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Abstract: The grain handling industry plays a significant role in U.S. agriculture by storing,
distributing, and processing a variety of agricultural commodities. Commercial grain elevators are
hazardous agro-manufacturing work environments where workers are prone to severe injuries, due to
the nature of the activities and workplace. Safety incidents in agro-manufacturing operations generally
arise from a combination of factors, rather than a single cause, therefore, research on occupational
incidents must look deeper into identifying the underlying causes, through the application of advanced
analyses methods. In occupational safety, it is possible to estimate and predict probability of safety
risks through developing artificial neural network predictive models. Due to the significance of safety
risk assessment in the design and prioritization of effective prevention measures, this study aimed
at classifying and predicting causes of occupational incidents in grain elevator agro-manufacturing
operations in the Midwest region of the United States. Workers’ compensation claims data, from 2008
to 2016, were utilized for training multilayer perceptron (MLP) and radial basis function (RBF)
neural networks. Both MLP and RBF models could predict the probability of safety risks with a
high overall accuracy of 60%, 61%. Based on values of AUC (area under the curve) from the ROC
(receiving operating charts), both models predicted the probability of individual safety risks with
a high accuracy rate of between 71.5% and 99.2%. In addition, sensitivity analysis showed that
nature of injury is the most significant determinant of safety risks probability, along with type of
injury. The novelty of this study is the use of the artificial neural network methodology to analyze
multi-level causes of occupational incidents as the sources of safety risks in bulk storage facilities.
The results confirm that artificial neural networks are useful in safety risk estimation, and identifying
the incidents’ risk factors. The implementation of safety measures in grain elevators can help in
preventing occupational injuries, saving lives, and reducing the occurrence and severity of such
incidents in industrial work environments.

Keywords: MLP neural networks; RBF neural networks; occupational incident analysis;
agro-manufacturing operations; occupational safety analysis

1. Introduction

Despite extensive and ongoing efforts to reduce occupational incidents, the World Health
Organization (WHO) has introduced occupational injuries as a public heath epidemic [1]. Occupational
injuries are one the most significant health threats in largescale workplaces [1], and are associated with
suffering and loss at individual, community, societal and organizational levels [2]. At the organization
level, occupational accidents have a significant negative influence on the financial performance of a
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company [3]. Workplace incidents have direct costs, paid as medical and indemnity expenses to the
injured. In addition, indirect costs of occupational incidents include equipment damage and repair,
incident investigation time, training new personnel for the replacement of injured ones, an increase in
insurance premiums in the year following the incidents, a slowdown of production schedules, damage
to companies’ reputation, and lowering workers’ motivation to return to work [4]. These observations
point to the growing importance of workplace health and safety intervention efforts [5].

Identifying the patterns of incident occurrence in different types of workplace incidents provides
a broader perspective on preventative strategies than might be gained from studying a single type of
workplace [6]. Workplace incidents are the result of various causes [7]. Thus, it is necessary to learn
from past incidents to plan measures that reduce the likelihood of future incidents [8]. Using injury
data, occupational incident analysis focuses on identifying the prevalent causes of incidents to design
proper prevention measures [9].

Conducting in-depth research on identifying risk factors and causes of occupational incidents
in various industries will ultimately help to reduce the rate of incidents and injuries [10] through
establishing effective injury prevention programs [11]. Agricultural-related industries are high-hazard
workplaces, where workers are exposed to serious safety risks and the cost of occupational incidents
is enormous [12]. The grain handling industry has a significant role in U.S. agriculture by storing,
distributing, and processing a variety of agricultural commodities [13]. The expansion of grain storage
capacity in recent years has led to a higher number of occupational incidents in grain handling
industrial operations [14]. The frequency and costs of occupational incidents in grain elevators are
higher than in other agribusinesses [11,15–17]. Few studies have addressed safety issues in the grain
handling industry. Mosher, Keren, Freeman, and Hurburgh [18] evaluated the role of human factors in
the management of occupational safety in commercial grain handling facilities. Geng and Jepsen [11]
conducted a survey on grain handling operations to evaluate how safety and health information was
incorporated at the grain handling and storage facilities in Ohio, US. Ramaswamy and Mosher [14] used
chi-square contingency tables to characterize the injury costs in commercial grain elevators, and showed
that employee age and tenure, cause of injury, and body part injured have a significant influence on the
cost of occupational incidents in such an industry. Davoudi Kakhki, Freeman, and Mosher [19] utilized
various machine learning methods in estimating the severity of injuries in agribusiness industries,
based on information from workers’ compensation data. However, there is no recent comprehensive
study focused on identifying the causes of occupational incidents in agribusiness operations and within
grain elevators, using advanced data mining methods.

Workers’ compensation data are a rich source of injury data, which includes detailed incident
information about the demographics of the injured workers, as well as type of injury, nature of injury,
main causes of injury, and injured body parts. In this study, a data set with over 5000 workers’
compensation claims, reported between 2008 and 2016, was used. The details of the data are explained
in Section 3.1. Using information from workers’ compensation claims, the primary interest of this
study is to identify which incident factors are important in influencing the probability of a specific
safety risk occurrence. Furthermore, this study aims to apply, validate and assess the performance of
multilayer perceptron (MLP) and radial basis function (RBF) neural networks in accurately classifying
and predicting the main sources of safety risks (causes) of occupational incidents in commercial grain
elevators in the Midwest of the United States.

This study contributes to the current literature on the analysis of non-farm, agricultural-related
occupational injuries, by investigating the effect of workers’ age, experience, occupation, and the
type and nature of injury for classification purposes, in the cause prediction of such incidents.
In addition, interpreting the results from the ANN model could provide useful insights about the
contributing factors of potential future occupational incidents. Such insights aid safety practitioners
and planners, who aim to revise safety measures and reduce occupational incident rates in non-farm,
agricultural-related industries.
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The rest of the paper is organized as follows: Section 2 presents a review of the literature on
the ANN methods and their applications in occupational safety analytics; Section 3 explains the
data and modeling procedures; Section 4 presents, evaluates, and discusses the analysis findings,
and applications; in Section 5, discussions of conclusions, the limitations of the research and future
studies complete this paper.

2. Literature Review

2.1. Artificial Neural Networks

Artificial Neural networks (ANNs) are well suited for classification and prediction [20]. ANNs
enable problem-solving by changing the structure of interconnected components [21]. The reason
for the popularity of ANNs is that is they are non-parametric statistical models, which do not need
any assumptions between input and output variables [22], and that they have the ability to learn
from experience and enhance their functions to improve classification and prediction accuracy [23].
Nonlinear modeling machine learning (such as ANNs) is used to extract information from noisy data,
and can avoid over-fitting, making it generally more robust [24,25]. The ANNs are composed of nodes
connected by directed links, and each link has a numeric weight [26]. Preparation of the ANNs includes
data cleaning and processing, and choosing the number of hidden layers, number of nodes, type of
activation function and learning algorithm rate. In this research, two types of ANNs are applied:
multilayer perceptron (MLP) and radial basis function (RBF) neural networks. Both MLP and RBF are
used in predictive modeling as ‘supervised’ methods, in the sense that the model-predicted results can
be compared against the known values of the target variable [27].

