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Abstract: Studying the effects of neurodegeneration on handwriting has emerged as an interdisciplinary
research topic and has attracted considerable interest from psychologists to neuroscientists and from
physicians to computer scientists. The complexity of handwriting, in fact, appears to be sensitive to
age-related impairments in cognitive functioning; thus, analyzing handwriting in elderly people may
facilitate the diagnosis and monitoring of these impairments. A large body of knowledge has been
collected in the last thirty years thanks to the advent of new technologies which allow researchers to
investigate not only the static characteristics of handwriting but also especially the dynamic aspects
of the handwriting process. The present paper aims at providing an overview of the most relevant
literature investigating the application of dynamic handwriting analysis in neurodegenerative disease
assessment. The focus, in particular, is on Parkinon’s disease (PD) and Alzheimer’s disease (AD),
as the two most widespread neurodegenerative disorders. More specifically, the studies taken into
account are grouped in accordance with three main research questions: disease insight, disease
monitoring, and disease diagnosis. The net result is that dynamic handwriting analysis is a powerful,
noninvasive, and low-cost tool for real-time diagnosis and follow-up of PD and AD. In conclusion of
the paper, open issues still demanding further research are highlighted.
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1. Introduction

1.1. Motivations and Purposes

Neurodegenerative diseases, such as Parkinson’s disease (PD) and Alzheimer’s disease (AD),
affect the structure and functions of brain regions resulting in a progressive cognitive, functional,
and behavioural decline. PD is caused by the degeneration of the dopaminergic nigrostriatal neurons of
the basal ganglia, resulting primarily in motor deficits: akinesia, bradykinesia, rigidity, and tremor are
typically observed [1]. AD, on the other hand, is characterized by short-term memory loss in its early
stages, followed by a progressive decline in other cognitive and behavioral functions as the disease
advances: therefore, the dominant feature of AD is mainly of cognitive nature [2]. Unfortunately, in
the case of signs of brain degeneration, there is no cure and the gradual decline of the patient can only
be somehow managed during disease progression. However, an early diagnosis of neurodegeneration
would be crucial in the perspective of proper medical treatment to be administered and for improving
the quality of life of the patient. In addition, the assessment of signs and manifestations of a specific
disease is useful for its diagnostic differentiation with respect to similar disorders and for monitoring
and tracking its progression as the disease advances. To this end, a special attention is devoted to mild
cognitive impairment (MCI) signs, as an individual with MClI is at a high risk of developing dementia,
especially of the Alzheimer’s type [3].
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The evaluation of the patient’s clinical status and their responsiveness to medication is typically
achieved via a clinical workup including a thorough medical history, a neuropsychological test battery,
and rating scales. Mini Mental State Examination (MMSE) [4], for example, is used extensively to
assess cognitive impairment. However, there is still no one certain test to determine if someone is
affected by a neurodegenerative disorder and a precise diagnosis is possible only postmortem. Getting
a reliable diagnosis can require months, and symptoms need to be constantly monitored. In addition,
the traditional evaluations depend to some extent on the experience of the clinician performing the
assessment, and this makes the determination of the exact type of disease as well as its degree of
severity difficult. For these reasons, identifying accurate biomarkers for early and differential diagnosis,
prognosis, and response to therapy is a primary goal of the research on neurodegenerative disorders
today (e.g., References [5,6]).

Changes in the brain caused by neurodegeneration—brain atrophy, neuronal loss, synaptic
dysfunction, etc.—particularly result in a dysfunction of the motor system as well as in impairments
of the performance of previously learned motor skills. Therefore, a key role in the context of
neurodegenerative diseases assessment can be assumed by handwriting. Handwriting, in fact,
is a complex activity entailing motor as well as cognitive components [7], of which the changes are
promising as a biomarker for disease assessment. First, handwriting exercises are already part of
neuropsichological test batteries. For instance, the Clock Drawing Test (CDT), which is part of the
Mini-Cog test, requires the patient to draw a clock from memory and to put the hands at a given
time: the goal is to evaluate executive functions [8]. Second, it is worth noting that, in several studies,
researchers examined handwriting difficulties by using writing tests: their results showed that these
difficulties are well correlated to the disease severity as well as the concomitant cognitive impairment.
For example, in the seminal paper by McLennan et al. [9], it was pointed out how micrographia,
which is an abnormally small writing typically associated with PD, can be easily detected by simple
pen-and-paper exercises. Other studies, e.g., References [10,11], used analogous tasks and found that
agraphia, which encompasses a progressive disorganization of the various components of handwriting,
is an early symptom of AD.

Although several advancements have been so far obtained through the analysis of static
characteristics of handwriting, i.e., the ones that can be analyzed after the writing process has
already occurred, with the advent of new technologies, novel, dynamic features of handwriting
have been available to the research community. These features concern the dynamic characteristics of
handwriting that can be acquired while the writing process still occurs. Typical acquisition tools are
inexpensive commercially available digitizing tablets and/or electronic pens. Through these devices,
one can measure not only temporal and spatial variables of handwriting but also the pressure exerted
over the writing surface and measures of pen inclination and pen orientation. Moreover, these devices
can capture pen movement not only while the pen is in contact with the writing surface but also when
the pen is in close proximity of the surface, i.e., “in-air”.

