:

αem(−ω; ω) =
1
h̄ ∑

k

µ0k ⊗mk0
ωk −ω− iΓ/2

+
1
h̄ ∑

k

µk0 ⊗m0k
ωk + ω + iΓ/2

. (7)

With a similar reasoning, the following expression can be written for the magnetic dipole
polarizability tensor αmm:

αmm(−ω; ω) =
1
h̄ ∑

k

m0k ⊗mk0
ωk −ω− iΓ/2

+
1
h̄ ∑

k

mk0 ⊗m0k
ωk + ω + iΓ/2

. (8)

Near resonance conditions with the 0 → k transition, Equations (6)–(8) can be used to relate
the trace of molecular polarizabilities to the transition rate given by Equation (3) (see Appendix A
for details):

w±,0k(ω ≈ ωk) = (9)
1
3

Iω

cε0

[
= [Tr (αee(−ω; ω))]± 2

c
< [Tr (αem(−ω; ω))] +

1
c2= [Tr (αmm(−ω; ω))]

]
ω≈ωk

.

As well-known, we recall that the imaginary part of αee relates to absorption phenomena, and the
real part to dispersive ones. Because of the presence of the purely imaginary magnetic dipole
transition moment in the expression of αem, the absorption and dispersive terms in αem are the real
and the imaginary parts of αem, respectively (see also Equation (A7) in Appendix A). When neglecting
vibronic effects, the 0→ k transitions introduced in Equations (6)–(8) are taken as vertical electronic
transitions, and they can be conveniently computed by, e.g., TDDFT. This is the approach adopted by
the polar code.

In summary, by the calculation of frequency-dependent polarizabilities, Equation (9) can be used:

(i) to simulate UV-Vis absorption spectra in the absence of vibronic effects:

wabs
0k (ω) =

1
3

Iω

cε0
= [Tr (αee(−ω; ω))] ; (10)

(ii) to simulate electronic CD (ECD) spectra [24]:

wCD
0k (ω) = w−,0k(ω)− w+,0k(ω) = −4

3
Iω

c2ε0
< [Tr (αem(−ω; ω))] ; (11)

and
(iii) to simulate the dissymmetry factor g, which is the ratio of CD (∆ε ∝ wCD) to ordinary absorption

(ε ∝ wabs) [24]:

g(ω) =
wCD

0k (ω)

wabs
0k (ω)

= −4
c
< [Tr (αem(−ω; ω))]

= [Tr (αee(−ω; ω))]
. (12)

To simulate IR and VCD spectra, one has to evaluate the molecular polarizabilities by considering
the 0 → k transitions as vibrational. If one focuses on the vibrational transitions in the mid-IR
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range, within the double harmonic approximation, the sum over states is restricted to one-quantum
transitions 0a → 1a over the 3N-6 vibrational modes of the system, based on mechanical harmonicity.
Therefore, by making the formal change (0 → k) ⇔ (0a → 1a) in Equations (6)–(8), one directly
obtains the desired result:

αee,v(−ω; ω) =
1
h̄ ∑

a

〈0a|µ|1a〉 ⊗ 〈1a|µ|0a〉
ωa −ω− iΓ/2

+
1
h̄ ∑

a

〈1a|µ|0a〉 ⊗ 〈0a|µ|1a〉
ωa + ω + iΓ/2

, (13)

αem,v(−ω; ω) =
1
h̄ ∑

a

〈0a|µ|1a〉 ⊗ 〈1a|m|0a〉
ωa −ω− iΓ/2

+
1
h̄ ∑

a

〈1a|µ|0a〉 ⊗ 〈0a|m|1a〉
ωa + ω + iΓ/2

,

αmm,v(−ω; ω) =
1
h̄ ∑

a

〈0a|m|1a〉 ⊗ 〈1a|m|0a〉
ωa −ω− iΓ/2

+
1
h̄ ∑

a

〈1a|m|0a〉 ⊗ 〈0a|m|1a〉
ωa + ω + iΓ/2

,

where h̄ωa is the vibrational quantum of the a-th normal mode). Moreover, the matrix elements of the
electric and magnetic dipole over one-quantum vibrational transitions can be evaluated according to
the following expressions [46,47], based on electrical harmonicity assumption:

〈0a|µ|1a〉 =
(

h̄
2ωa

) 1
2

∑
i

∂µ

∂xi
Lia =

(
h̄

2ωa

) 1
2 ∂µ

∂qa
; (14)

〈1a|m|0a〉 = −〈0a|m|1a〉 = i
(

h̄ωa

2

) 1
2

∑
i

∂m
∂ẋi

Lia = i
(

h̄ωa

2

) 1
2 ∂m

∂q̇a
.

In Equation (14), Lia = ∂xi/∂qa = ∂ẋi/∂q̇a is the transformation matrix relating the Cartesian
nuclear displacements xi to the normal coordinate qa. Wilson’s L matrix [48] is often named S in VCD
literature, and individual indexes are adopted to label the atom λ and the ith Cartesian component of
the nuclear displacement (i = 1, 2, 3). This double index notation is cumbersome when writing loops
in programs. For this reason, we prefer to merely list the Cartesian nuclear displacements along a
vector with 3N components: x =

(
x1x, x1y, x1z, x2x, x2y, x2z, ..., xNx, xNy, xNz

)
.