The first algorithm is the MLP neural networks as in Figure 1, which consist of three kinds of
layers: Atablien input layers, a hidden layer(s), and an output layer. MLP can have one or many hidden
layers, and the number of hidden layers can be determined by trial and error, or intelligently. There are
some neurons in each layer. Artificial neurons, as processing units, constitute ANNs, which are parallel
distributed systems. The amount of input and output data determines the number of neurons in
the input and output layers. The input layer contains the predictors. The hidden layer contains
unobservable nodes, or units. The value of each hidden unit is some function of the predictors; the exact
form of the function depends [28], in part, upon the network type and in part upon user-controllable
specifications. The output layer contains the responses. Each output unit is some function of the
hidden units. The second type are RBF neural networks as in Figure 2, with the same three layers,
which have the ability to generalize the results with high tolerance of input noise [23]. In other words,
the RBF network consists of a layer of units, performing linear or non-linear functions of the attributes,
followed by a layer of weighted connections to nodes, whose outputs have the same form as the target
vectors. As seen from Figure 2, RFB networks have only three layers, which makes them superior to
the MLP for easy design [29]. More details about the structure and specifications of MLP and RBF can
be found in [27–33].
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2.2. Artificial Neural Networks in Occupational Safety

Predictive modeling is the use of data to forecast future events by capturing relationships
between explanatory variables and predicted variables from past events, and applying them to predict
future outcomes [34]. Artificial neural networks (ANNs) are among the most popular predictive
methods in analyzing occupational incidents [1,35,36] predicting causes and severity of injuries [37,38],
and determining the underlying factors that influence workplace incidents [39–41].

Training ANNs is a practical method for assessing the severity of occupational incidents, based
on a combination of incident risk factors [39]. Many studies have used ANN modeling in industrial
settings to analyze occupational incidents and injuries. The work of Asensio-Cuesta et al. [42] and
Zurada et al. [43] analyzed the effect of specific industrial lifting jobs, and workplace design on
lower back pain. The work of Darvishi et al. [44] estimated the probability of lower back pain from
occupational incidents in industrial units with a prediction accuracy rate of 92% in train and test data,
based on sixteen risk factors of lower back pain in such injuries. The work of Aliabadi et al. [45]
predicted the hearing loss threshold in high-noise industrial workplaces in a steel factory, and analyzed
the effects of occupational exposure risk factors on determining the hearing loss threshold. The work
of Shankar Beriha et al. [46] identified the deficiencies in safety health practices in Indian industries
and analyzed the influence of workplace hazards on injury level and material damage. Other studies
used ANNs to analyze and classify the risk of injury from machine and drilling [47], and the slip–trip
incident risk in construction-related occupations [48].

3. Materials and Methods

The data for this study were taken from a leading insurance company, specializing in agricultural
commodities in the United States. The data show that a loss of over $78 million U.S. dollars was
incurred in occupational incidents costs, that occurred in grain elevators and cooperatives over eight
years, from 2008 to 2016. The incurred amount was paid in both closed claims and open claims,
which are a continued cost for the parties involved. In more than 5500 incidents, 92% are closed claims,
and 8% of claims are open. However, an almost equal proportion of the total amount incurred is paid
on open claims (50.23%) and closed claims (49.77%). In this study, all claims (both open and closed)
were analyzed. SPSS IBM 26 and JMP Pro statistical software (JMP®, Version 13.2, SAS Institute Inc.,
Cary, NC, USA, 1989–2007) were used to build MLP and RBF ANN predictive models. The models
were used to forecast the probability of the main causes of incidents, based on available workers’
compensation information.

3.1. Variable Importance

The predictors in this study are type of injury, nature of injury, Class Description, Age, Experience,
and Gender. The type of injury refers to the main outcome of the incident, and has three main
classifications: medical injuries, permanent partial disability, and temporary total or temporary partial
disability, forming of 75.28%, 15.64%, and 9.07% of the total claims, respectively. The nature of injury
shows the specification of an injury, such as fracture, laceration, concussion, or burn. The variable Class
Description refers to the main classification of the operations/occupations a worker was involved in
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when the injury happened. The detailed frequencies of the nature of both injury and class description
are illustrated in Figures 3 and 4.
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In order to determine the statistical significance of the predictors in relation to the output variable,
a chi-square test was used. The chi-square statistical test determines the dependency of two categorical
variables. The results from the chi-square test, represented in Table 1, show that all the input variables,
except gender, were statistically significant, and contributed to the prediction of the output variable
(injury cause group). The target variable was the cause group of the occupational injury, with six
categories: strain or injury by (33%); fall, slip, or trip injury (31%); struck or injured by (15%); cut, puncture,
scrap (12%); heat or cold exposures (5%), and caught in, under, or between (4%). ANNs were applied on the
information from the workers’ compensation, as input variables that included worker demographics
(occupation class, age, and years on the job), and injury nature and type, to classify and predict the main
causes of occupational incidents in grain elevators.
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Table 1. Variable importance using chi-square test.

Independent Variable Chi-Square (χ2) p-Value

Type of injury 316.077 <0.0001 *
Nature of injury 7544.33 <0.0001 *

Class Description 145.63 <0.0001 *
Age 253.07 <0.0001 *

Experience 60.78 <0.0001 *
Gender 7.97 0.1578

* p-value < α = 0.05 statistically significant variable.

3.2. Architecture of ANNs

Data for this analysis were divided into train (70%) and test (30%) sets. The decision regarding
the usefulness of a predictive model was made against the test set. The reason for dividing data into
train and test sets was to decrease the bias in the results [49]. Table 2 shows the specifications of both
MLP and RBF neural networks.

Table 2. MLP vs RBF Network Structure.

Layer Structure Criteria MLP RBF

Input Layer Factors

Injury Nature Injury Nature
Class Description Class Description

Injury Type Injury Type
Experience Experience

Age Age
Number of Units 4688 4679

Hidden Layer(s)
Number of Hidden Layers 2 1

Number of Units in Hidden Layer 12 10 *
Activation Function Hyperbolic tangent Softmax

Output Layer

Dependent Variables Cause Group Cause Group
Number of Units 6 6

Activation Function Softmax Identity
Error Function Cross-entropy Sum of Squares

* The “best” number of hidden units is the one that yields the smallest error in the testing data.