In the context of neurodegenerative diseases assessment, dynamic handwriting analysis has
been employed for studying several issues and has attracted considerable research interest from
psychologists to neuroscientists and from physicians to computer scientists. A large part of the
literature on this topic investigated fine motor control in healthy and unhealthy people. Examining
changes in the handwriting of impaired patients, in fact, facilitates the understanding of the brain-body
functional relationships and can lead to identifiable patterns of the sensorimotor dysfunction associated
with PD or AD. Several other studies focused on the effects of medication on handwriting: these
changes can provide a useful tool for monitoring and tracking disease progression. More recently,
an increasing research effort has been made towards the development of an automatic tool for the
discrimination between impaired subjects and healthy controls on the basis of dynamic handwriting
features. The goal is to provide a complementary approach to the pathology evaluation performed by
expert clinicians that is quantitative, noninvasive, and very low-cost.
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This paper aims at providing an overview of the most relevant literature investigating the
application of dynamic handwriting analysis to the assessment of neurodegenerative disorders.
In particular, PD and AD, as the two most widespread and most extensively investigated disorders,
are taken into account.

1.2. Related Surveys

It is worth remarking that surveys on this topic have already been provided in References [12-15].
Neils-Strunjas et al. [12] discussed papers focusing only on the static characteristics of handwriting
in AD. Letanneux et al. [13] considered papers that focused both on static and dynamic features for
PD assessment. In particular, the authors proposed to extend the concept of “dysgraphia” also to PD,
as it encompasses all deficit characteristics of Parkinsonian handwriting. De Stefano et al. [14] and
Impedovo and Pirlo [15] recently proposed surveys focusing both on PD and AD. In Reference [14],
De Stefano et al. made a categorization of works into statistical and classification studies, based
on the methodological approach followed by the reviewed experiments. However, while the paper
extensively reviews works on AD and MCI as well, at the time of writing, less research was done on
classification of PD, thus forcing the authors to exclude several findings that are currently available.
In particular, only one classification study on PD is reviewed in the paper. Conversely, in Reference [15],
the authors considered the problem at hand only from a pattern recognition perspective. For this
reason, they did not consider a body of previous literature not using the established machine learning
experimental workflow. This paper is intended to provide a more comprehensive overview of the topic,
providing the reader with a broad and organized view covering a wider spectrum of methodological
approaches and analyses. In particular, the present survey aims at covering papers using either
statistical or classification approaches, starting from the earlier papers, which reports the first attempts
to investigating dynamic handwriting analysis for neurodegenerative diseases assessment, to the very
recent works. The topic received an exploding attention in the last few years; thus, this papers aims at
covering also the very recent advancements achieved.

1.3. Structure of the Survey

The present survey is intended to provide the reader not only with a historic, state-of-the-art,
and future perspective on the topic but also with some guidelines. These guidelines may be useful to
the reader to enter this line of research or to easily compare their findings with the existing literature.
For this reason, the literary review provided in this paper is divided in two parts. The first part,
which is reported in the next section, describes the experimental design typically adopted: the process
of dynamic handwriting analysis is sketched, and the main issues arising from its application to
health care are pointed out. Almost all surveyed studies, in fact, share a common experimental
design including data acquisition, feature extraction, and data analysis. In particular, different studies
reported the results of the application of different techniques, depending on the research question to be
investigated. The second part, which is reported in Section 3, discusses the main research questions
that have been addressed. As previously mentioned, the literature on this topic mainly followed three
research directions: providing insights into the motor control mechanisms of handwriting; monitoring
and tracking disease progression and the responsiveness of patients to therapies; and providing novel
instruments for the (possibly early) real-time disease diagnosis. The last section concludes the paper
and provides some considerations about directions for further research on the topic.

2. Typical Experimental Design

The studies investigating the application of dynamic handwriting analysis in neurodegenerative
diseases assessment typically follow a common experimental setup including data acquisition,
feature extraction, and data analysis (Figure 1). These issues are discussed separately in the
following subsections.
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Task 1 X [mm] ¥ [mm] f[ms] p bs
i 635 541 0 500 1
E 618 541 5 525 1
i 600 543 10 0 0

Task n

Data analysis —————  Feature extraction +———

Figure 1. Typical workflow of dynamic handwriting analysis (¢ stands for timestamp, p stands for
pressure, and bs stands for button status).

2.1. Data Acquisition

At this step, issues arising concern participant recruiting, apparatus choice, and acquisition
protocol definition. The currently available datasets are also described.

2.1.1. Participant Recruiting

In recruiting study participants, three aspects should be taken care of. The first important issue
is to have the groups under study balanced under some criteria. Besides their cardinality, the study
groups should be balanced at least in terms of age; otherwise, handwriting changes may be attributed
to age differences instead of underlying pathological conditions. A balanced education (typically
expressed in years) should also be considered, as there is evidence that education can influence the
dynamics of handwriting despite the presence of cognitive decline [16].

The second aspect, instead, is whether the patient is on/off medication. For example, some studies
on PD dealt with patients under treatment of antiparkinson medication (e.g., References [17,18]).
These studies showed how handwriting significantly changes depending on the level of medical
treatment administered.

