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Abstract: The working states of three types of engineered cementitious composites (ECC) link slabs
subjected to vertical loads are investigated based on the structural working state theory. The scattered
measured strains are firstly expanded into spatially continuous data using the response simulating
interpolation method without loss of original information. The generalized strain energy density
(GSED) is derived from these data and the sum of which are used to characterize the working states
of ECC link slabs. Thereafter, the Mann-Kendall (M-K) criterion is introduced to detect the working
state leaps during the whole loading procedure and two critical mutations are revealed: The yielding
point and the initial structural failure point. Finally, the working state modes, the characteristics
of strain fields and the development of internal forces are employed to verify the working state
mutations around the revealed critical points. The GSED-based analysis of structural working state is
an innovative method to discern some unseen working behavior characteristics which are ignored by
traditional structural analysis theory. The work reported herein has a further effect in improving the
structural design codes for ECC link slabs.

Keywords: engineered cementitious composites; bridge deck link slab; generalized strain-energy
density; working state; mutation; data expansion

1. Introduction

The beam bridge is known as the most common spanning structure applied in traffic engineering.
For highways and bridge approach systems, the simply supported steel or prestressed concrete beam
bridge with multiple spans is a suitable choice. Bridge expansion joints erected between adjacent simply
supported bridge spans play an important role in accommodating the deformations of superstructure
resulting from service loads, thermal effect, shrinkage, creep, and foundation settlement [1]. Besides,
those expansion joints between the adjacent bridge decks are expected to protect the components below
from being corroded by fluid chemical substances. The mechanical joint normally requires maintenance
of high economic cost, otherwise it tends to deteriorate due to the exposure to severe environment
as well as the continuous traffic wear and tear. Water leakage and flow of deicing salts through
deteriorated joints are the constant sources of damage in bridge deck, girder, and substructure [2].
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Therefore, the durability of mechanical expansion joints has become a major issue, bearing on the
driving comfort, integrity, and service life of bridge structures.

By constructing uninterrupted deck surface over multiple spans without mechanical expansion
joints, the continuous bridge decks or integral abutment bridges are developed [3]. One frequently-used
approach to achieve the continuous bridge decks is the replacement of expansion joints by link slabs,
which reduces both the costs of installation and maintenance associated with expansion joints. The link
slab connecting two adjacent simple-span girders has to accommodate the deformations caused by
multiple factors, e.g., traffic loads and temperature variation. Caner and Zia investigated the working
behavior of continuous deck and proposed a design method for the steel reinforced concrete link slab [4].
This method introduced by Caner and Zia has made significant contributions to the development of
bridges with jointless decks. However, the brittleness and limited durability of concrete materials
under certain conditions count against their application to the link slabs in a complicated stressing
state. In the past decades, steel reinforced concrete link slabs have always experienced premature
concrete cracking [5]. The crack width and extent of cracking are so difficult to control that the salt
water is likely to permeate through the link slab, thereby leading to reinforcing steel corrosion, concrete
spalling, and eventually structural failure.

Targeting the shortcomings of traditional concrete, efforts have been made to develop the
engineered cementitious composites (ECC) of adequate ductility complemented with acceptable levels
of cost. The substantial benefits of using ECC have been demonstrated by its improved mechanical
properties [6,7] and durability properties [8–10]. With these merits versus other cement-based materials,
ECC has recently become a particularly preferable class of material able to meet the functional
requirement for structural applications [11,12]. The outstanding energy absorption capacity enables
ECC to be used in seismic and protective structures [13,14]. The low crack width and desired durability
of ECC facilitate its use in corrosion-resistant structures [15,16]. Furthermore, it is reported by existing
literature that the structural performance of ECC link slab for jointless bridge deck is governed by the
tensile strength, ductility, crack width, and some other material attributes [17–19]. The design concept
for ECC link slab was successfully implemented in a construction project in southeast Michigan [20].
A full-scale load test following the construction was conducted to explore the structural responses
of ECC link slab, which confirmed that the simply supported nature of spans remained in spite of
the incorporation of ECC link slab. It also indicated that those top surface strains of link slab were
significantly below the ultimate strain of ECC materials so that ample strain capacity was reserved
for the volumetric change induced by temperature variation [21]. Moreover, non-corrosive materials
should be ideal alternatives considering the risk of steel reinforcement corrosion. Fiber reinforced
polymer (FRP) composites of light weight and high strength have matched the diverse contributions of
reinforcing steel to bridge deck slabs [22–25].