The real vectors ∂µ/∂xi = Pi collect the Atomic Polar Tensors (APTs) [49–51]. The Pik matrix
element represents the change of the kth Cartesian component of the electric dipole caused by a change
in nuclear position along the xi coordinate (i = 1.3N). The real vectors Mi = ∂m/∂ẋi collect the Atomic
Axial Tensors (AATs) [49–51]. The Mik matrix element represents the change in the kth Cartesian
component of the magnetic dipole caused by a change in the nuclear velocity ẋi. By making use
of Equation (14), one obtains the following expressions for the dipole and rotatory strengths of the
0a → 1a vibrational transition:

D0a1a =
h̄

2ωa

∂µ

∂qa
· ∂µ

∂qa
, (15)

R0a1a =
h̄
2

∂µ

∂qa
· ∂m

∂q̇a
.

Further details about the evaluation of Equation (13) are given in Appendix B. The relation
of molecular polarizabilities with Lambert-Beer’s law and the concept of cross section is given in
Appendix C.

3. Discussion

3.1. Polarizability Due to Electronic Transitions and UV-Vis Absorption

As an initial benchmark for the polar implementation, we report in Figure 1 the results of its
application on TDDFT outputs of the benzene molecule computed for increasing values of the number
of excited states (N). The correctness of polar implementation is checked against independent results
obtained from frequency-dependent linear response theory (i.e., CPKS equations). The latter approach
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is implemented in Gaussian09 and computes the polarizability avoiding the sum over states. It can
be noted that the convergence of polar results to the CPKS results is smooth over a wide range of
photon energies. No appreciable differences are observed when the number of states in the sum of
Equation (5) is large enough (in our case N = 1000). The static limit of the polarizability <[Tr(αee(0; 0))]
is known to be proportional to the volume occupied by core and valence electrons, both for atoms [52]
and molecules [53]. For this reason, to reach convergence with respect to CPKS results, one needs to
include enough electronic excitations in the sum over states expansion of αee, so to make sure that also
contributions from core-excitations are present. As expected, convergence is faster when approaching
resonance conditions (e.g., close to 7 eV in Figure 1a), for which single transitions dominate the sum
over states expression of the polarizability.

 0
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e
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α
e
e
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a
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e
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n
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(b)
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N = 1000

Figure 1. The real part of the isotropic invariant of the electric dipole polarizability of benzene
( 1

3<[Tr(αee)]) computed by polar from a time-dependent density functional theory(TDDFT) calculation
at B3LYP/6-31G(d,p) level: (a) far from the resonance range; and (b) close to the resonance range.
The dots in both panels have been computed by the CPKS scheme available in Gaussian09 for applied
electric fields at given frequencies. The results from the sum over states implemented by polar
(Equation (5)) are shown with solid lines for increasing values of the number of states N included in
the sum. The damping used in the polar calculations is Γ = 0.001 eV.

In a further independent check, we have validated polar against the reported values of the
complex electric dipole polarizability of 4,4’-diaminoazobenzene [54]. A direct numerical comparison
is difficult in this case due to the different quantum chemistry code used here (Gaussian09) and
in [54] (ADF). To approach the computational conditions of Haghdani et al. [54], we adopted for
4,4’-diaminoazobenzene the PBE functional and the cc-pVTZ basis set. Our results, reported in
Figure 2, nicely compare with those reported in Figure 3b of Ref. [54]: the maximum value of the
imaginary part of Tr(αee)/3 is about 1000 bohr3 and the maximum value of the real part of Tr(αee)/3
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is about 600 bohr3. We also note that the shapes and linewidths of both the real and imaginary parts of
the isotropic electric polarizability in Figure 2 are very close to those reported in Figure 3b of Ref. [54].

(a) 4,4’-diaminoazobenzene

NH2

N

N

NH2

(b)

-400
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 600

 800

 1000

 1200

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

(1
/3
) 
T
r(
α
e
e
) 
(a
.u
.)

photon energy (eV)

photon energy (a.u. = hartree)

N = 100 (Re)
N = 200 (Re)
N = 100 (Im)
N = 200 (Im)

Figure 2. The real and imaginary parts of the isotropic invariant of the electric dipole polarizability of
4,4’-diaminoazobenzene ( 1

3 Tr(αee)) computed by polar from a TDDFT calculation at PBE/cc-pVTZ
level: (a) the chemical structure of 4,4’-diaminoazobenzene and the graphical representation of
the computed equilibrium structure, which is essentially planar, with the -NH2 groups slightly
pyramidalized; and (b) the results obtained by the polar code for two choices of N, demonstrating
good convergence at N = 100 states in this photon energy range. To approach the conditions used
in [54], the damping Γ for polar calculations is to 0.24 eV.

3.2. The Electric Dipole–Magnetic Dipole Polarizability and ECD

Turning to chiral molecules and chiroptical spectroscopy, the αem tensor becomes of relevance.
To validate polar for this kind of calculations, we address in Figure 3 the case of hexahelicene. This is
a representative molecule of the class of helicenes, which are π-conjugated systems consisting of
ortho-fused benzene rings and have many possible applications [55]. They are characterized by
inherent helical chirality, and possess interesting spectroscopic properties [56–61].
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(a) P-hexahelicene (P-[6]H)
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Figure 3. (a) Graphical representation of the equilibrium structure of P-hexahelicene (data from
B3LYP/6-31G(d,p) DFT calculation); and (b) comparison of the experimental UV-Vis absorption of
hexahelicene and the electronic circular dichroism(ECD) spectra of P-hexahelicene and M-hexahelicene
(from [60]) vs. the corresponding spectra simulated by polar (Γ = 0.5 eV) based on results from TDDFT
calculations (200 states, B3LYP/6-31G(d,p)).