Finally, the third aspect concerns the disease severity, in accordance with some standard clinical
score. The unified Parkinson’s disease rating scale—UPDRS (part V) score, corresponding to the
Modified Hoehn and Yahr Scale [19], is a commonly used rating scale for describing how PD symptoms
evolve during time. Conversely, standard assessments of probable AD include cognitive and functional
tests such as the already mentioned MMSE or the Trail Making Test [20]. MMSE, in particular,
is a 30-point questionnaire which includes questions and problems in many areas: from orientation
to time and place, and attention and calculation, etc. Having data of patients at different degrees of
disease severity can better support the early disease diagnosis or the multi-class classification problem.

Itis also important to pay attention to individuals who suffered injuries that could have significantly
affected their handwriting: these participants should be excluded.

2.1.2. Apparatus

Current technology makes available a multitude of devices for data acquisition, some of them
providing immediate visual feedback to the writer. The dynamic handwriting data are generally
acquired by using digitizing tablets and/or electronic pens. The dominant attributes acquired are the x-
and y-coordinates of the pen position and their time stamps. Moreover, pen tablets usually capture
more information than the pen trajectory, namely pen orientation (azimuth and altitude) and pen
pressure. In addition, pen tablets also detect the pen trajectory while the tip is not in contact with
the pad surface, allowing trajectory acquisition pen-ups. One measure, in fact, is the so-called button
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status, which is a binary variable evaluating 0 for pen-ups (in-air movement) and 1 for pen-downs
(on-surface movement).

It is worth remarking that elderly people may be unfamiliar with technological tools: to make
writing conditions as close as possible to the usual ones, writing with an inking pen on a sheet of paper
fixed to the tablet is an effective option (e.g., Reference [21]).

Electronic pens (also called “smart pens”) have been also adopted in alternative to tablets.
For example, in References [22,23] a Biometric Smart Pen (BiSP) biometric smart pen was used.
The BiSP pen is a multi-sensor pen system which is capable of capturing position, acceleration, and tilt
angle of the pen, as well as the pressure and vibration generated in the refill during writing and the
grip pressure of the fingers holding the pen.

Contrary to other diagnostic methods, such as medical imaging, data acquisition through these
devices can be carried out even in the patient’s home; moreover, the task performance is quite simple
and natural and does not require timing or exhaustive repetitions.

2.1.3. Acquisition Protocol

A crucial step in designing a computerized tool based on handwriting concerns the choice of the
most appropriate handwriting tasks to be administered for data acquisition. Some tasks, in fact, may be
redundant with other ones; others may even introduce noise in the data. Some recent works [24-26], in
fact, employed ensembles of classifiers, each built on the feature space of every single task, emphasizing
how a performance-driven selection of a subset of tasks can improve classification performance against
the use of all tasks simultaneously. Generally speaking, handwriting tasks can be classified into simple
drawing, simple writing, and complex tasks: they are described in the following paragraphs. It is
worth noting that, in order to allow participants to familiarize with the equipment, some preliminary
trials are typically required before the effective experimental session is carried out.

Drawing Tasks

Spirals, as well as meanders and circles, have been frequently used for the evaluation of motor
performance. Spiral drawing on a digitizing tablet, in particular, was pioneered by Pullman [27] for
assessing tremor. In fact, it is particularly suited to study motor control deficits in PD patients. The task
is very easy to perform and is usually well tolerated. In general, simple drawings have been used for
trajectory, tremor, dimension, and velocity evaluations, e.g., References [23,28,29]. Fine motor control
problems may be caused by a reduced capability to coordinate the fingers and wrist and by a reduced
control of wrist flexion. In Reference [28], for example, MCI and AD patients produced less automated,
accurate, and regular movement compared to controls when drawing a spiral with the dominant
hand. Differentiation between MCI and controls increased when subjects were requested to press
a device, with the nondominant hand, while drawing the spiral. In Reference [30], excellent sensitivity
in discriminating AD and MCI patients from controls with in-air movement was observed: the task
consisted in copying a simple 3-D house with two windows, a door, and a chimney. Drawing a simple
figure is very easy to perform and is usually well tolerated by all subjects. Complexity increases in the
intersecting pentagon copying task, which is part of the MMSE test. Patients, in fact, typically exhibit
constructional apraxia: drawing may contain fewer angles, spatial alterations, lack of perspective,
and simplifications [31]. Patients can be unable to perform the task even if they understand what they
should do. In particular, they typically show different drawing strategies: some trace the contours of
the figure to be copied, others put points first and then connect them with segments, and so on. These
issues can be reflected in the dynamic features of handwriting [31,32].