3.3. Model Assessment Criteria

This section explains the measures of fit to evaluate the performance of ANNs. These criteria
are applied in the model assessment for classification problems with binary or multi-level categorical
output variables. The overall accuracy rate is a measure of how successful the model is in correctly
grouping the predicted categorical response as the actual one; it is presented as the numerical difference
of 1 and the misclassification rate. The misclassification rate is the rate at which the categorical response
group with the highest fitted probability is not the actual group. The confusion rate is a measure
that shows the percentage of correct classification of a categorical response, and is expressed in the
form of a contingency table, where the diagonal values show the correct classification frequency of a
multi-level categorical response. Area under the curve (AUC) is an indicator of the predictive model
goodness of fit, and is gained from the receiving operating chart (ROC). Past research has proven that
the ROC curve is a standard and useful tool to determine the quality of deterministic and probabilistic
models [50]. The ROC curve provides a comprehensive and visually attractive way to summarize the
accuracy of predictions [51]. It is widely applicable, regardless of the source of predictions. In the ROC
curve, on the X axis, the “sensitivity” of the model is plotted, against “100-specificity” on the Y axis [52].
The area under the ROC curve (AUC) shows the ability of a model to predict the correct occurrence or
non-occurrence of landslide events. As the AUC values increase, the predictive capability of the model
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is better. According to Yesilnacar and Topal [53], the quantitative–qualitative relation between the AUC
and prediction accuracy can be classified as follows: 0.5–0.6 (poor), 0.6–0.7 (average), 0.7–0.8 (good),
0.8–0.9 (very good), and 0.9–1(excellent).

4. Results

This section discusses the results from the ANNs models and assesses their performance
and application in identifying safety prevention priorities in agro-manufacturing operations.
The performance of the ANNs models on train and test data sets is discussed. The quantitative
measures of model performance are gained from the confusion matrices, which include the frequency
of each incident cause group in actual and predicted classes. The AUC values are gained from the
ROC charts. A discussion of the information gained from the ANNs, regarding the factors influential
in predicting injury causes via sensitivity analysis, completes this section.

4.1. Model Performance

Table 3 depicts the results for the classification and prediction performance for both MLP and RBF
models. The overall model accuracy rates in all data sets was over 60%. Deciding on the test dataset for
model performance, the ANNs model was able to accurately classify and predict the causes of incidents
(no matter what group) in 64% of cases. Tables 4 and 5 show the MLP and RBF models performance in
the prediction and classification of individual safety risk sources (cause group). From the MLP model
performance on the test sets, the incident cause groups with the highest prediction accuracy were cut,
puncture, scrape (86.1%), strain or injury by (84.4%), and heat or cold exposure (75.7%). The MLP ANNs
predicted that cut, puncture, scrape would have the highest chance of being the main cause of incident
occurrence in grain elevator occupational injuries, followed by strain, and heat or cold exposure.

The other cause groups had a relatively lower prediction and classification rate. Incident cause
group of fall, slip, or trip injury had a 50.4% classification accuracy rate. This means that future incidents
in grain elevator operations were expected to happen due to falls, slips, or trips with a probability of
almost 0.51. Struck or injured by, and caught in, under, or between injury groups had the lowest accuracy
rate: 28.9%, and 5.0% respectively. As suggested by the literature, in general, binary categorical outputs
are expected to have a higher prediction accuracy (random performance: 50%), compared to three-level
categorical outputs (random performance: 33.3%) [54]. As categories increased, the expected accuracy
per class dropped [55]. This explains the lower classification accuracy in specific cause groups (caught in,
under, or between; struck or injured by).

The results from the RBF model agrees with the MLP outcomes, with a bit less accuracy per
predicted class.

Table 3. Predictive ANNs model confusion rate and area under curve (AUC) per cause group.

Data Set Criteria MLP RBF

Train

Sum of Squares Error N/A 1161.041
Cross Entropy Error 3867.614 N/A

Percent Incorrect Predictions 35.2% 39.4%
Overall Accuracy 64.8% 60.6%

Test

Sum of Squares Error N/A 236.173
Cross Entropy Error 819.830 N/A

Percent Incorrect Predictions 38.6% 40.5%
Overall Accuracy 61.4% 59.5%
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Table 4. Performance of MLP NN Model for Train and Test Data Sets Per Injury Cause Group.

Classification

Sample Observed

Predicted

Caught In,
Under, or
Between

Cut,
Puncture,

Scrape

Fall, Slip,
or Trip
Injury

Heat or
Cold

Exposures

Strain or
Injury by

Struck or
Injured by

Percent
Correct

Train

Caught In,
Under, or
Between

4 46 69 2 12 53 2.2%

Cut, Puncture,
Scrape 0 473 24 1 1 24 90.4%

Fall, Slip, or
Trip Injury 1 70 746 2 486 97 53.2%

Heat or Cold
Exposures 0 1 12 177 3 18 83.9%

Strain or
Injury by 0 2 159 3 1331 9 88.5%

Struck or
Injured by 0 135 282 3 56 155 24.6%

Overall
Percent 0.1% 16.3% 29.0% 4.2% 42.4% 8.0% 64.8%

Test

Caught In,
Under, or
Between

2 5 18 0 1 14 5.0%

Cut, Puncture,
Scrape 0 93 6 0 1 8 86.1%

Fall, Slip, or
Trip Injury 0 12 143 1 98 30 50.4%

Heat or Cold
Exposures 0 1 4 28 1 3 75.7%

Strain or
Injury by 0 0 38 2 233 3 84.4%

Struck or
Injured by 0 29 52 0 10 37 28.9%

Overall
Percent 0.2% 16.0% 29.9% 3.6% 39.4% 10.9% 61.4%

Table 5. Performance of RB NN Model for Train and Test Data Sets.

Classification

Sample Observed

Predicted

Caught In,
Under, or
Between

Cut,
Puncture,

Scrape

Fall, Slip,
or Trip
Injury

Heat or
Cold

Exposures

Strain or
Injury by

Struck or
Injured by

Percent
Correct

Train

Caught In,
Under, or
Between

0 30 126 0 8 9 0.0%

Cut, Puncture,
Scrape 0 438 104 0 0 4 80.2%

Fall, Slip, or
Trip Injury 0 75 804 0 447 66 57.8%

Heat or Cold
Exposures 0 0 44 167 0 0 79.1%

Strain or
Injury by 0 1 266 0 1213 3 81.8%

Struck or
Injured by 0 93 435 0 36 61 9.8%

Overall
Percent 0.0% 14.4% 40.2% 3.8% 38.5% 3.2% 60.6%
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Table 5. Cont.