As shown in Figure 3, the trace of the αem polarizability tensor evaluated by polar on the
basis of TDDFT calculations nicely match with the sign and relative magnitude of the rotatory
strengths R0k reported by Gaussian09 within the same TDDFT calculation. In comparison with
hexahelicene, we have considered the hexamer model of a helically coiled graphene nanoribbon
of recent synthesis [62] (HGNR-6), which is also a π-conjugated system with inherent chirality
(see Figure 4a). Interestingly, if we compare hexahelicene with HGNR-6 (for the same P-helicity),
we obtain the same sign of the rotatory strength for the optically more active low energy π → π∗

transition (computed at 391 nm in HGNR-6, see Figure 4b). Notably, being π-conjugation more
extended in HGNR-6 than in hexahelicene, this causes a significant red-shift of the wavelength of such
transition, and higher values of its rotatory strength. This is evident by comparing Figures 3b and 4b.
Furthermore, following the assignment of this low energy π → π∗ transition in hexahelicene to a
helical sense-responsive feature (H-type band) [60], and by observing that the associated rotatory
strengths have the same sign in P-hexahelicene and P-HGNR-6, we infer that such low-energy transition
(computed at 391 nm) is of H-type also in HGNR-6.
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(a) P-HGNR-6 (b)
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Figure 4. (a) Graphical representation of the equilibrium structure of P-HGNR-6 (data from
B3LYP/6-31g(d,p) DFT calculation); and (b) electronic absorption and circular dichroism of P-HGNR-6
simulated by polar (Γ = 0.5 eV) based on results from TDDFT calculations (B3LYP/6-31G(d,p); N = 100
and N = 400 states).

We have finally considered a third inherently chiral π-conjugated molecule, the higher fullerene
C84, which belongs to D2 point group symmetry [63] (see Figure 5). Similar to the case of another
chiral fullerene, C76 [12,64–68], UV-Vis absorption and CD spectroscopies were among the techniques
which were instrumental also in the discovery and characterization of C84. Here, we limit ourselves to
C84, for which the assignment of the absolute configuration was carried out by means of DFT methods
in reference [69].
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Figure 5. (a) The optimized structure of C84 used to compute the electric dipole–magnetic dipole
polarizability αem reported in the top part of (c); and (b) the (fA)-D2-C84 configuration of C84 which
was assigned in [69] to the experimental CD spectrum represented in the bottom part of (c). The color
scheme of (a,b) helps in distinguishing pentagons from hexagons in the fullerene. The experimental
CD spectrum is taken from Ref. [69]. To simulate αem(−ω, ω) (Γ = 0.35 eV), we fed polar with data
from a TDDFT calculation (B3LYP/6-31G(d,p) level, 400 states).
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3.3. Vibrational Polarizabilities and IR/VCD Spectroscopies

To benchmark the vibrational contributions to molecular polarizabilities provided by polar,
we begin by considering αee,v in the static limit. Such a quantity is straightforwardly provided by
the Gaussian code in standard vibrational frequency calculations, and for small molecules (CH4, CF4,
and CCl4) it is also available from published independent calculations [70] and experiments [71].
As shown in Table 1, the numerical data provided by polar have the same quality as those reported by
Gaussian, and compare reasonably with other theoretical data and experimental results.

Table 1. Vibrational electric polarizabilities of CH4, CF4, and CCl4 (data are in atomic units [41];
B3LYP/aug-cc-pVTZ DFT calculations for Columns 1 and 2—present work). The minor discrepancy
between Columns 1 and 2 is due to slight differences in the numerical values of the physical constants
involved in the calculations (i.e., polar in Column 1 vs. Gaussian in Column 2). This is proved by the
ratios of the values in Columns 1 and 2 being 1.0072, independently of the molecule.

Molecule 1
3 Tr(αee,v) From Gaussian09 Output From Ref. [70] Expt. from Ref. [71]

CH4 0.2371 0.2354 0.2299 0.2025 (0.2025)
CF4 7.3981 7.3450 8.0347 5.3988 (7.6259)
CCl4 8.1828 8.1241 6.3524 5.6688 (6.4111)

Parallel to the case of the electronic polarizability, where the imaginary part of αee(−ω; ω) relates
to UV-Vis absorption spectroscopy and the real part of αem(−ω; ω) relates to circular dichroism (CD)
spectroscopy, the calculation of the frequency-dependent vibrational polarizabilities αee,v(−ω; ω) and
αem,v(−ω; ω) paves the way to the simulation of IR and VCD spectra, respectively. It is known that
VCD and IR (to a minor extent) are fairly sensitive to structural changes in flexible molecules [72,73]
and to the equilibrium among conformers [74–77]. Even though it is possible to handle molecular
flexibility in VCD (e.g., see Ref. [78] for a recent approach), in our validation of polar, we decided
to consider rigid molecules, for the sake of simplicity. We selected four chiral molecules with
unique conformations, which offers a more straightforward comparison with the experimental IR
and VCD spectra. The application of polar to molecules with many conformations is a conceptually
straightforward task, which could be considered in future versions of the code. The experimental VCD
and IR spectra of (1S)-Fenchone ((1S) -FEN), (1S)-Camphor ((1S)-CAM), (1S)-2-Methylenefenchone
((1S)-MEFEN) and (1S)-2-Methylenecamphor ((1S)-MECAM) were investigated in [79], and the main
features of the spectra where assigned with the help of DFT calculations. The satisfactory comparison
between frequency-dependent polarizabilities and experimental IR and VCD spectra of the four
molecules is presented in Figures 6 and 7.