A large-scale laboratory testing study was carried out to assess the performance of FRP composites
reinforced ECC link slabs in bridge deck systems [26]. Similar to existing design concepts and
analysis theories, this experimental study simply relied on conventional semi-empirical parameters.
The complex structural working state of loaded ECC link slab has not been understood, so it is difficult
to achieve an accurate evaluation of structural performance. The drawbacks of traditional structural
design concepts and analysis theory occasionally restrict the application of ECC link slabs in bridge
engineering. With these considerations, the primary objective of this investigation is to gain insight
into the working state and the structural failure mechanism of ECC link slab from an innovative point
of view. Unlike the existing studies, the behavior characteristics before ultimate failure are of greater
concern in this investigation as some unseen features could exist in the whole working state. Since
the strains collected from ECC link slabs and reinforcing materials are discontinuous, another task
of this investigation is to spatially expand the experimental data. Thus, these continuous data can
be used for the mathematical modeling of ECC link slabs’ working states. With the increase in load,
the working state of ECC link slab experiences quantitative change and the accumulation of which
naturally produces the qualitative change. The important information carried by the qualitative change
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points at the mutated structural performance of ECC link slabs which has not been emphasized before.
All these efforts constitute useful supplements to current structural design concepts and analysis
theories for ECC link slabs.

2. The Structural Working State Theory

2.1. Mathematical Modeling for the Structural Working State

The mode of how specimens or structures behave under the influence of certain actions is defined
as the working state. The working state of a loaded structure can also be treated as the stressing
state [27–29]. The numerical mode consisting of responses simultaneously generated at all concerned
points denotes an instant structural working status. Accordingly, the whole working state can be
characterized by the development of these responses. In this investigation, strains, displacement,
and generalized strain energy density (GSED) are the selected responses, among which the GSED is
used to characterize the working states of ECC link slabs [30]:

Ei j =

∫ εi j

0
σdε (1)

where Eij is the GSED value of the ith measuring point at the jth loading step, σ is the stress, and εij is
the strain value of the ith point at the jth loading step. The mathematical model of struc-tural working
state can be expressed by a vector or a ma-trix. Accordingly, the normalized GSED sum (Ej,norm) at the
jth loading step is proposed to characterize the structural working state mode as following:

E j,norm =
n∑

i=1

Ei j,norm =

n∑
i=1

Ei j

Emax
, (2)

where n is the number of measuring points; Emax is the maximum GSED sum over the whole loading
process. Hence the working state of ECC link slab can be investigated based on the Ej,norm-Lj curve.

2.2. Detection of the Structural Working State Characteristics

By directly reading the Ej,norm-Lj curve, some of the working state leaps might be difficult to
be recognized. In order to address this problem, the Mann-Kendall (M-K) criterion widely used in
climatological, meteorological, and hydrological field is introduced to detect the trend of GSED sum
over loading steps [31–33]. This non-parametric statistical analysis method is insensitive to outliers
and free from data distributions [34–36]. By examining the sign of all pairwise differences of observed
values, the mutations are distinguished from the temporal series.

The sequence of Ej,norm (the loading step j = 1, 2, . . . , n) is assumed to be statistically independent.
Actually, the relevant and independent elements coexist in the struc-tural working status at different
loading steps to a certain ex-tent. According to the Saint Venant’s principle, structural components
which are located far away from each other have little spatial relevance or mutual effects, leading to the
significant independence of the structural responses (strains, deflections, etc.) at different loca-tions.
Additionally, the inherent randomness in experimen-tal models and material properties brings about
many independent elements at different loading steps. Also, this analysis method could be feasible
from the result-oriented perspective, which will be verified later. With these considerations, the leap
characteristics of structural working state can be detected using the M-K criterion. In the application of
the M-K criterion, a new stochastic variable dk at the kth loading step can be defined by:

dk =
k∑

i=1

mi(2 ≤ k ≤ n), mi =

{
+1, Enorm(i) > Enorm( j)(1 ≤ j ≤ i)
0, otherwise

, (3)
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where mi is the cumulative number of samples; “+1” means adding one more to the existing value if
the inequality on the right side is satisfied for the jth comparison. The mean value E(dk) and variance
Var(dk) of dk can be calculated by:

E(dk) = k(k− 1)/4, (2 ≤ k ≤ n)
Var(dk) = k(k− 1)(2k + 5)/72, (2 ≤ k ≤ n)

(4)

Assuming that the {Enorm (i)} sequence is statistically independent, a new statistic UFk is defined by:

UFk =

{
0, k = 1
(dk − E(dk))/

√
Var(dk), 2 ≤ k ≤ n

. (5)

Thus, an UFk-Lj curve can be formed using the UFk data. A similar procedure proceeds the inverse
{Enorm (i)} sequence, which is denoted by {E′norm (i)} as following:

Enorm(i) = E′norm(n− i + 1), (6)

where n is the sample capacity. Similarly, the stochastic variable d′k at the kth loading step is defined by:

d′k =
k∑

i=1

mi(2 ≤ k ≤ n), mi =

{
+1, E′norm(i) > E′norm( j)(1 ≤ j ≤ i)
0, otherwise

, (7)

where mi is still the cumulative number of samples; “+1” means adding one more to the existing value
if the inequality on the right side is satisfied for the jth comparison. The mean value E(d′k) and the
variance Var(d′k) of d′k can be calculated as follows:

E(d′k) = k(k− 1)/4, (2 ≤ k ≤ n)
Var(d′k) = k(k− 1)(2k + 5)/72, (2 ≤ k ≤ n)

, (8)

where d′k represents the degree of the ascending trend of {E′ j,norm (i)} sequence. It is important to note
that the inversed sequence has a developing trend contrary to the original one. As a result, the trend of
the inverse sequence should be correctly characterized by the opposite sign so that a new statistic UB′k
is defined by:

UB′k =

 0, k = 1

−(d′k − E(d′k))/
√

Var(d′k), 2 ≤ k ≤ n
. (9)

The statistic UBk corresponding to the original loading steps can be calculated by:

UBk = UB′n−k+1. (10)

An UBk-Lj curve can be formed with the UBk data. The intersection of UFk-Lj curve and UBk-Lj
curve is exactly the inflection point of Ej,norm-Lj curve, indicating the working state leap of ECC
link slab.

3. Experimental Program

3.1. Preparation of ECC and Mechanical Properties

The hydraulic binders used in the experiment were Portland cement, fly ash, limestone powder,
metakaolin and micro silica fume. Silica sand (109~212 µm) was selected as the fine aggregate.
Polyvinyl alcohol (PVA) fiber manufactured by Kuraray Co., Ltd was used in the ECC mixture. Besides,
superplasticizer was added to produce a desired fresh mix rheology. The water-to-binder ratio (W/B),
sand-to-binder ratio (S/B), volume faction of PVA fiber (VPVA), and mass fraction of superplasticizer
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are presented in Table 1 [26]. Compression tests and uniaxial tension tests were performed on ECC
specimens to evaluate their mechanical properties. The test results are summarized in Table 2 [26].

Table 1. The mix formulations for ECC.

Binder (wt. %)

W/B S/B VPVA
Superplasti-Cizer

(wt. %)Cement Fly Ash Limestone
Powder Meta-Kaolin

Micro
Silica
fume

40 50 4 4 2 0.268 0.364 2.0 0.1

Table 2. The mechanical properties of ECC.