Writing Tasks

No-sense words composed by one or more character repetitions, for example /Il and lele, can be
used, e.g., References [22,33-36]. These characters are easy to write in a recursive and continuous
fashion. One of the most typical evidence of PD is rigidity and tremor; thus, in contrast to controls,
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which show an automated handwriting, PD may produce slower and more irregular movements.
In addition, PD patients may write letters in a more segmented fashion and show micrographia over
time within the task [35]. The difficulty to anticipate the upcoming letter, in particular, may be the
expression of a general difficulty in producing simultaneous actions. For this reason, this task can
be discriminant also in the case of AD [34]. Writing words/sentences is suited to assess agraphia.
A sentence requires a high degree of simultaneous processing and may have a higher neuromotor
programming load than a sequence of the same characters, since it also involves linguistic skills,
attention, and memory (for example, in the case where the sentence must be remembered). It also
provides the possibility to evaluate the motor-planning activity between a word and the following one
(in general, a hesitation between two words could highlight the necessity to replan the writing activity,
while fluid writing can reveal the presence of an anticipated motor plan). A sentence allows one to
capture a large number of in-air movements between words; by contrast, a word could be written
without leaving the pen from the tablet surface [37,38]. Some works, e.g., Reference [39], also consider
handwritten signatures. A signature represents an automatic gesture rather than a programmed one,
as it is repeated very frequently during the lifespan. Since it requires only a minimal consciousness,
a signature can remain preserved even when the subject is no longer able to write. Therefore, signatures
may be weak predictors of cognitive impairment. Nevertheless, a signature carries a huge amount of
information about the person who signs. Indeed, features of handwritten signatures emphasizing subtle
deterioration of signature apposition have been successfully used to differentiate among groups [39].

Complex Tasks

Finally, the handwriting task can be part of a more complex task also involving cognitive
and functional issues. For example, handwriting has been examined together with a simultaneous
hearing and tone counting or has been part of a functional task (e.g., copying a bank cheque [40]).
In Reference [40], participants with MCI and AD showed a significantly longer in-air time than
controls. Moreover, they exerted more pressure on the surface: mean pressure, indeed, provided the
best information for classification. The well-known Clock Drawing Test involves not only executive
functions but also numerical knowledge, visual memory, planning, reconstruction, and visuospatial
abilities. When drawing the clock, people with better cognitive-functional level generally divide the
circle into different quadrants, placing the numbers 12, 3, 6, and 9 first and then the others. Conversely,
patients with dementia start writing from 1 or 12 (sometimes from 11), filling the whole space with the
following numbers; often, the clock is filled leaving out either the first or last number. The hands are
indicated with a simple segment, and this is not a sign of cognitive decline. Instead, missing the position
of the hands is a typical sign of cognitive or neurological deficit. In Reference [30], excellent sensitivity
and good specificity in discriminating MCI patients from controls were obtained with in-air time.
Finally, Trail Making Test and Attentional Matrices explore cognitive abilities and executive functions,
in particular attentional skills, visuomotor planning and problem solving. The examiner is interested
in evaluating the time of completion and the number of errors. In the Trail Making Test, the test taker is
asked to connect a sequence of numeric or alphanumeric targets. Recently, Reference [41] showed that
features related to timing (including times between and inside circles and rates between and inside
circles) and features related to mobility (including pauses, lifts, pressure, and size) provide additional
information not captured by the traditional paper-based Trail Making Test. The Attentional Matrice
test, instead, is a cancellation test in which the subject is asked to mark target digits assigned among
several distractors. In Reference [42], it was shown how the perceptual decision while scanning, easily
captured by in-air movement analysis, is impaired in cognitively deteriorated subjects.
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2.1.4. Datasets

Unfortunately, very few datasets are currently available to the research community. A schematic
description of each of them is provided in Table 1.

Table 1. Datasets (PD = Parkinson’s disease; AD = Alzheimer’s disease; EC = elderly controls).

Dataset Groups Apparatus Tasks Reference

Spiral drawing, repetition of characters,

PaHaW 37 PD, 38 EC Wacom Intuos 4M " Drotar et al. [38]
words, and sentence writing

NewHandPD 31 PD, 35 EC Biometric Smart Pen Spiral and meander drawing Pereira et al. [23]

ParkinsonHW 62 PD, 15 EC Wacom Cintiq 12WX Spiral drawing and stability test Isenkul et al. [43]

ISUNIBA 29 AD, 12 EC Wacom Intuos Touch 5  Repetition of a single word Impedovo et al. [44]

The Parkinson’s Disease Handwriting Database (PaHaW) consists of multiple handwriting
samples from 37 Parkinsonian patients and 38 age- and gender-matched controls. Subjects were
requested to complete eight handwriting tasks in accordance with a prefilled template: drawing
an Archimedes spiral; writing in cursive the letter /, the bigram le, and the trigram les; writing in
cursive the word lektorka (“female teacher” in Czech), porovnat (“to compare”), and nepopadnout (“to
not catch”); and writing in cursive the sentence Tramuvaj dnes uz nepojede (“The tram won’t go today”).

The original HandPD dataset comprises handwritten exams from healthy and PD people; thus, it
was primarily intended for static analysis. However, the dataset was further extended for dynamic
analysis purposes, comprising data from 66 individuals (35 healthy controls and 31 PD patients).
The extended version is called NewHandPD. Each individual was asked to draw 12 exams, with 4 of
them related to spirals, 4 related to meanders, 2 circled movements (one circle in the air and another on
the paper), and left- and right-handed diadochokinesis. During the exam, the handwritten dynamics
was captured by using the BiSP smart pen.