Classification

Sample Observed

Predicted

Caught In,
Under, or
Between

Cut,
Puncture,

Scrape

Fall, Slip,
or Trip
Injury

Heat or
Cold

Exposures

Strain or
Injury by

Struck or
Injured by

Percent
Correct

Test

Caught In,
Under, or
Between

0 12 40 0 1 2 0.0%

Cut, Puncture,
Scrape 0 85 19 0 0 0 81.7%

Fall, Slip, or
Trip Injury 0 7 167 0 80 13 62.5%

Heat or Cold
Exposures 0 0 10 30 0 0 75.0%

Strain or
Injury by 0 1 45 0 234 0 83.6%

Struck or
Injured by 0 29 88 0 9 6 4.5%

Overall
Percent 0.0% 15.3% 42.0% 3.4% 36.9% 2.4% 59.5%

4.2. ROC and AUC Results

According to Bradley [49], the AUC is one of the most accurate model assessment criteria in
classification problems, that indicates how well separated classes are based on the modeling algorithm.
At a cut point of 0.5 in the ROCs, a value of 1 indicates a perfect fit and a value near 0.5 indicates that
the model cannot discriminate among groups. Looking at the AUC values for the test data set from
Table 6, all incident cause groups have high AUC values (AUC: 71.5% to 99.2%). Based on the AUC
results, both MLP and RBF models were successful in accurately and effectively separating the incident
causes based on the input information. The results from the RIC charts and AUC values are shown in
Figures 5 and 6.

Table 6. Comparison of Area under the Curve for MLP and RBF Models.

ANN Model Cause Group AUC

MLP

Caught In, Under, or Between 0.822
Cut, Puncture, Scrape 0.961

Fall, Slip, or Trip Injury 0.757
Heat or Cold Exposures 0.992

Strain or Injury by 0.900
Struck or Injured by 0.825

RB

Caught In, Under, or Between 0.739
Cut, Puncture, Scrape 0.952

Fall, Slip, or Trip Injury 0.715
Heat or Cold Exposures 0.987

Strain or Injury by 0.887
Struck or Injured by 0.792
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4.3. Sensitivity Analysis

To extract detailed information about the relationship between the input variables and outcomes,
sensitivity analysis is used as a valuable way to evaluate such relationship [19,56]. In other words,
sensitivity analysis investigates the relative contribution of the uncertainty (variability) of the input
variables on the uncertainty (variability) in the output levels [57]. As a feature extraction method
in ANN models [58], sensitivity analysis computes the importance of each predictor (independent
variable) in determining the probability of an output in the neural network [27]. The results of the
sensitivity analysis in the study are depicted in Table 7.

Table 7. Sensitivity Analysis of Independent variables importance.

Variable
RFB MLP

Importance Normalized Importance Importance Normalized Importance

Injury Nature 0.699 100.0% 0.464 100.0%
Class Description 0.080 11.4% 0.126 27.1%

Injury Type 0.204 29.2% 0.063 13.5%
Experience 0.012 1.7% 0.170 36.7%

Age 0.005 0.8% 0.178 38.3%
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4.4. Model Intepretation and Application in Safety

Based on the analysis in this study, both MLP and RBF NN models show high performance in
classifying and predicting multi-categorical incident causes in workers’ compensation claim data in
occupational injuries from within commercial grain elevators. The results show that applying ANNs
could be a straightforward approach for probabilistic prediction of the main causes of incidents based
on prior injuries data (type and nature), as well as on the workers’ age, experience, and occupation.

The results from the analysis emphasize the role of the nature of injury in such predictions and
classifications, and are in agreement with the previous literature on the significance of the nature
of injury in determining the severity of occupational injuries [15,16,59–64]. In general, injuries are
divided into three main groups in workers’ compensation claims: occupational disease, multiple
injuries, and specific injuries. However, each category has many details, from amputation and
laceration, to contusion, fracture, hearing impairment, and vision loss. For example, regardless of
occupation or injury type, the cause of carpal tunnel syndrome in all occupational injuries was most
likely strain (0.75–0.79 probability). The main cause of incidents of inflammation was predicted to
be struck or injured by, with little variation in the prediction probability based on occupation class
(0.35–0.46 probability). Dislocation injuries have a probability of between 0.60 to 0.79 to occur due to
the fall, slip, or trip cause group.

The results also indicate the significant effect of the workers’ occupation in predicting the potential
causes of the incidents, which agrees with previous studies on the significance of work-related
activities in determining the probability of specific safety risks and incident severity in agro-industry
workers [65–67].

Although the experience and age of the worker are not the most significant contributors to the
probability of a specific safety risk from the RBF model, they both show a high impact on the sensitivity
analysis of the MLP model. This also agrees with the previous literature about the importance of
workers’ age and their years on the job in the occurrence of a specific incident [68–70].

The main application of this model could be to provide a probabilistic table of various scenarios,
for which the main cause of incident can be estimated [39]. A variety of levels for each predictor of the
multi-categorical cause group output variable were fed into the ANNs model, and the probability of
each cause group incidence was calculated and compared. The cause group with the highest probability
was then classified as the main future cause of injury. For example, a puncture medical injury in a
younger worker, with less experience, was mostly estimated to occur for a fall, slip, or trip, while the
same puncture in an older worker, with more years on the job, was estimated to be caused by being
struck, and has a permanent partial disability outcome. Table 8 shows various scenarios and their
predicted cause group, based on the ANNs model results for a worker occupied in grain elevator
operations with a permanent partial disability injury.

Table 8. Predicted cause group in grain elevator operations via probabilities from MLP model.

Nature Age Experience Strain or
Injury by

Fall, Slip,
or Trip
Injury

Struck or
Injured

by

Cut,
Puncture,

Scrap

Cut,
Puncture,

Scrap

Caught in,
Under, or
Between

Final
Predicted

Cause Group

amputation 43 6.5 0.00 0.00 0.20 0.46 0.16 0.18 cut, puncture,
scrap

hernia 43 6.5 0.88 0.12 0.00 0.00 0.00 0.00 strain or
injury by

crushing 43 6.5 0.00 0.01 0.43 0.02 0.00 0.53
caught in,
under, or
between

puncture 53 16 0.00 0.14 0.43 0.31 0.00 0.11 struck or
injured by

hearing
loss 53 16 0.00 0.00 0.01 0.01 0.98 0.00 heat or cold

exposures

fracture 53 9 0.03 0.78 0.15 0.00 0.00 0.03 fall, slip, or
trip injury
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Further application of ANNs involved estimating the most probable, and predicting the most
dominant causes of, incidents, based on occupation. Strain or injury by was predicted as the main cause
of injury in grain elevator operations, farm machinery operations, grain milling, and auto service/

repair occupation classes, which is the same as in the original data. Hay grain or feed dealers have the
same actual and predicted main cause group, of fall, strip, or trip. For chauffeurs, helpers and gas and
oil dealers, the actual cause group is fall, strip, or trip injury, while the most likely predicted cause is
strain or injury by. Considering these results, the most dominant cause groups for all occupations in
commercial grain elevators are either strain or injury by, or fall, slip, and trip injury. Safety practitioners
can prioritize preventing those incidents that are caused by these two groups, and invest in doing so,
with the purpose of efficiently decreasing the frequency of incidents.