The dissymmetry factor g plays an important role in VCD spectroscopy [80,81]. The g factor
analytically correlates with the concept of robustness [82,83], which was introduced in VCD by Nicu
and Baerends [84]. This useful parameter characterizes the soundness of the numerical prediction
of VCD intensities and signs, and its use has been extended by Góbi and Magyarfalvi through the
dissymmetry factor [85]. For these reasons, we have decided to compare in Figure 8 the function g(ω)

computed by polar with the corresponding experimental quantity measured for 1S-CAM, taken as a
representative reference. Both the order of magnitude and the spectral shape of the computed g(ω)

match reasonably well with the experimental results, which we take as a solid benchmark of the
implementation of the polar code.
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Figure 6. (a,c) The equilibrium structure of (1S)-FEN and (1S)-CAM, respectively; and (b,d) polar-simulated
IR and VCD spectra of (1S)-FEN and (1S)-CAM (Γ = 10 cm−1), respectively, compared to their experimental
counterparts [79]. The vertical black bars in the top panels are proportional to the rotatory strengths
computed by Gaussian (R0k). To ease the comparison with the experimental data, the wavenumber axis of
the simulated polarizabilities has been uniformly scaled by the empirical factor 0.98. DFT calculations were
carried out at the B3LYP/aug-cc-pVTZ level.
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(c) (1S)-MECAM (d)
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Figure 7. (a,c) The equilibrium structure of (1S)-MEFEN and (1S)-MECAM, respectively; and (b,d)
polar-simulated IR and VCD spectra of (1S)-MEFEN and (1S)-MECAM (Γ = 10 cm−1), respectively,
compared to their experimental counterparts [79]. The vertical black bars in the top panel are proportional
to the rotatory strengths computed by Gaussian (R0k). To ease the comparison with the experimental data,
the wavenumber axis of the simulated polarizabilities has been uniformly scaled by the empirical factor 0.98.
DFT calculations were carried out at the B3LYP/aug-cc-pVTZ level.
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Figure 8. Comparison between the experimental g-ratio of 1S-CAM and the g-ratio calculated by
polar based on Equation (12) (Γ = 10 cm−1). DFT calculations on 1S-CAM have been carried out at
B3LYP/aug-cc-pVTZ level; for ease of comparison with experimental data, the wavenumbers computed
by DFT were scaled by 0.98.

To further validate the calculation of the transition magnetic dipole moments and the rotatory
strengths performed by polar, we have computed the transition dipole moments and the g-ratios of
methyloxirane (Figure 9), a well-known small and rigid chiral molecule which was investigated in the
past by three of us [82]. The above quantities have been compared with the corresponding g-ratios that
can be straightforwardly determined from the dipole and rotatory strengths extracted (in cgs units)
from the typical output of a VCD calculation made by Gaussian. We collect in Table 2 the satisfactory
comparison between the g-ratios computed by polar and those determined from the Gaussian output.

Figure 9. Representation of the equilibrium structure of (R)-methyloxirane computed by DFT at the
B3LYP/aug-cc-pVQZ level of theory.
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Table 2. Comparison of the results from a VCD calculation carried out with Gaussian09 on
(R)-methyloxirane at the B3LYP/aug-cc-pVQZ level, and the results obtained by a corresponding
polar calculation based on the numerical data contained in the *.fchk file associated with the
Gaussian calculation. Column (a) is the wavenumbers computed by Gaussian09 and polar are not
distinguishable at the shown precision. The APTs and AATs stored in the *.fchk file are used by polar
to compute the dipole and rotatory strengths (Columns (b) and (c)) in atomic units (see Equation (14)
and Section 4 for details), from which we computed the dissymmetry ratios g0k = 4R0k/(cD0k)

listed in Column (d)—please note the use of SI for the electromagnetic field, which implies the factor
c = 137.035999074 in atomic units [41]. The dipole and rotatory strengths computed by Gaussian09
(Columns (e) and (f)) are used to compute the dissymmetry ratios g0k = 4R0k/D0k (cgs system) reported
in Column (g).

(a) (b) (c) (d) (e) (f) (g)

ν̄k 104 · D0k 107 · R0k 104 · g0k 1040 · D0k 1044 · R0k 104 · g0k
(cm−1) (at. un.) (at. un.) (dimensionless) (esu2 cm2) (esu2 cm2) (dimensionless)