The ParkinsonHW database collects 62 PD patients and 15 healthy individuals. From all subjects,
three types of handwriting recordings, namely Static Spiral Test (SST), Dynamic Spiral Test (DST),
and Stability Test on Certain Point (STCP), were considered. The images of the spirals drawn by
patients are also provided. In the SST test, three Archimedes spirals appeared on the graphic tablet and
patients were asked to retrace them. Unlike SST, in the DST test, the Archimedes spiral just appeared
and disappeared at certain time stamps. This forced the patient to keep the pattern in mind and to
continue to draw. In the STCP test, there was a certain red point in the screen and the subjects were
asked to hold the digital pen on that point without touching the surface. The purpose of this test was
to determine the patient’s hand stability or hand tremor level.

Finally, the ISUNIBA dataset collected the data of 29 probable AD patients and 12 healthy controls,
who were requested to write the word mamma (“mother” in Italian) over different writing sessions.
This is one of the first words learned and one of the last words used before dying.

At the time of writing, Castrillon et al. [45] are developing a large set of Parkinsonian
handwritten patterns, including samples from adult and young healthy individuals. Concerning AD,
the Handwriting Analysis against Neuromuscular Disease (HAND) project, among its goals, intended
to release a large dataset of a battery of handwriting tasks performed by elderly controls and by people
suffering from MCI and neurodegenerative dementia [32,46].

2.2. Feature Extraction

The horizontal and vertical components of handwriting, as recorded by the tablet, are typically
segmented into on-surface and in-air strokes in accordance with the button status. A stroke corresponds
to a single trait of the handwritten pattern which is connected and continuous, i.e., between two
consecutive pen-lifts. By using the Cartesian coordinates of the sampled points and their time stamps,
several features can then be calculated for both on-surface and in-air strokes.

Kinematic features include number of strokes; tangential, horizontal, and vertical displacement,
velocity, acceleration, and jerk; number of changes of velocity/acceleration (NCV/NCA); and NCA
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and NCV relative to writing duration. Displacement corresponds to the straight-line distance
between two consecutive sampled points: it provides a good approximation of the pen trajectory.
From displacement, velocity, acceleration, and jerk can be straightforwardly calculated as the first,
second, and third derivatives of displacement, respectively. Analogously, displacement, velocity,
acceleration, and jerk can be calculated with respect to both the horizontal and vertical directions. NCV
and NCA are the mean number of local extrema of tangential velocity and acceleration, respectively.

Spatiotemporal features include stroke size and duration; speed and stroke speed; stroke height
and width; on-surface and in-air time; total time; normalized on-surface and in-air time; and
in-air/on-surface ratio.

In order to make use of the pressure signal, the following dynamic handwriting measures are also
typically calculated: mean pressure; number of changes of pressure (NCP); and relative NCP. NCP was
proposed in Reference [38], and its meaning is analogous to the concept of NCV/NCA, explained above.

In order to capture the randomness and irregularity of fine movements, which are difficult to
analyze using only the abovementioned features, the following features can also be computed for
both the on-surface and in-air horizontal and vertical components of handwriting [37]: Shannon and
Rényi entropy; signal-to-noise ratio (SNR); and empirical mode decomposition (EMD). EMD iteratively
decomposes the signal into so-called intrinsic mode functions (IMFs), which are functions that satisfy
two requirements: (1) the number of extrema and the number of zero crossings are either equal or
differ at most by one, and (2) the mean of their upper and lower envelopes equals zero.

It is worth noting that, to obtain complete statistical representations of the available features,
statistical functions of the feature vector are also computed. They include means, percentiles, moments,
and other statistical functions (range, median, mode, standard deviation, etc.). In addition, note that
features are generally normalized before classification so as to have zero mean and unit variance.

An alternative approach to modeling the handwritten patterns is to use the Kinematic Theory of
Rapid Human Movements [47,48] and, in particular, the so-called sigma-lognormal (XA) model [49].
This model has been used with successful results in many practical applications, for example, for
developing an online signature verification system [50] and for analyzing graphomotor performance in
kindergarten children [51]. The main advantage of this approach is that it is based on a physiological
model of the human movement production which can lead to an improved characterization of the
hidden specificity of the writers.

Finally, due to their increasing popularity, a robust alternative to more classic “hand-crafted”
features is to use features automatically learned by deep learning models. Some works, in particular,
used (possibly pretrained) convolutional neural networks for automatically extracting features from
static images obtained by exploiting dynamic information of the handwriting, e.g., Reference [52].

A schematic overview of the features most commonly used in the different studies is provided in
Table 2. Some features provide different perspectives on the same aspect of handwriting, e.g., kinematic
and spatiotemporal features are able to capture the fluency and (ir)regularities of handwriting
movements, leading to similar results. Some others, in particular those automatically learned by deep
learning models, are difficult to correlate with the other ones; however, they may provide novel and
nonoverlapping information. In general, almost all features, either directly measured by the digitizing
tablet or derived from them, have been used with promising results in every single study. Only the
pen angle information is typically discarded: its applicability appears to be not useful, even if a very
recent work applied it and reported encouraging results [53].
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Table 2. Most commonly used features: they are typically intended both on-surface and in-air.