Considering the monetary expenses of occupational incidents, the loss was huge. These data
show that, on average, $16,200 was incurred on medical costs and $8400 on indemnity costs for a
worker injured due to fall, slip, or trip injuries. The average medical and indemnity expenses for an
injury caused by strain were $7800 and $5400, respectively. The highest mean medical and indemnity
costs belong to the caught in, under, or between cause group ($19,000 and $9500), followed by the heat
or cold exposure cause group ($16,500 and $5000). Struck, or injured by, and cut, puncture, scarp cause
groups had the lowest medical ($5600 and $2300), and indemnity costs ($2700 and $620).

5. Conclusions

Many studies have applied artificial neural networks in occupational injury analysis with a binary
classification of injury severity outcomes. Yet, very few have addressed a multi-categorical injury
outcome problem, specifically in non-farm agricultural-related occupational incidents. The novelty of
this study was in analyzing the multi-level causes of occupational incidents as the source of safety
risks in bulk storage facilities in the Midwest of the United States. This study incorporated 5400 injury
narratives, to investigate the influential predictors of causes of occupational incidents in agribusiness
operations within commercial grain elevators. The results indicated that the nature of the injury has
the highest contribution to the variation of the safety risks, along with the type of injury, either medical
or a disability.

Considering model performance metrics, artificial neural networks have proved useful in
accurately classifying various sources of safety risks and estimating the most likely causes of similar
future incidents. The high predictive accuracy of artificial neural networks models (60% to 61% overall
accuracy, and 71.5% to 99.2% accuracy per safety risk group) in the study justified the use of a machine
learning complex model over traditional parametric statistical models. The main application of this
study on safety was that it gives practitioners and managers the ability to prioritize safety interventions,
providing the opportunity to remove the sources of hazards that have the highest chance of future
occurrence. By identifying the link between incident cause and history of prior injuries, and using
the workers’ demographics, the proposed artificial neural networks model structure can assist safety
practitioners in planning relevant strategies to reduce or eliminate safety risks in grain elevators.
The results of this study highlight the application of advanced machine learning methods in studying
occupational incidents. The application of these methods, in addition to the opinion of safety experts
and safety regulations, enhances safety management in high-hazard workplaces.

Considering the architecture of artificial neural networks models, future research should focus on
augmenting the predictive accuracy rate for multi-categorical classification problems. When addressing
scenarios with more than two classes of target variable, deep learning is the preferred solution in pattern
recognition. However, the construction of a deep learning model was not applied in this study, due to
the data limitation. Deep learning models have the problem of overfitting data when applied to small
samples. Since workers’ compensation information is recorded by a human, another limitation of the
study is the loss of some data, due to entry errors. Regarding the overall approach, similar techniques
could be taken to apply artificial neural networks for cause identification in other industrial settings
where the information about prior incidents and workers’ demographics is available. A direction for
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future research is to apply the methodology of this research in other industries to validate the methods
and results. This study provides proper analytical techniques for safety practitioners who continue
to research the application of complex data mining methods to efficiently and meaningfully analyze
occupational incidents in various industries and businesses.

Author Contributions: Conceptualization, F.D.K., S.A.F. and G.A.M.; Formal analysis, F.D.K.; Methodology, F.D.K.;
Resources, S.A.F. and G.A.M.; Writing—original draft, F.D.K.; Writing—review and editing, S.A.F. and G.A.M.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mohammadfam, I.; Soltanzadeh, A.; Moghimbeigi, A.; Alizadeh Savareh, B. Use of Artificial Neural Networks
(ANNs) for the Analysis and Modeling of Factors That Affect Occupational Injuries in Large Construction
Industries. Electron. Physician 2015, 7, 1515. [CrossRef] [PubMed]

2. Mekkodathil, A.; El-Menyar, A.; Al-Thani, H. Occupational Injuries in Workers from Different Ethnicities.
Int. J. Crit. Illn. Inj. Sci. 2016, 6, 25. [CrossRef] [PubMed]

3. Argilés-Bosch, J.M.; Martí, J.; Monllau, T.; Garcia-Blandón, J.; Urgell, T. Empirical Analysis of the Incidence
of Accidents in the Workplace on Firms’ Financial Performance. Saf. Sci. 2014, 7, 123–132. [CrossRef]

4. Gavious, A.; Mizrahi, S.; Shani, Y.; Minchuk, Y. The Costs of Industrial Accidents for the Organization:
Developing Methods and Tools for Evaluation and Cost-Benefit Analysis of Investment in Safety. J. Loss Prev.
Process Ind. 2009, 22, 434–438. [CrossRef]

5. Altunkaynak, B. A Statistical Study of Occupational Accidents in the Manufacturing Industry in Turkey. Int.
J. Ind. Ergon. 2018, 66, 101–109. [CrossRef]

6. Amiri, M.; Ardeshir, A.; Fazel Zarandi, M.H.; Soltanaghaei, E. Pattern Extraction for High-Risk Accidents
in the Construction Industry: A Data-Mining Approach. Int. J. Inj. Control Saf. Promot. 2016, 23, 264–276.
[CrossRef]

7. Hoła, A.; Sawicki, M.; Szóstak, M. Methodology of Classifying the Causes of Occupational Accidents
Involving Construction Scaffolding Using Pareto-Lorenz Analysis. Appl. Sci. 2018, 8, 48. [CrossRef]

8. Field, W.E.; Heber, D.J.; Riedel, S.M.; Wettschurack, S.W.; Roberts, M.J.; Grafft, L.M.J. Worker Hazards
Associated with the Use of Grain Vacuum Systems. J. Agric. Saf. Health 2014, 20, 147–163. [CrossRef]

9. Jacinto, C.; Canoa, M.; Guedes Soares, C. Workplace and Organisational Factors in Accident Analysis within
the Food Industry. Saf. Sci. 2009, 47, 626–635. [CrossRef]

10. Shafique, M.; Rafiq, M. An Overview of Construction Occupational Accidents in Hong Kong: A Recent
Trend and Future Perspectives. Appl. Sci. 2019, 9, 2069. [CrossRef]

11. Geng, Y.; Dee Jepsen, S. Current Grain Storage and Safety Practices of Ohio Cash Grain Operators. J. Agric.
Saf. Health 2018, 24, 127–139. [CrossRef] [PubMed]

12. Douphrate, D.I.; Rosecrance, J.C.; Wahl, G. Workers’ Compensation Experience of Colorado Agriculture
Workers, 2000–2004. Am. J. Ind. Med. 2006, 49, 900–910. [CrossRef] [PubMed]

13. Williams, G.D.; Rosentrater, K.A. Design Considerations for the Construction and Operation of Flour
Milling Facilities. Part I: Planning, Structural, and Life Safety Considerations. In 2007 ASABE Annual
International Meeting, Technical Papers; American Society of Agricultural and Biological Engineers: St. Joseph,
MI, USA, 2007.