211 1.07 7.15 1.94 7.30 3.46 1.89
368 6.49 −26.54 −1.19 41.96 −12.44 −1.19
411 6.62 −10.04 −0.44 42.62 −4.81 −0.45
771 6.01 27.05 1.31 38.79 12.75 1.31
842 32.85 8.60 0.08 212.20 4.06 0.08
909 1.79 53.14 8.68 11.55 25.05 8.68
973 9.67 −73.10 −2.21 62.50 −34.46 −2.21
1044 5.10 13.38 0.77 32.94 6.31 0.77
1131 3.63 −15.52 −1.25 23.42 −7.31 −1.25
1159 1.32 10.50 2.33 8.50 4.94 2.33
1169 1.62 −26.62 −4.78 10.50 −12.55 −4.78
1191 0.49 1.34 0.80 3.15 0.63 0.80
1295 3.21 −20.81 −1.89 20.73 −9.81 −1.89
1409 1.28 4.71 1.07 8.30 2.21 1.07
1440 9.06 30.39 0.98 58.53 14.33 0.98
1485 2.26 3.73 0.48 14.58 1.76 0.48
1499 2.53 −2.97 −0.34 16.32 −1.40 −0.34
1530 2.35 11.85 1.47 15.19 5.59 1.47
3028 3.63 2.77 0.22 23.48 1.31 0.22
3080 5.46 0.96 0.05 35.24 0.45 0.05
3085 3.78 −3.99 −0.31 24.41 −1.88 −0.31
3088 1.77 −15.01 −2.47 11.45 −7.08 −2.47
3110 7.31 14.04 0.56 47.20 6.62 0.56
3164 5.28 −11.24 −0.62 34.10 −5.30 −0.62

3.4. Introducing Intensity-Carrying Modes in VCD

Among the observations pointed out in [79], we highlight that “the intensities, both in
absorption and in VCD, are generally larger for FEN than for MEFEN and for CAM than for MECAM”.
Indeed, the inspection of Figures 6a and 7a confirms that the polarizabilities of the carbonyl-containing
molecules FEN and CAM display larger values than MEFEN and MECAM. To directly point out
the role of the carbonyl group in causing the intensity increase in both VCD and IR calculations,
we compute the Intensity Carrying Modes (ICM) of the four molecules. This useful concept was
introduced by Torii et al. in the framework of IR and Raman spectroscopy [32,33], connected to
vibrational polarizabilities (and hyperpolarizabilities) [33], and later extended to Raman Optical
Activity (ROA) by Luber et al. [86]. However, to the best the authors’ knowledge, the use of ICM in the
context of VCD is unprecedented. Therefore, it is worth recalling the notation used for IR spectroscopy,
and extend it to VCD.

ICMs are introduced as collective nuclear displacements along which the IR intensity (or Raman
or ROA intensity) is maximized. This leads to an eigenvalue problem [33,86] for theM matrix, which,
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in the case of IR spectroscopy, can be expressed through the dipole derivatives with respect to the
nuclear displacement Cartesian coordinates (xi; i = 1...3N):

MIR
ij = ∑

k

∂µk
∂xi

∂µk
∂xj

. (16)

For a givenMmatrix (either for IR, Raman, or ROA), the eigenvalue problem

M ck = λkck (17)

provides the eigenvalues λk associated with the maximized intensities, and the related nuclear
displacements coefficients ck that describe a selected kth ICM [33,86].

If one evaluates the dipole strength D0a1a in terms of APTs (Equation (14)), one can easily justify
the expression of theMmatrix provided in Equation (16):

D0a1a = 〈0a|µ|1a〉 · 〈1a|µ|0a〉 =
h̄

2ωa
∑
ij

Lia
∂µ

∂xi
· ∂µ

∂xj
Lja =

h̄
2ωa

∑
ij

LiaMIR
ij Lja, (18)

with

MIR
ij =

∂µ

∂xi
· ∂µ

∂xj
.

We mention that Torii’s approach to ICM [33] makes use of internal coordinates instead of
Cartesian nuclear displacements. This is just a matter of choice in the representation of the nuclear
displacements, and it does not affect the conclusions reached in this Section.

Equation (18) shows that the dipole strength of a given vibrational transition (0a → 1a) is a
quadratic form in the coefficients of the nuclear displacement of the associated normal mode (Lia).
Clearly, Torii’s approach to ICM [33] seeks the eigenvalues of theMIR matrix (Equation (16)), which
is exactly the matrix of the quadratic form associated to the dipole strength reported in Equation (18).
This observation justifies a similar approach for IR and VCD, provided that a suitableMmatrix is
defined also for the latter case. Following the strategy described for IR, to define ICM in VCD one may
proceed by looking for a quadratic form associated with the rotatory strength R0a1a . By making use of
Equation (14), one can express the rotatory strength in terms of APTs and AATs as follows:

R0a1a = = [〈0a|µ|1a〉 · 〈1a|m|0a〉] =
[(

h̄
2ωa

) 1
2

∑
i

∂µ

∂xi
Lia

]
·
[(

h̄ωa

2

) 1
2

∑
j

∂m
∂ẋj

Lja

]
= (19)

=
h̄
2 ∑

ij
Lia

(
∂µ

∂xi
· ∂m

∂ẋj

)
Lja.

The last identity in Equation (19) provides the expression of the quadratic form suitable for VCD,
characterized by a matrix ∂µ

∂xi
· ∂m

∂ẋj
. We note that this matrix is not symmetric. However, the result of

the summation in Equation (19) cannot be distinguished from the symmetric version below, which is
preferred for numerical convenience:

R0a1a =
1
2 ∑

ij
LiaMVCD

ij Lja, (20)

with

MVCD
ij =

h̄
2

[
∂µ

∂xi
· ∂m

∂ẋj
+

∂µ

∂xj
· ∂m

∂ẋi

]
.
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From the inspection of Equation (20), we conclude that ICMs suitable for VCD can be found by
seeking the stationary values of the rotatory strength R01 as a function of the nuclear displacement
coefficients (subject to normalization of the vector of coefficients). Similar to the case of IR
spectroscopy [33], this leads to the eigenvalue problem for theMmatrix defined by Equation (20).