Feature Description Observation
Direct
Position (x, y)-coordinates of the sampled points They are used to derive the geometrical pattern
of handwriting
Time stamp Temporal information of the It is used to derive the temporal duration of the
sampled points hand movement
Pressure Pressure exerted over the writing surface  In patients, pressure takes on erratic values due
to cognitive and muscular difficulties
Tilt-x Angle between the pen and the Their use is typically ignored and their usefulness
surface plane is controversial
Tilt-y Angle between the pen and the plane

Button status

vertical to the surface
Boolean variable of whether the pen is
on-surface or in-air

It enables the separation between on-surface and
in-air movements. It has been shown how the
two handwriting modalities carry on
nonredundant information

Kinematic
Displacement Trajectory during handwriting It is generally used to derive other
kinematic features
Velocity Rate of change of displacement with Patients suffering from neurodegenerative
respect to time diseases do not write with the same constancy of
Acceleration Rate of change of velocity with respect healthy subjects but are affected by a lower
to time writing speed, with continuous
Jerk Rate of change of acceleration with acceleration peaks
respect to time
NCV/NCA Number of local extrema of These measures are tailored to capture the fluency

velocity/acceleration

of the handwriting movement. Highly automated
movements are characterized by bell-shaped and
smooth velocity and acceleration profiles

Spatio-temporal

Stroke size

Stroke height/width
Stroke duration
Time

Strokes’ path length
Height/width of strokes
Movement time per stroke
Time spent on-surface/in-air
during writing

Patients suffering from PD can

exhibit micrographia

The average writing duration of a patient affected
by a neurodegenerative disease is typically
longer than in a healthy subject

Entropy and energy

Entropy Entropy-based features These measures are tailored to capture the
randomness and irregularities of fine movements

SNR Signal-to-noise ratio

EMD Empirical mode decomposition

Model-based

Y.A-based Parameters of the LA reconstruction of The XA model can help investigate the dynamics

the handwritten pattern

of handwriting during the generation of the
action plan

Automatically learned

Deep-learning based

Features automatically learned by deep
learning models trained on static
representations of the

handwriting dynamics

Their meaning is typically hard to interpret: they
can express subtle between-group differences not
captured by traditional hand-crafted features

2.3. Data Analysis

The goal of this final step is to uncover useful patterns able to support decision making. Mostly,
the literature investigating handwriting changes due to aging and relies on statistical analyses to
perform this step. For example, the classic analysis of variance (ANOVA) is typically used to test group
differences across different measures of handwriting.

In the last years, the studies focusing on the development of computer aided diagnosis systems
have made use of machine learning and statistical pattern recognition strategies to discriminate between
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unhealthy and healthy subjects [54]. In a series of experiments, for instance, Drotar et al. found that
support vector machines, fed with kinematic and spatiotemporal features, provide better prediction
accuracy than other classic approaches, such as Naive Bayes, e.g., Reference [37].

More recently, due to their increasing popularity in a plethora of recognition tasks, some works
investigated the usefulness of deep learning approaches [25,55]. The features automatically extracted
by a convolutional neural network can be used to feed a fully connected layer stacked on top of the
convolutional base or a more classic statistical classifier.

It is worth noting that, since the data at disposal are typically small, several resampling methods
are usually adopted to achieve more reliable evaluations of the classification performance, such as
cross-validation and leave-one-out [56].

A simple analysis, based on the visual inspection of the performed task and the velocity and
pressure profiles of handwriting is sketched in Figure 2.
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Figure 2. Clock drawing test (CDT) performed by a healthy control, a PD patient, and an mild
cognitive impairment (MCI) subject: From top to bottom are the rendered task (the on-surface
movement is in blue color; the in-air movement is in red), the velocity profile, and the pressure
profile. It is recognizable how the PD patient tends to alter the figure dimensions, while the MCI
subject missed the correct time. The velocity and pressure profile show more peaks, highlighting
a movement which is characterized by less fluency and more changes of direction than the healthy
handwriting. (Data have been acquired within the Handwriting Analysis against Neuromuscular
Disease project—http://hand-project.di.uniba.it/). (a) Healthy CDT, (b) PD CDT, (c¢) MCICDT, (d) healthy
velocity, (e) PD velocity, (f) MCI velocity, (g) healthy pressure, (h) PD pressure, and (i) MCI pressure.
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3. Research Directions

The studies involving dynamic handwriting analysis for neurodegenerative diseases assessment
can be broadly classified in accordance with the disease taken into account: Parkinson’s and Alzheimer’s
disease. For each of them, different lines of investigation can be identified: they are discussed in
the following.

3.1. Parkinson’s Disease

The papers focusing on Parkinsonian handwriting can be further classified depending on three
main research directions:

e  Disease insight: the first category (including the oldest papers) have been devoted to providing
an insight into the fine motor control of handwriting and its relationship with the concomitant
impairment. The main goal is to better understand the involved mechanisms underlying PD;

e  Disease monitoring: other papers studied the effects of medication on handwriting with the aim to
evaluate the effectiveness of handwriting analysis on monitoring disease progression;

e  Disease diagnosis: the third category (including the most recent works) investigated the use of
handwriting as an inexpensive objective tool for automatic disease diagnosis.