Specimen Compressive Strength
(σc, MPa)

Compressive Strain
(εc, %)

Tensile Strength
(ft, MPa)

Tensile Strain
(εt, %)

ECC 56.12 0.3 4.96 2.29

3.2. Experimental Continuous Bridge Deck Models

The experiment on ECC link slabs for continuous bridge deck was conducted with three different
types: Type I ECC link slab without reinforcement, Type II ECC link slab strengthened by carbon fiber
textile (CFT) grid, and Type III ECC link slab strengthened by carbon fiber reinforced polymer (CFRP)
bars [26]. The experimental continuous bridge deck model with ECC link slab is illustrated in Figure 1.
Each test model was composed of two half-span steel girders covered with steel reinforced concrete
deck (600 mm wide and 200 mm thick). Shear studs were soldered to the top of steel girder which
could firmly anchor the concrete bridge deck. The two adjacent spans were connected by the ECC link
slab (1600 mm by 600 mm by 100 mm) with a debond zone of 1000 mm long. CFT grids and CFRP bars
were embedded in the tension zone of ECC link slabs.
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Figure 1. Experimental continuous bridge deck model.

3.3. Loading Procedure and Measuring Scheme

A monotonic cyclic loading procedure simulating the traffic loads was performed up to the
ultimate failure or the rotation angle of 0.04 rad [26]. This test system was operated conforming to
the deflection-control method. The deflection increased from zero to the peak value (dpeak) and then
decreased to zero within one loading cycle. The growth rate of dpeak was 0.5125mm per cycle (i.e.,
0.0005 rad/cycle). As shown in Figure 1, the steel girder ends of the inverted model were subjected
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to the vertical monotonic cyclic loads. The relationship between applied load (F) and dpeak in each
loading cycle was recorded.

As shown in Figure 2, a linear variable differential transformer (LVDT) was installed at the mid
location of each ECC link slab (on the top surface) to monitor the vertical deflection. The strain gauges
numbered S1, S2, S3, S4, and S5 were placed at equal intervals along the side midline of each ECC link
slab. Meanwhile, the strain gauges numbered T1, T2, T3, and T4 were placed along the top midline of
each ECC link slab. Additionally, the strains of CFT grids (G1, G2, G3, etc.), CFRP bars (B1, B2, B3,
etc.), and reinforcing steels (R1, R2, R3, etc.) embedded in the link slabs were monitored and those
measuring points are exhibited in Figures 3 and 4. It should be noted that the healthy measuring points
are continuously numbered herein, excluding the broken ones. The relationship between measured
strains (ε) and dpeak within each loading cycle was recorded as well. Through the analyses of F-dpeak

and ε-dpeak curves, the dependence of strains on each loading step (every 1kN) can be determined to
further study the structural performance.
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4. Experimental Data Expansion Using the Response Simulating Interpolation Method

The mid cross section of ECC link slab is the most disadvantageous position under the loading
condition presented in Figure 1. Meanwhile, the sample points within the mid cross section are the
most intensive. Hence it should be a good attempt to investigate the working states of ECC link slabs
based on the GSED sum of mid cross sections. Importantly, these scattered measured strains in this
area need to be expanded into spatially continuous strain data without loss of original information
before the detection of structural working state.

Space interpolation methods (SIMs) providing access to the data expansion from limited scattered
sample points have been widely used in various subjects [37]. SIMs can be grouped into four categories:
Global methods (trend surface analysis and regression models), local methods (natural neighbor and
splines), geostatistical methods (simple kriging), and mixed methods (trend surface analysis combined
with kriging) [38]. Despite the various assumptions and properties of these SIMs, nearly the general
estimation formula is shared [37]:

r( j) =
m∑

i=1

ωi( j)ri, (11)

where r(j) is the simulated response value at the interpolated jth point, ωi refers to the weighting
function assigned to the ith sample point at which the observed response value is ri, and m represents
the total number of sampling points. Consequently it is a matter to determine the weighting functionωi.

Among the various SIMs, the response simulating interpolation method is introduced which
makes full use of the important properties of numerical shape function (NSF) simulated by a physical
model. According to the discretization concept and the properties of NSF, the weighting function
can be derived by numerical simulation [39]. Actually, the numerical simulation generally used for
estimating experimental responses can partially reflect the implicit information included in a specific
physical model [40]. Hence the combination of numerical simulation and interpolation is of adequate
accuracy. The data expanded by a reliable SIM is deemed to be helpful to the investigation on the
working state of ECC link slab.