We implemented the calculation of ICM in polar, for both IR and VCD spectroscopy, considering
theM matrices given by Equations (18) and (20). The eigenvalues resulting from the solution of
Equation (17) are collected in Table 3 (for IR) and in Table 4 (for VCD). We observe that the number of
non-zero eigenvalues ofMIR is three (as previously found by Torii [33]), while it is six forMVCD.
As pointed out by Luber et al. in discussing Raman and ROA ICMs [86], the rank of theM matrix
indeed equals the number of independent components of the polarizability. Similarly, in VCD, we
have three independent components of the electric and magnetic dipoles, which justifies the rank of
MVCD being six. Furthermore, since the sum of the rotatory strengths is zero [47] (i.e., ∑a R0a1a = 0),
this justifies the fact that the sum of the eigenvalues is approximately zero, within the numerical
accuracy affordable by the selected computational method.

The inspection of the data reported in Table 3 fully justifies the observation made in Ref. [79]
that the IR intensities of FEN and CAM are overall stronger than MEFEN and MECAM (respectively).
The eigenvalues of the IR-ICMs of the carbonyl-containing compounds FEN and CAM are quite similar,
but they are remarkably larger than those of MEFEN and MECAM. Moreover, the inspection of the
animations of the associated eigenmodes (Supplementary Materials) reveals that for λ1 and λ2 (which
are the most IR-active ICMs of FEN and CAM) the carbonyl group is significantly involved: mode 1
has a large C=O stretching content, whereas mode 2 shows a significant C=O bending content. It is
thus clear that the presence of carbonyl explains the stronger activity in the IR of FEN and CAM
compared to MEFEN and MECAM (as expected).

Turning now our attention to VCD, the ICM eigenvalues reported in Table 4 reveal, similar to
IR, the presence in FEN and CAM of two significant positive eigenvalues (λ1, λ2), which pair up
with their negative counterparts λ6, λ5. The inspection of the associated eigenmodes (Supplementary
Materials) reveals also for VCD the involvement of stretching/bending carbonyl motions occurring
in-phase (λ1, λ2) or out-of-phase (λ6, λ5) with respect to skeletal distortions of the rest of the molecule.
Therefore, based on the analysis of VCD-ICMs of the four molecules, we can provide a clue for the
IR and VCD strengths of FEN and CAM being stronger than MEFEN and MECAM, as observed
in [79]. Indeed, the direct involvement of carbonyl motions in the stronger ICMs is responsible for the
observed differences in both IR and VCD.

Table 3. IR Intensity Carrying Modes (ICM)s of the four chiral compounds for which the corresponding
simulated and experimental spectra are reported in Figures 6 and 7. The APTs and AATs required for
the evaluation of ICMs have been computed at the B3LYP/aug-cc-pVTZ level of theory. All numerical
data are given in the atomic units of theMIR matrix.

Molecule λ1 λ2 λ3 ∑ λi

(1S)-FEN 3.29 1.52 0.30 5.11
(1S)-CAM 4.06 1.18 0.32 5.57
(1S)-MEFEN 0.52 0.41 0.32 1.25
(1S)-MECAM 0.57 0.40 0.30 1.27
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Table 4. VCD Intensity Carrying Modes (ICM)s of the four chiral compounds for which the
corresponding simulated and experimental spectra are reported in Figures 6 and 7. The APTs and
AATs required for the evaluation of ICMs have been computed at the B3LYP/aug-cc-pVTZ level of
theory. All numerical data are given in the atomic units of theMVCD matrix.

Molecule λ1 λ2 λ3 λ4 λ5 λ6 ∑ λi

(1S)-FEN 3.67 1.96 0.58 −0.60 −2.07 −3.44 0.09
(1S)-CAM 4.25 1.93 0.64 −0.66 −1.76 −4.26 0.13
(1S)-MEFEN 0.83 0.71 0.48 −0.51 −0.72 −0.77 0.01
(1S)-MECAM 0.87 0.76 0.47 −0.49 −0.77 −0.87 −0.03

4. Materials and Methods

All the polarizability calculations reported here were carried out through the polar code
developed in this work. polar allows the numerical evaluation of the three polarizability tensors αee,
αem, αmm as a function of the photon frequency ω. Both electronic and vibrational polarizabilities
can be computed. polar is written in the C++ language, and adopts complex numbers for better
code readability.

Electronic polarizabilities are evaluated as sum over vertical electronic transitions
(Equations (6)–(8)). The required input data are the excitation energies h̄ωk of a selected set of
excited states |k〉, and the associated electric (magnetic) transition dipoles µ0k (m0k). The output
file of an ordinary TDDFT calculation made by Gaussian code [5] can be parsed by polar to gather
all information required to operate. By writing additional parsers, polar can be straightforwardly
interfaced to other quantum chemistry packages.