This section is structured in accordance with this classification. A schematic overview is provided
in Table 3.

Table 3. Summary of studies on PD (EC = elderly controls; YC = young controls; and SZ = schizophrenia patients).

Reference Groups Tasks Main Features Main Findings
Disease insight
Phillips et al., 1991 7PD,7EC,7YC Meander writing Kinematic and spatiotemporal Dynamlclanalyss can be' l.lseﬁﬂ to
characterize PD handwriting
Teulings and Stelmach, No-sense word and . . . D patlgnts experience Aproblems with the
6 PD, 6 EC Kinematic and spatiotemporal ~ production and regulation of
1991 a sentence .
force amplitude
PD patients have difficulties in adjusting
Fucetola and Smith, 1997 20 PD, 20 EC Figure drawing Kinematic and spatiotemporal  the size of their drawing to compensate for
distortions in visual feedback
. . . . PD patients write with a normal amplitude
Oliveira et al., 1997 11 PD, 14 EC No-sense word Kinematic and spatiotemporal .
when given external cues
PD fine motor control problems may be
. Lines, circles, . . caused by a reduced capability to
Teulings etal., 1997 17PD, 12EC and no-sense words Kinematic coordinate the fingers and wrist and by
a reduced control of wrist flexion
" . . . PD patients are vulnerable to a moderate
Van Gemmert et al.,, 1998 9 PD,9 EC,9 YC Sentence writing Kinematic and spatiotemporal
level of secondary task load
Van Gemmert etal., 1999 13 PD, 15 EC Lines, circles, Spatiotemporal PD'pat%elj\ts may have trouble in .
and no-sense words maintaining a constant force amplitude
Swinnen et al., 2000 13 PD, 13 EC Triangle drawing Kinematic D pa tients penef}t from practpg to
alleviate their basic motor deficits
Van Gemmert et al., 2001 7 PD, 7 EC No-sense word and Kinematic and spatiotemporal PD patients show micrographia when

sentence writing

cuncurrent processing load increases
PD patients rely on previous or ongoing

Teulings et al., 2002 11PD,16 EC,10 YC No-sense word Spatiotemporal feedback to program subsequent strokes

Van Gemmert et al., 2003 13 PD, 13 EC No-sense words Spatiotemporal P.D patients p rocjiuce inadequate stroke
sizes when the size equals or exceeds 1.5 cm

Caligiuri et al., 2006 13PD, 1057, 12EC  “hello hello” Kinematic PD patients exhibit impaired movement

Ponsen et al., 2008

13 PD, 13 EC

Sentence writing

Kinematic and spatiotemporal

velocity and velocity scaling

Impairments in performing tasks involving
complex uni-manual upper limb
movements are an early sign of PD

PD patients show smaller-than-required

Broderick et al., 2009 16 PD,16 EC,16 YC  Shape drawing Kinematic .
movement amplitude
Dounskaia et al., 2009 9PD,9 EC Line and circle Kinematic PD causes d'eflats in coordma.tlon patterns
drawing between wrist and finger motions
PD handwriting exhibits smaller size and
Gangadhar et al., 2009 34 PD, 25 EC No-sense word Spatiotemporal larger velocity fluctuations than
normal handwriting
Bidet-Ildei et al., 2011 7PD, 7 EC No-sense words Kinematic and spatiotemporal rD handwr}tmg does not show signs of
motor anticipation
Ma et al.,, 2013 15PD, 15 EC A Chinese character Spatiotemporal Micrographia is not evident in

vertical writing




Appl. Sci. 2019, 9, 4666

Table 3. Cont.