14. Ramaswamy, S.K.; Mosher, G.A. Using Workers’ Compensation Claims Data to Characterize Occupational
Injuries in the Commercial Grain Elevator Industry. J. Agric. Saf. Health 2017, 23, 203–217. [CrossRef]
[PubMed]

15. Davoudi Kakhki, F.; Freeman, S.A.; Mosher, G.A. Use of Logistic Regression to Identify Factors Influencing
the Post-Incident State of Occupational Injuries in Agribusiness Operations. Appl. Sci. 2019, 9, 3449.
[CrossRef]

16. Davoudi Kakhki, F.; Freeman, S.; Mosher, G. Segmentation of Severe Occupational Incidents in Agribusiness
Industries Using Latent Class Clustering. Appl. Sci. 2019, 9, 3641. [CrossRef]

17. Davoudi Kakhki, F.; Freeman, S.; Mosher, G. Analyzing Large Workers’ Compensation Claims Using
Generalized Linear Models and Monte Carlo Simulation. Safety 2018, 4, 57. [CrossRef]

http://dx.doi.org/10.19082/1515
http://www.ncbi.nlm.nih.gov/pubmed/26767107
http://dx.doi.org/10.4103/2229-5151.177365
http://www.ncbi.nlm.nih.gov/pubmed/27051619
http://dx.doi.org/10.1016/j.ssci.2014.05.012
http://dx.doi.org/10.1016/j.jlp.2009.02.008
http://dx.doi.org/10.1016/j.ergon.2018.02.012
http://dx.doi.org/10.1080/17457300.2015.1032979
http://dx.doi.org/10.3390/app8010048
http://dx.doi.org/10.13031/jash.20.9989
http://dx.doi.org/10.1016/j.ssci.2008.08.002
http://dx.doi.org/10.3390/app9102069
http://dx.doi.org/10.13031/jash.12574
http://www.ncbi.nlm.nih.gov/pubmed/30223634
http://dx.doi.org/10.1002/ajim.20387
http://www.ncbi.nlm.nih.gov/pubmed/17036351
http://dx.doi.org/10.13031/jash.12196
http://www.ncbi.nlm.nih.gov/pubmed/29140640
http://dx.doi.org/10.3390/app9173449
http://dx.doi.org/10.3390/app9183641
http://dx.doi.org/10.3390/safety4040057


Appl. Sci. 2019, 9, 4690 14 of 16

18. Mosher, G.A.; Keren, N.; Freeman, S.A.; Hurburgh, C.R. Development of a Safety Decision-Making Scenario
to Measure Worker Safety in Agriculture. J. Agric. Saf. Health 2014, 20, 91–107. [CrossRef]

19. Davoudi Kakhki, F.; Freeman, S.A.; Mosher, G.A. Evaluating Machine Learning Performance in Predicting
Injury Severity in Agribusiness Industries. Saf. Sci. 2019, 117, 257–262. [CrossRef]

20. Yao, J.T. Sensitivity Analysis for Data Mining. In Proceedings of the Annual Conference of the North
American Fuzzy Information Processing Society—NAFIPS, Chicago, IL, USA, 24–26 July 2003. [CrossRef]

21. Buscema, P.M.; Massini, G.; Breda, M.; Lodwick, W.A.; Newman, F.; Asadi-Zeydabadi, M. Artificial Neural
Networks. In Studies in Systems, Decision and Control; PHI Learning Pvt. Ltd.: New Delhi, India, 2018.
[CrossRef]

22. Ahmadi, M.A.; Ebadi, M.; Hosseini, S.M. Prediction Breakthrough Time of Water Coning in the Fractured
Reservoirs by Implementing Low Parameter Support Vector Machine Approach. Fuel 2014, 117, 579–589.
[CrossRef]

23. Santos, R.B.; Rupp, M.; Bonzi, S.J.; Fileti, A.M.F. Comparison between Multilayer Feedforward Neural
Networks and a Radial Basis Function Network to Detect and Locate Leaks in Pipelines Transporting Gas.
Chem. Eng. Trans. 2013, 32, e1380. [CrossRef]

24. Dong, Y.; Hu, Z.; Uchimura, K.; Murayama, N. Driver Inattention Monitoring System for Intelligent Vehicles:
A Review. IEEE Trans. Intell. Transp. Syst. 2011, 12, 596–614. [CrossRef]

25. Jacobé de Naurois, C.; Bourdin, C.; Stratulat, A.; Diaz, E.; Vercher, J.L. Detection and Prediction of Driver
Drowsiness Using Artificial Neural Network Models. Accid. Anal. Prev. 2019, 126, 96–104. [CrossRef]
[PubMed]

26. Patel, D.A.; Jha, K.N. Neural Network Model for the Prediction of Safe Work Behavior in Construction
Projects. J. Constr. Eng. Manag. 2014, 114, 04014006. [CrossRef]

27. IBM SPSS Neural Networks—Smit Consult. Available online: https://www.smitconsult.nl/en/products/ibm-
spss-statistics/info/ibm-spss-neural-networks/ (accessed on 25 September 2019).

28. Tatar, A.; Naseri, S.; Bahadori, M.; Hezave, A.Z.; Kashiwao, T.; Bahadori, A.; Darvish, H. Prediction of Carbon
Dioxide Solubility in Ionic Liquids Using MLP and Radial Basis Function (RBF) Neural Networks. J. Taiwan
Inst. Chem. Eng. 2016, 60, 151–164. [CrossRef]

29. Tatar, A.; Shokrollahi, A.; Mesbah, M.; Rashid, S.; Arabloo, M.; Bahadori, A. Implementing Radial Basis
Function Networks for Modeling CO2-Reservoir Oil Minimum Miscibility Pressure. J. Nat. Gas Sci. Eng.
2013, 15, 82–92. [CrossRef]

30. Geronimo, T.M.; Cruz, C.E.; de Souza Campos, F.; Aguiar, P.R.; Bianchi, E.C. MLP and ANFIS Applied to the
Prediction of Hole Diameters in the Drilling Process. Artificial Neural Networks—Architectures and Applications.
2013. Available online: https://www.intechopen.com/books/artificial-neural-networks-architectures-and-
applications/mlp-and-anfis-applied-to-the-prediction-of-hole-diameters-in-the-drilling-process (accessed
on 4 November 2019). [CrossRef]

31. Du, K.L.; Swamy, M.N.S. Neural Networks in a Softcomputing Framework; Springer: Berlin/Heidelberg, Germany,
2006. [CrossRef]

32. Abdelwahab, H.T.; Abdel-Aty, M.A. Artificial Neural Networks and Logit Models for Traffic Safety Analysis
of Toll Plazas. Transp. Res. Rec. 2002, 1784, 115–125. [CrossRef]

33. Roh, S.B.; Oh, S.K.; Pedrycz, W.; Seo, K.; Fu, Z. Design Methodology for Radial Basis Function Neural
Networks Classifier Based on Locally Linear Reconstruction and Conditional Fuzzy C-Means Clustering.
Int. J. Approx. Reason. 2019, 116, 228–243. [CrossRef]