The calculation of vibrational polarizabilities by Equation (13) requires the quantities computed
by Gaussian in a standard VCD job. These are the Hessian of the energy vs. the Cartesian nuclear
displacements, and the derivatives of the electric and magnetic dipole vs. the Cartesian nuclear
displacements (the latter two quantities are also, respectively, named APTs and AATs, see for
instance [49–51]). By using the Hessian matrix, polar solves the secular equation to obtain the
vibrational frequencies (ωk) and the normal modes, which are required to compute the dipole
derivatives vs. normal coordinates (qk) from APTs and AATs. The Hessian, APTs, and AATs are
stored by Gaussian in the formatted checkpoint file (*.fchk) and are read by polar before addressing
the evaluation of vibrational polarizabilities. For convenience, since Gaussian checkpoint and output
files report computed data in atomic units, we adopt the same convention in polar. The quite useful
and neat paper by McWeeny [41] can help the reader in converting all the quantities reported here
from atomic to SI units. We merely remind here the following identities (where E0 = e2/(κ0a0) is the
symbol for the Hartree, a0 the symbol for the Bohr, and κ0 = 4πε0 is the electric permittivity):

[αee] =
[µ]2

E0
=

(ea0)
2

e2

κ0a0

= κ0a3
0, (21)

[αem] =
[µ] [m]

E0
=

(ea0)
(
E0ea2

0/h̄
)

E0
=

e2

h̄
a3

0, (22)

[αmm] =
[m] [m]

E0
=

(
E0ea2

0/h̄
) (

E0ea2
0/h̄

)
E0

=
E0e2a4

0

h̄2 . (23)

Since the atomic units of the electric and magnetic fields are [E ] = E0/(ea0) and [B] = h̄/(ea2
0) [41],

it is straightforward to show that [EαeeE ] = [EαemB] = [BαmmB] = E0.
The DFT and time-dependent density functional theory(TDDFT) calculations reported in this work

have been carried out with Gaussian09 Rev. D.01 [5]. Because of the scattered nature of the literature
reference data employed in this work to validate polar, we had to chose individual functionals and
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basis sets, as best suited to carry out the required comparison. Therefore, in the caption of each figure
or table presenting computational data, we report the selected functional and basis set.

5. Conclusions

The polar code makes the simulation of CD spectra straightforward through the evaluation of
the trace of the frequency-dependent electric dipole–magnetic dipole molecular polarizability, αem(ω).
polar allows simulating both ECD and VCD spectra based on the quantum chemical outputs routinely
produced by the Gaussian code [5]. These calculations allow for the validation of polar thanks to the
available literature data.

As a remarkable byproduct, our theoretical analysis of the molecular polarizabilities also allows
one to easily compute the dissymmetry factor g(ω), which compares well with the experimental
counterpart of camphor, as reported in Figure 8. Finally, we have extended Torii’s Intensity Carrying
Modes [32,33] to the context of VCD spectroscopy. This provides an informative approach to the
understanding of the origin of VCD intensities.

Moreover, the complex polarizabilities computed by polar are of relevance to spectroscopic
applications in the presence of controlled distributions of electromagnetic fields that can be realized
via nano-optical engineering in order to enhance the chiroptical response [87–89]. In this framework,
the molecular calculations can serve both the purpose of introducing the chiral medium into the
electromagnetic simulations via effective medium approaches and of evaluating the weight of the
quadrupolar contributions in the CD spectra because of the presence of specific field gradients.
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Appendix A. Analysis of Polarizabilities in Resonance Condition

By taking the trace of Equations (6)–(8), and by considering Equation (4), one straightforwardly
obtains the following:

Tr (αee(−ω; ω)) =
1
h̄ ∑

k

D̃0k
ωk −ω− iΓ/2

+
1
h̄ ∑

k

D̃k0
ωk + ω + iΓ/2

, (A1)

Tr (αem(−ω; ω)) =
1
h̄ ∑

k

R̃0k
ωk −ω− iΓ/2

+
1
h̄ ∑

k

R̃k0
ωk + ω + iΓ/2

,

Tr (αmm(−ω; ω)) =
1
h̄ ∑

k

G̃0k
ωk −ω− iΓ/2

+
1
h̄ ∑

k

G̃k0
ωk + ω + iΓ/2

,

where R̃k0 = Tr (µk0 ⊗m0k) = Tr
(
µ∗0k ⊗m∗k0

)
= Tr (µ0k ⊗mk0)

∗ = R̃∗0k. We notice that these identities
hold because the dipole operators are Hermitian operators, which implies µk0 = µ∗0k, and m0k = m∗k0
(similar identities hold for D̃k0 and G̃k0 as well). This implies that the resonance and off-resonance
terms of Equation (A1) are related to each other by complex conjugation, as expected [43]:

Tr (αee(−ω; ω)) =
1
h̄ ∑

k

D̃0k
(ωk − iΓ/2)−ω

+
1
h̄ ∑

k

D̃∗0k
(ωk − iΓ/2)∗ + ω

, (A2)

Tr (αem(−ω; ω)) =
1
h̄ ∑

k

R̃0k
(ωk − iΓ/2)−ω

+
1
h̄ ∑

k

R̃∗0k
(ωk − iΓ/2)∗ + ω

,

Tr (αmm(−ω; ω)) =
1
h̄ ∑

k

G̃0k
(ωk − iΓ/2)−ω

+
1
h̄ ∑

k

G̃∗0k
(ωk − iΓ/2)∗ + ω

.

In resonance condition (ω ≈ ωk), the quantity ∆ωk ≡ ω−ωk is small. Therefore, one can consider
just the resonance terms in the sum over states expansion (A2), obtaining:

−Tr (αee(−ω; ω)) ≈ 1
h̄

D̃0k
∆ωk + iΓ/2

, (A3)

−Tr (αem(−ω; ω)) ≈ 1
h̄

R̃0k
∆ωk + iΓ/2

,

−Tr (αmm(−ω; ω)) ≈ 1
h̄

G̃0k
∆ωk + iΓ/2

.