The determination of NSF and the estimation of response field (strains) are implemented following
the procedure [39]:

1. Divide the area into a certain amount of suitable elements as shown in Figure 5. Although the
shape function of each element is estimated, the simulated strain fields assembled with enough
small elements can still reflect the strain characteristics of this area exactly with high order
continuity. The reason is that the calculation of element stiffness matrices and the assembling of
global stiffness equation are based on the virtual displacement principle and the force balance
principle, respectively [41].

2. Apply a unit strain at node 1 along the direction at right angle to this area, while the other nodes
are fixed along the same direction to restrict rigid body displacement. Then, the simulated strain
field solved by static finite element analysis represents the shape function N1, as shown in Figure 6.
And it can be expressed by discrete vector N1 = {N1 (1), N1 (2), . . . , N1 (k), . . . , N1 (n)}, where N1

(k) is the function value at element node k and n is the total node number.
3. Other NSFs (Ni) can be determined in the same way. Given the strain value at each measuring

point and the corresponding NSF, the strain field of this area denoted by ε = {ε (1), ε (2), . . . , ε (n)}
can be constructed as following,

ε =
m∑

i=1

εiNi, (12)

where m is the number of measured points of strain. The constructed strain field conforming to
Castigliano’s theorem is independent of loading paths and linear superposition can be applied to
the simulated results with explicit physi-cal meanings.
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Data expansion is implemented with the support of finite element analysis software (ANSYS).
The models of mid cross sections are created with element Shell 181 for ECC materials and element
Beam 188 for reinforcing materials. After meshing the cross sections (60 times 10 = 600 elements),
the strain data of each mesh node can be determined following the steps described above and then the
corresponding stress can be calculated via constitutive relations. Accordingly, the GESD at each node
and the Ej,norm are obtained. Furthermore, the structural response field at a specific loading step can be
plotted using the expanded data.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 18 
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5. Characterization of the ECC Link Slabs’ Working State

5.1. The GSED-Based Investigation into the Working States of ECC Link Slabs

The stress data of each mesh node are calculated via the constitutive relations of different materials
as shown in Figure 7.

The constitutive relations in uniaxial tension and compression prior to ultimate failure can be
described by bilinear curves [42]. The constitutive relation in uniaxial tension is fitted with the tensile
stress-strain curve of ECC as shown in Figure 7a [26]. The constitutive relation in compression is
established by connecting those specific points as shown in Figure 7b. The unilinear stress-strain
relationships of the CFT grid (elastic modulus ECFT =130.2 GPa) and CFRP bar (elastic modulus ECFRP
=133.7 GPa) are exhibited in Figure 7c,d, respectively [43,44]. According to these constitutive relations,
the stress values are calculated. Thus, the GESD and the Ej,norm are obtained by Equation (1) and
Equation (2), respectively.

The Ej,norm-Lj curve, UFk-Lj curve and UBk-Lj curve for Type I ECC link slab are plotted in Figure 8,
which embodies the evolving structural performance of ECC link slab from the perspective of energy.
By distinguishing the intersections of UFk and UBk curves, the M-K criterion reveals two working state
leaps in the Ej,norm-Lj curve. These two mutation points indicate the structural performance transitions
of ECC link slab under loads. The first mutation point (M1: Step 9, 9 kN) is identified by investigating
the whole Ej,norm-Lj curve. Then, the following mutation point (M2: Step 14, 14 kN) is identified from
the Ej,norm-Lj curve segment (from M1 on).

Similarly, the working state leaps of the other two link slabs are revealed from their Ej,norm-Lj
curves, which are shown in Figure 9 together with the curve of Type I ECC link slab for comparison.
The two mutation points (M1 and M2) can divide the working state of ECC link slab into different stages:
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1. The elastic stage. As shown in Figure 9, the Ej,norm grows quite slowly and the developing trend
is steady before M1, representing a stable stage of ECC link slabs under the simulated traffic
loading. Actually, the working behavior within this stage is mostly the elastic response of ECC
material properties and cracking was not observed during this period [26]. When the magnitude
of load is relatively small, the structural load-bearing capacity is mainly offered by the ECC.
The effect of FRP composites is not obvious as the GSED sum of the three ECC link slabs are
almost identical in the early phase. The experimental structures are of adequate stiffness and
stability within this stage.