34. Jed Frees, E.W.; Derrig, R.A.; Meyers, G. Predictive Modeling in Actuarial Science. In Predictive Modeling
Applications in Actuarial Science: Volume I: Predictive Modeling Techniques; Cambridge University Press:
Cambridge, UK, 2014. [CrossRef]

35. Parsaie, A.; Haghiabi, A.H.; Saneie, M.; Torabi, H. Applications of Soft Computing Techniques for Prediction
of Energy Dissipation on Stepped Spillways. Neural Comput. Appl. 2018, 29, 1393–1409. [CrossRef]

36. Ian, H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann: Burlington,
MA, USA, 2011; ISBN 9780120884070.

37. Mannering, F. Temporal Instability and the Analysis of Highway Accident Data. Anal. Methods Accid. Res.
2018, 17, 1–13. [CrossRef]

http://dx.doi.org/10.13031/jash.20.10358
http://dx.doi.org/10.1016/j.ssci.2019.04.026
http://dx.doi.org/10.1109/NAFIPS.2003.1226795
http://dx.doi.org/10.1007/978-3-319-75049-1_2
http://dx.doi.org/10.1016/j.fuel.2013.09.071
http://dx.doi.org/10.33032/CET1332230
http://dx.doi.org/10.1109/TITS.2010.2092770
http://dx.doi.org/10.1016/j.aap.2017.11.038
http://www.ncbi.nlm.nih.gov/pubmed/29203032
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000922
https://www.smitconsult.nl/en/products/ibm-spss-statistics/info/ibm-spss-neural-networks/
https://www.smitconsult.nl/en/products/ibm-spss-statistics/info/ibm-spss-neural-networks/
http://dx.doi.org/10.1016/j.jtice.2015.11.002
http://dx.doi.org/10.1016/j.jngse.2013.09.008
https://www.intechopen.com/books/artificial-neural-networks-architectures-and-applications/mlp-and-anfis-applied-to-the-prediction-of-hole-diameters-in-the-drilling-process
https://www.intechopen.com/books/artificial-neural-networks-architectures-and-applications/mlp-and-anfis-applied-to-the-prediction-of-hole-diameters-in-the-drilling-process
http://dx.doi.org/10.5772/51629
http://dx.doi.org/10.1007/1-84628-303-5
http://dx.doi.org/10.3141/1784-15
http://dx.doi.org/10.1016/j.ijar.2019.01.008
http://dx.doi.org/10.1017/CBO9781139342674.001
http://dx.doi.org/10.1007/s00521-016-2667-z
http://dx.doi.org/10.1016/j.amar.2017.10.002


Appl. Sci. 2019, 9, 4690 15 of 16

38. Durán-Rosal, A.M.; Fernández, J.C.; Casanova-Mateo, C.; Sanz-Justo, J.; Salcedo-Sanz, S.; Hervás-Martínez, C.
Efficient Fog Prediction with Multi-Objective Evolutionary Neural Networks. Appl. Soft Comput. J. 2018, 70,
347–358. [CrossRef]

39. Carrillo-Castrillo, J.A.; Guadix Martín, J.; Grosso de la Vega, R.; Onieva, L. Neural Network Application for Risk
Factors Estimation in Manufacturing Accidents; Springer: Cham, Switzerland, 2014. [CrossRef]

40. Moghaddam, F.R.; Afandizadeh, S.; Ziyadi, M. Prediction of Accident Severity Using Artificial Neural
Networks. Int. J. Civ. Eng. 2011, 9, 41.

41. Delen, D.; Sharda, R.; Bessonov, M. Identifying Significant Predictors of Injury Severity in Traffic Accidents
Using a Series of Artificial Neural Networks. Accid. Anal. Prev. 2006, 38, 434–444. [CrossRef] [PubMed]

42. Asensio-Cuesta, S.; Diego-Mas, J.A.; Alcaide-Marzal, J. Applying Generalised Feedforward Neural Networks
to Classifying Industrial Jobs in Terms of Risk of Low Back Disorders. Int. J. Ind. Ergon. 2010, 40, 629–635.
[CrossRef]

43. Zurada, J.; Karwowski, W.; Marras, W.S. A Neural Network-Based System for Classification of Industrial
Jobs with Respect to Risk of Low Back Disorders Due to Workplace Design. Appl. Ergon. 1997, 28, 49–58.
[CrossRef]

44. Darvishi, E.; Khotanlou, H.; Khoubi, J.; Giahi, O.; Mahdavi, N. Prediction Effects of Personal, Psychosocial,
and Occupational Risk Factors on Low Back Pain Severity Using Artificial Neural Networks Approach in
Industrial Workers. J. Manip. Physiol. Ther. 2017, 40, 486–493. [CrossRef] [PubMed]

45. Aliabadi, M.; Farhadian, M.; Darvishi, E. Prediction of Hearing Loss among the Noise-Exposed Workers in a
Steel Factory Using Artificial Intelligence Approach. Int. Arch. Occup. Environ. Health 2015, 88, 779–787.
[CrossRef]

46. Shankar Beriha, G.; Patnaik, B.; Shankar Mahapatra, S. Assessment of Occupational Health Practices in
Indian Industries: A Neural Network Approach. J. Model. Manag. 2012, 7, 180–200. [CrossRef]

47. Liu, T.I.; Kumagai, A.; Lee, C. Enhancement of Drilling Safety and Quality Using Online Sensors and Artificial
Neural Networks. Int. J. Occup. Saf. Ergon. 2003, 9, 37–56. [CrossRef]

48. Lim, T.-K.; Park, S.-M.; Lee, H.-C.; Lee, D.-E. Artificial Neural Network—Based Slip-Trip Classifier Using
Smart Sensor for Construction Workplace. J. Constr. Eng. Manag. 2015, 142, 04015065. [CrossRef]

49. Bradley, A.P. The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algorithms.
Pattern Recognit. 1997, 40, 1145–1159. [CrossRef]

50. Swets, J.A. Measuring the Accuracy of Diagnostic Systems. Science 1988, 240, 1285–1295. [CrossRef] [PubMed]
51. Tien Bui, D.; Pham, B.T.; Nguyen, Q.P.; Hoang, N.D. Spatial Prediction of Rainfall-Induced Shallow Landslides

Using Hybrid Integration Approach of Least-Squares Support Vector Machines and Differential Evolution
Optimization: A Case Study in Central Vietnam. Int. J. Digit. Earth 2016, 9, 1077–1097. [CrossRef]

52. Tsangaratos, P.; Ilia, I. Landslide Susceptibility Mapping Using a Modified Decision Tree Classifier in the
Xanthi Perfection, Greece. Landslides 2016, 13, 305–320. [CrossRef]

53. Yesilnacar, E.; Topal, T. Landslide Susceptibility Mapping: A Comparison of Logistic Regression and Neural
Networks Methods in a Medium Scale Study, Hendek Region (Turkey). Eng. Geol. 2005, 75, 251–266.
[CrossRef]