By recalling that D̃0k = D0k and G̃0k = G0k are real quantities, one can expand the expression for the
real and imaginary parts of the αee and αmm tensors, obtaining:

−Tr (αee(−ω; ω)) =
1
h̄

D0k

∆ωk
2 + (Γ/2)2

(∆ωk − iΓ/2) , (A4)

−Tr (αmm(−ω; ω)) =
1
h̄

G0k

∆ωk
2 + (Γ/2)2

(∆ωk − iΓ/2) .

Similarly, by considering that R̃0k = iR0k is imaginary, one obtains:

−Tr (αem(−ω; ω)) =
1
h̄

R0k

∆ωk
2 + (Γ/2)2

(Γ/2 + i∆ωk) . (A5)

We recall that the Lorentzian lineshape L(∆ωk, Γ), typical of absorption spectroscopy [90], has the
following expression:

L(∆ωk, Γ) =
1
π

Γ/2
∆ωk

2 + (Γ/2)2
. (A6)
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This lineshape function is normalized so that
∫

dωL(∆ωk, Γ) = 1, similar to ρ(ω) in Equation (2).
In the imaginary parts of Equation (A4) and in the real part of Equation (A5), one can easily identify
the Lorentzian lineshape (i.e., Γ/2

∆ω2+(Γ/2)2 = πL). Therefore, we conclude the following:

= [Tr (αee(−ω; ω))] =
π

h̄
D0k L(∆ωk, Γ)→ π

h̄
D0k ρk(ω), (A7)

= [Tr (αmm(−ω; ω))] =
π

h̄
G0k L(∆ωk, Γ)→ π

h̄
G0k ρk(ω),

−< [Tr (αem(−ω; ω))] =
π

h̄
R0k L(∆ωk, Γ)→ π

h̄
R0k ρk(ω),

where we have identified ρk(ω) in Equation (A7) with the Lorentzian lineshapes showing up in
Equations (A4) and (A5). This is possible also because both ρ and L are normalized functions.

Appendix B. Polarizability as a Sum over Vibrational States

By evaluating the electric dipole transition elements showing up in Equation (13) through the use
of Equation (14), one obtains the vibrational contribution to the electric polarizability as follows:

αee,v
ij (−ω; ω) =

1
2

[
∑
a

1
ωa

1
ωa −ω− iΓ/2

∂µi
∂qa

∂µj

∂qa
+ ∑

a

1
ωa

1
ωa + ω + iΓ/2

∂µi
∂qa

∂µj

∂qa

]
. (A8)

When considering the static limit (ω = 0), and neglecting damping effects (Γ = 0), one recovers
the result previously obtained by Castiglioni et al. in terms of electric dipole derivatives [71,91]:

αee,v
ij (0; 0) = ∑

a

1
ω2

a

(
∂µi
∂qa

∂µj

∂qa

)
. (A9)

By substituting the expressions of the electric and magnetic transition dipole given by
Equation (14) into Equation (13), one straightforwardly obtains the following expressions of αem,v

and αmm,v:

αem,v
ij (−ω; ω) =

h̄
2

[
∑
a

i
ωa −ω− iΓ/2

∂µi
∂qa

∂mj

∂q̇a
+ ∑

a

−i
ωa + ω + iΓ/2

∂µi
∂qa

∂mj

∂q̇a

]
, (A10)

αmm,v
ij (−ω; ω) =

h̄
2

[
∑
a

ωa

ωa −ω− iΓ/2
∂mi
∂q̇a

∂mj

∂q̇a
+ ∑

a

ωa

ωa + ω + iΓ/2
∂mi
∂q̇a

∂mj

∂q̇a

]
. (A11)

Appendix C. Relation with Lambert–Beer law

For convenience, we recall here the connection between the transition rate w(ω) and the
Lambert–Beer law by which absorption experiments are usually interpreted (for consistency with
the rest of this work, we adopt SI units, which, when needed, consistently lead to atomic units [41].
For this reason, instead of the molecular absorbivity ε, we use here the molecular cross section σ (whose
dimension is an area):

− ln
I(ω)

I0(ω)
= A = σCl. (A12)

A is the absorbance, l the sample length, and C represents the number of absorbing molecules per unit
volume (number concentration). The differential form of the Lambert–Beer law, corresponding to the
differential absorption dA caused by light traversing the differential path dl, is the following:

σCdl = dA = −d
[

ln
I(ω)

I0(ω)

]
= −dI

I
. (A13)
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Hence, the intensity loss due to absorption within the path dl is:

− dI = σCIdl. (A14)

We remark that −dI represents the energy loss per unit time over the cross section S of the light
beam, and it is caused by the rate of energy absorbed by the molecule, w(ω), times the number of
molecules dN = CdV within the volume dV = Sdl, divided by the cross section S of the light beam:

− dI =
w(ω)C(Sdl)

S
= w(ω)Cdl. (A15)

Therefore, by equating the two expressions of −dI given above in Equations (A14) and (A15),
one obtains the molecular cross section σ:

σ =
w(ω)

I
= (A16)

=
1
3

ω

cε0

[
= [Tr (αee(−ω; ω))]± 2

c
< [Tr (αem(−ω; ω))] +

1
c2= [Tr (αmm(−ω; ω))]

]
=

=
1
3

2π

λε0

[
= [Tr (αee(−ω; ω))]± 2

c
< [Tr (αem(−ω; ω))] +

1
c2= [Tr (αmm(−ω; ω))]

]
.
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