2. The elastic-plastic stage. The Ej,norm after M1 is relatively greater than that in the elastic stage as
shown in Figure 9, speculating on the formation of micro-cracks and crack propagation afterwards.
The Ej,norm-Lj curve in this stage is not that smooth due to the multiple cracking behavior of ECC
materials [26]. The whole structure has transited into the elastic-plastic stage with local plastic
development. It could be comprehended that the critical point M1 between elastic stage and
elastic-plastic stage is the yielding point of each ECC link slab, where the working state changes
from elasticity to elastoplasticity. The plastic behavior occurs at the 9th loading step for Type
I and II ECC link slabs, and the 24th step for Type III ECC link slab. Accordingly, the yielding
loads of the three types of ECC link slabs are 9 kN, 9 kN, and 24 kN, respectively. The CFRP
bar reinforcement condition raises the yielding load of ECC link slab by 166.67%. Although
Type I and Type II ECC link slabs yield to the same magnitude of load, the Ej,norm of the latter is
relatively slow to reach M2. Compared with Type I ECC link slab, ECC link slab strengthened by
CFT is observed to produce an extended elastic-plastic period. The structural toughness index T
is proposed herein to quantify the energy dissipation capacity of ECC link slab working in the
elastic-plastic stage, which is formulated as following:

T =
S

∆E/EM1,norm
=

S
(EM2,norm − EM1,norm)/EM1,norm

, (13)

where EM1,norm and EM2,norm are the GSED sum at the loading steps corresponding to M1 and
M2, respectively; S is the span of elastic-plastic stage (the difference in loading steps between
M1 and M2). The results are illustrated in Figure 10 and it is evident that Type II ECC link slab
exhibits superior structural toughness to Type I ECC link slab. The structural toughness index is
raised by 78.79% owing to the CFT grid reinforcement, which could be attributed to the enhanced
deformation capacity and cracking resistance.
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3. The degrading stage. Despite the presence of plastic behavior in some parts of link slabs, the
whole structures are able to bear increasing loads until M2. The Ej,norm of Type I and Type II ECC
link slabs begin to increase rapidly and sharply at M2 as shown in Figure 9, implying that the
whole structures qualitatively leap to a new stage different from the previous ones. The number
of cracks remained unchanged while the crack width and extent of cracking kept increasing [26].
It demonstrates that the ECC materials did not exhibit strain hardening characteristics and multiple
cracking behavior any more. Moreover, forces cannot effectively be transferred between ECC and
CFT grid after M2. The loss in normal properties of materials leads to the degrading structural
performance within this stage. Therefore, the load corresponding to the critical point M2 can be
defined as the structural failure load of the link slab. Actually, this updated failure is the initiation
of structural performance deterioration (i.e., the initial structural failure), which is different from
the existing structural ultimate failure. From this critical point on, the interfacial bonding between
components and structural integrity start to be gradually impaired. This updated concept of
failure is reliable as it is revealed by delving into the structural working state characteristics
complying with the natural course from quantitative change to qualitative change. It is noted
that the critical point M2 is not observed for Type III ECC link slab based on the existing test
data. In other words, the degrading stage discussed herein is not applicable to Type III ECC link
slab. Both the high flexural stiffness of CFRP bars and their intact bonding with ECC materials
help to maintain the desired load capacity and ductility after M1 [26]. The development of local
plastic deformation in Type III ECC link slab was far from enough to affect the working behavior
of the whole structure, hence the initial failure point has not been reached in this investigation.
Provided that the time-varying test data is complete, the initial structural failure load can be
accurately predicted for Type III ECC links slab.