54. Choi, J.Y.; Yoo, T.K.; Seo, J.G.; Kwak, J.; Um, T.T.; Rim, T.H. Multi-Categorical Deep Learning Neural
Network to Classify Retinal Images: A Pilot Study Employing Small Database. PLoS ONE 2017, 12, e0187336.
[CrossRef]

55. Deng, J.; Berg, A.C.; Li, K.; Fei-Fei, L. What Does Classifying More than 10,000 Image Categories Tell Us?
In European Conference on Computer Vision; Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany,
2010. [CrossRef]

56. Li, Z.; Liu, P.; Wang, W.; Xu, C. Using Support Vector Machine Models for Crash Injury Severity Analysis.
Accid. Anal. Prev. 2012, 45, 478–486. [CrossRef]

57. Pianosi, F.; Wagener, T. A Simple and Efficient Method for Global Sensitivity Analysis Based Oncumulative
Distribution Functions. Environ. Model. Softw. 2015, 67, 1–11. [CrossRef]

58. Harrington, P.D.B.; Wan, C. Sensitivity Analysis Applied to Artificial Neural Networks: What Has My
Neural Network Actually Learned? Anal. Chem. 2002, 70, 2983–2990.

http://dx.doi.org/10.1016/j.asoc.2018.05.035
http://dx.doi.org/10.1007/978-3-319-04705-8_32
http://dx.doi.org/10.1016/j.aap.2005.06.024
http://www.ncbi.nlm.nih.gov/pubmed/16337137
http://dx.doi.org/10.1016/j.ergon.2010.04.007
http://dx.doi.org/10.1016/S0003-6870(96)00034-8
http://dx.doi.org/10.1016/j.jmpt.2017.03.012
http://www.ncbi.nlm.nih.gov/pubmed/28739018
http://dx.doi.org/10.1007/s00420-014-1004-z
http://dx.doi.org/10.1108/17465661211242804
http://dx.doi.org/10.1080/10803548.2003.11076553
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0001049
http://dx.doi.org/10.1016/S0031-3203(96)00142-2
http://dx.doi.org/10.1126/science.3287615
http://www.ncbi.nlm.nih.gov/pubmed/3287615
http://dx.doi.org/10.1080/17538947.2016.1169561
http://dx.doi.org/10.1007/s10346-015-0565-6
http://dx.doi.org/10.1016/j.enggeo.2005.02.002
http://dx.doi.org/10.1371/journal.pone.0187336
http://dx.doi.org/10.1007/978-3-642-15555-0_6
http://dx.doi.org/10.1016/j.aap.2011.08.016
http://dx.doi.org/10.1016/j.envsoft.2015.01.004


Appl. Sci. 2019, 9, 4690 16 of 16

59. Booth-Kewley, S.; Schmied, E.A.; Highfill-McRoy, R.M.; Sander, T.C.; Blivin, S.J.; Garland, C.F. A Prospective
Study of Factors Affecting Recovery from Musculoskeletal Injuries. J. Occup. Rehabil. 2014, 24, 287–296.
[CrossRef]

60. Kumar, R.; Kumar, S. Musculoskeletal Risk Factors in Cleaning Occupation-A Literature Review. Int. J. Ind.
Ergon. 2008, 38, 158–170. [CrossRef]

61. Arocena, P.; Núñez, I.; Villanueva, M. The Impact of Prevention Measures and Organisational Factors on
Occupational Injuries. Saf. Sci. 2008, 49, 1369–1384. [CrossRef]

62. Mohammadfam, I.; Soltanzadeh, A.; Moghimbeigi, A.; Akbarzadeh, M. Factors Affecting Occupational
Accidents in the Construction Industry (2009–2013). J. Occup. Health Epidemiol. 2014, 3, 88–95. [CrossRef]

63. Bernacki, E.J. Factors Influencing the Costs of Workers’ Compensation. Clin. Occup. Environ. Med. 2004, 4,
249–257. [CrossRef] [PubMed]

64. Moradhaseli, S.; Farhadian, H.; Abbasi, E.; Ghofranipour, F. Factors Affecting the Incidence of Occupational
Accidents among Farmers. Health Educ. Health Promot. 2017, 5, 39–56.

65. Chercos, D.H.; Berhanu, D. Work Related Injury among Saudi Star Agro Industry Workers in Gambella
Region, Ethiopia; a Cross-Sectional Study. J. Occup. Med. Toxicol. 2017, 12, 7. [CrossRef] [PubMed]

66. Molineri, A.; Signorini, M.L.; Tarabla, H.D. Risk Factors for Work-Related Injury among Farm Workers:
A 1-Year Study. Rural Remote Health 2015, 15, 1–8.

67. Jadhav, R.; Achutan, C.; Haynatzki, G.; Rajaram, S.; Rautiainen, R. Injury Risk Factors to Farm and Ranch
Operators in the Central United States. Am. J. Ind. Med. 2017, 60, 889–899. [CrossRef]

68. Swaen, G.M.H.; Van Amelsvoort, L.G.P.M.; Bültmann, U.; Kant, I.J. Fatigue as a Risk Factor for Being Injured
in an Occupational Accident: Results from the Maastricht Cohort Study. Occup. Environ. Med. 2003, 60,
88–92. [CrossRef]

69. Ramaswamy, S.K.; Mosher, G.A. Using Workers’ Compensation Claims Data to Characterize Occupational
Injuries in the Biofuels Industry. Saf. Sci. 2018, 103, 352–360. [CrossRef]

70. Mehrdad, R.; Seifmanesh, S.; Chavoshi, F.; Aminian, O.; Izadi, N. Epidemiology of Occupational Accidents in
Iran Based on Social Security Organization Database. Iran. Red Crescent Med. J. 2014, 16, e10359. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10926-013-9456-7
http://dx.doi.org/10.1016/j.ergon.2006.04.004
http://dx.doi.org/10.1016/j.ssci.2007.09.003
http://dx.doi.org/10.18869/acadpub.johe.3.2.88
http://dx.doi.org/10.1016/j.coem.2004.02.006
http://www.ncbi.nlm.nih.gov/pubmed/15182747
http://dx.doi.org/10.1186/s12995-017-0153-x
http://www.ncbi.nlm.nih.gov/pubmed/28331533
http://dx.doi.org/10.1002/ajim.22757
http://dx.doi.org/10.1136/oem.60.suppl_1.i88
http://dx.doi.org/10.1016/j.ssci.2017.12.014
http://dx.doi.org/10.5812/ircmj.10359
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	Artificial Neural Networks 
	Artificial Neural Networks in Occupational Safety 

	Materials and Methods 
	Variable Importance 
	Architecture of ANNs 
	Model Assessment Criteria 

	Results 
	Model Performance 
	ROC and AUC Results 
	Sensitivity Analysis 
	Model Intepretation and Application in Safety 

	Conclusions 
	References