5.2. Working State Modes Based on Strains and Displacements

The structural responses at representative locations should exhibit some features relevant to the
working state of the whole structure. The working state modes are defined as the dependences of
strains/displacements measured in the experiment on both the locations of measuring points and the
loading steps, which are formulated as follows,

{S} =



s11 . . . s1 j . . . s1n
...

. . .

si1 si j
...

...
. . .

sm1 . . . smn


, (14)
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{D} =



d11 . . . d1 j . . . d1n
...

. . .

di1 di j
...

...
. . .

dm1 . . . dmn


, (15)

where sij and dij refer to the strains and displacements of the ith measuring point at the jth loading step,
respectively; m is the number of measuring points and n is the number of loading steps. The Type II
ECC link slab is exampled to demonstrate the working state modes since it contains all series of strain
measuring points as well as the two critical points through the whole working state. The working state
mode of Type II ECC link slab can be divided into five groups, including the strains measured along
the top midline (Stop), the strains measured along the side midline (Sside), the strains of the CFT grids
(Sgrid), the strains of the reinforcing steels embedded in the link slab (Ssteel), and the displacement at
the mid location of the link slab (Dm). The strain-based working state modes are plotted in Figure 11,
where the local working behavior characteristics can be perceived in terms of “shape” and “incremental
amplitude”. The displacement-based working state mode is represented by the relationship between
Dm and loading steps, as shown in Figure 12.
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(d) 

Figure 11. Strain-based working state modes for various groups: (a) Stop-based working state mode;
(b) Sside-based working state mode; (c) Sgrid-based working state mode; and (d) Ssteel-based working
state mode.
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Figure 11 vividly exhibits the development of working state modes where the red dash lines
correspond to the critical loading steps of yielding/initial failure for Type II ECC link slab. It can be
seen from Figure 11a that Stop grows at quite a slow pace before M1 and then a sudden change in the
incremental amplitude of Stop is observed around M1. Thereafter, another mutation of Stop happens in
the wake of M2. The developing rate of the Stop at T1 and T3 is faster than the others, indicating that
these zones are the weak parts of Type II ECC link slab.

The strains along the side grow obviously faster than those along the top, as shown in Figure 11b.
Before M1, the strain values at the five points are basically in a straight line (approximately at the
same level), due to the flat state within this zone. After M1, the strains near the top surface develop
much faster than those interior ones, indicating that the flat state begins to feature the nonlinearity to
some extent. This could be attributed to the formation of micro-cracks around M1. The development
of strains is accelerated with the crack propagation after M1. Moreover, all the measuring points
along the side have transited into the tension state after M2 and the subsequent plastic deformation
is considerable. It is illustrated in Figure 11b that the qualitative transformation from the sectional
flat state to the non-flat state occurs when the load reaches the critical point M1 and this irreversible
change becomes more remarkable after M2.

It is explicitly shown in Figure 11c that the two mutations take place at those measuring points
close to the mid location of Type II ECC link slab, such as G1 and G2. Most of the strains develop
steadily and change with small increments. The CFT grid alone is less sensitive to the working state
leaps originating from the evolution of ECC material properties. Besides, the overall strain behavior
of reinforcing steels encounters the mutation at M1 though a few measured strains are inconsistent
with it as shown in Figure 11d. The other mutation feature of Ssteel-based working mode is distinctly
observed at M2 and the mutated forms can be particularly expressed by the change of curve profile
and incremental amplitude.

As for the working state mode based on Dm as shown in Figure 12, an evident state leap can be
found at M2. However, the mutation characteristic at M1 is not clearly shown in the Dm-Lj curve,
implying that the plastic deformation at M1 cannot match the influence of initial structural failure on
the macroscopic displacement.

In general, the working state modes focusing on the local strains of components and the structural
deflection can be employed as a valuable demonstration of the evolving structural working state.
It could be reasonable to define M1 as the yielding point signifying that the working state mode of ECC
link slab begins to change from elastic state into elastic-plastic state, and M2 as the initial structural
failure point after which the structural working performance is badly weakened.
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5.3. Characteristics of Structural Strain Fields

The strain fields of ECC link slabs can be simulated with the expanded data. The mid cross
section of Type II ECC link slab stands as a perfect example. The structural working state leaps can be
revealed by its strain field characteristics around the critical points. Figure 13 exhibits the strain fields
at different loading steps around the yielding point (M1) and the initial failure point (M2) respectively,
where different colors represent different levels of strains and the isopleth curve links the strains at the
same level.

It can be seen from Figure 13a that the whole cross section is basically governed by tensile strain
at the 8th loading step, though a small proportion of it stays in compression state. At the 9th loading
step, dramatic growth of tensile strain is observed, and the yielding point is reached in most regions.
However, these strains decrease at the 10th loading step, as a result of the bridging effect of PVA fibers.
Thereafter, tensile forces are shared by more regions hence the tensile strains are evenly distributed
within this cross section up to the 19th loading step, as shown in Figure 13b. It can be inferred that
the link slab is mainly in tension state after the yielding point. Besides, tensile forces are gradually
transferred to the CFT grid as it can be observed from Figure 13b that tensile strains of the regions
where CFT grid exists have increased and the shape of isopleth curves has changed. At the 20th step,
this cross section suddenly leaps into a state totally different from the previous ones, where nearly half
area of this cross section is under compression. ECC materials in this zone cannot withstand tensile
forces because of high extent of cracking and extensive fiber fracture. Actually, the tensile force bearing
capacity is largely provided by the CFT grid. The initial failure occurs at this loading step and the
strains keep increasing until the destruction of Type II ECC link slab.
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Figure 13. Strain fields of the mid cross section of Type II ECC link slab: (a) around the yielding point
M1 and (b) around the initial failure point M2.

5.4. Development of Structural Internal Forces

The internal forces of the mid cross section of Type II ECC link slab can be determined using the
data expanded by the response simulating interpolation method as well. The dependences of axial
force/bending moment on the loading steps are plotted in Figure 14, where the two critical points (M1
and M2) are marked. It can be seen from Figure 14a that the growth of axial force gradually slows
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down around M1 because compressive stresses are rising faster than tensile stresses at this time, which
is consistent with the characteristics of structural strain fields. This plateau lasts until the 19th loading
step and a rapid change from tension to compression is observed at M2, demonstrating the occurrence
of initial structural failure. As shown in Figure 14b, the level of bending moment is very low during
the early period when this cross section is mainly influenced by axial tensile forces. There is a slight
increase in the bending moment from M1 on, corresponding to the rise in compressive strains at the
bottom as shown in Figure 13a. Moreover, the bending moment presents a considerable increase at M2.
Generally, the developing trend of internal forces evidence the qualitative change of working state
around the critical points.
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6. Conclusions

Structural working state theory and attached methods can effectively reveal some unseen features
from the experimental and expanded data. The working states of three experimental ECC link slab
models were investigated to achieve the following conclusions:

1. Advanced mathematical modeling technique based on the GSED for characterizing the working
states of ECC link slabs was used successfully and structural working state leaps could
be identified by the M-K criterion. Meanwhile, these leap features were verified by the
strain/displacement-based working state modes, as well as the development of structural strain
fields and internal forces. The working state leaps complying with the natural course from
quantitative change to qualitative change indicate the essential evolution of structural performance
governed by the material attributes.

2. It was revealed that Type I and Type II ECC link slabs working through the whole loading process
had three different working stages with two critical points, i.e., the yielding point and the initial
structural failure point. The yielding point is a transition of structural working state between
being elastic and elastic-plastic. The ECC link slabs working in the elastic-plastic stage could still
withstand increasing loads despite the growth of cracks. The initial structural failure point is the
origin of structural performance deterioration and ECC link slabs rapidly became closer to the
ultimate failure from this point on.

3. Type II and Type III ECC link slabs benefitted more than Type I ECC link slab from the FRP
reinforcements. The remarkable rise in yielding load (166.67%) was obtained from ECC link slab
incorporating CFRP bars and the structural toughness index was raised by 78.79% owing to the
CFT grid reinforcement.

4. In summary, the investigation on ECC link slabs’ working states explores a new way to structural
analysis and the information involved in working state can make important contributions to the
improvement of structural design.
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