12 0f 33

Reference Groups Tasks Main Features Main Findings
Broeder et al., 2014 18 PD, 11 EC Loops while counting  Kinematic and spatiotemporal PD patients exhibit dejf%mts in handwriting
under dual-task conditions
Circle, star, and spiral Handwriting can provide objective
Smits et al., 2014 10 PD, 10 EC drawing, a no-sense Kinematic and spatiotemporal ~ measures for bradykinesia, micrographia,
word and a sentence and tremor
Senatore and Marcelli, 30PD,30EC,30YC  Loop shapes Kinematic Parkinsonian har}dwrltlng is similar to that
2019 produced by beginner writers
Disease monitoring
Eichhorn et al., 1996 29 PD, 40 EC Circle drawing Kinematic Dynam1§ handwrm-ng apalyms is useful for
quantifying dopamimetic effects
Contreras-Vidal et al. . Handwriting measures show significant
and Poluha et al., 1998 10PD No-sense words Spatiotemporal trends across the levedopa cycle
Siebner et al., 1999 12PD Lines, circles, Spatiotemporal subthalz?r{uc nucleus stlml{latlon 1mProves
and a no-sense word handwriting performance in PD patients
Cobbah and Fairhurst, 6PD No-sense words Kinematic Dyr}an}m handw_r%tmg measures are .
2000 indicative of positive response to dopamine
repetitive transcranial magnetic stimulation
Boylan et al., 2001 10 PD Spiral drawing Temporal provides beneficial effects on
PD movements
Participants with an altered dopaminergic
Lange et al., 2006 12PD, 12 EC Sentence writing Kinematic neurotransr'russwn shifted from .
an automatic to a controlled processing of
movement execution
Dopaminergic medication results in
Tucha et al., 2006 27 PD, 27 EC Sentence writing Kinematic improved dynamics of
movement execution
Randhawa et al., 2013 10 PD No-sense word Kinematic and spatiotemporal Fine mof or per‘formance benefit from
rTMS stimulation
Smits et al., 2015 14 PD Graphical tasks Spatiotemporal Graphlcal .taS].(S are useful to assess upper
limb functioning
Danna et al., 2018 20 PD, 20 EC Spiral drawing Kinematic and spatiotemporal PD handwriting performance may not be
impacted by handedness
Disease diagnosis
Meanders, sentence, e
Unlii et al., 2006 28 PD, 28 EC words, and no-sense Pressure Pressulie features can distinguish between
o PD patients and controls
word writing
Drotar et al., 2013a PaHaW Kinematic and spatiotemporal Good accuracy is obtained by using only
on-surface features
Drotar et al., 2013b; 2014 Kinematic and spatiotemporal ~ Accuracy improved with in-air features
Drotar et al., 2015a; Kinematic, spatiotemporal, Accuracy improved using entropy and
2015b entropy, and energy energy-based features
Drotar et al., 2016 Kinematic, spatiotemporal, Pressure features can be profitably used
and pressure
Patients write smaller letters, applying less
Rosenblum et al., 2013 20 PD, 20 EC Functional tasks Kinematic and spatiotemporal ~ pressure and requiring more performance
time than controls
Pereira et al., 2016; 2018; . The deep learning approach is promising
Afonso et al., 2018 NewHandPD Deep learning-based for the recognition problem at hand
San Luciano et al., 2016 138 PD, 150 EC Spiral drawing Kinematic and spatiotemporal SI.J iral analysis is a promising ql}antltatlve
biomarker for the early diagnosis
Kotsavasiloglou et al., 24 PD, 20 EC Line drawing Kinematic High prAedlctlve aceuracy can be obtained
2017 even using very simple tasks
Spiral drawing can be partly used to
Zham et al., 2017 27 PD, 28 EC Spiral drawing Kinematic and pressure differentiate among degrees of
disease severity
Kinematic, spatiotemporal Accuracy decreased in distinguishing
Impedovo et al., 2018 PaHaW /5P pora’, between controls and patients only at the
entropy, energy, and pressure .
early stage of disease
Gallicchio et al., 2018 ParkinsonHW Deep learning-based Rea}rrent neural networks are
profitably used
Mucha et al., 2018 PaHaW Fractional derivative-based Promlslng res-ults‘ are obtained with
fractional derivative-based features
Impedovo, 2019 PaHaW Velocity-based New velocity-based features are proposed
Jerkovic et al., 2019 33 PD, 10 EC Sentence writing Kinematic The b?sf re§u1t§ are obtained when
combining in-air to on-surface features
Loconsole et al., 2019 4PD, 7 EC Word aru-i no-sense Kinematic Gyrosc.ope—based features are used with
word writing promising results
Rios-Urrego et al,, 2019 39 PD, 39 EC, 40 YC Spiral dranri.g and Klnemat{c, geometrical, IrFegulérltles of handwriting increase
sentence writing and nonlinear features with aging
Diaz et al., 2019 PaHaW Deep learning-based A new dynz'amlcally enhar'u:'ed §tat1c
representation of handwriting is proposed
Recurrent neural networks can be fruitfully
Ribeiro et al., 2019 NewHandPD Deep learning-based used to capture tremor in time-dependent
handwriting signals
Ammour et al., 2020 28 PD, 28 EC Text copying Kinematic, pressure, and pen A new semi-supervised approach is

inclination

proposed to discriminate among groups
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3.1.1. Disease Insight

Phillips et al. [57] and Teulings and Stelmach [58] were among the first to use digitizing tablets
to assess Parkinsonian handwriting. The work of Phillips et al. was the first showing how dynamic
handwriting features (in particular in the velocity domain) can successfully differentiate between
patients and healthy controls. Teulings and Stelmach (1991), instead, asked participants to alter their
usual handwriting in an attempt to study the extent to which the patients’ motor system can adjust size,
force, and speed parameters. Results showed that Parkinsonians, as well as controls, were generally
able to modify stroke size, peak accelerations, and stroke duration as they wrote the required patterns.
However, a signal-to-noise analysis suggested that the movement deficits were primarily due to
an impaired force-amplitude component rather than an impaired stroke-duration component.

Contreras-Vidal and Stelmach [59] were the first to integrate previous experimental data on the
anatomy of the basal ganglia to the motor impairments in PD; the aim was to develop a neural model
of the basal ganglia useful to explain normal and Parkinsonian movements. The model consists of
a model of basal ganglia, in which each nucleus is represented by a single unit, combined with a model
capable of learning and generating simple handwriting movements. This model was able to reproduce
many aspects of the normal and PD movement control including hypometria, bradykinesia, akinesia,
impairments in the coordination of multiple joints, micrographia, effects of levodopa on movement
size and speed, and pallidotomy. The simulation data of this model, in fact, were confirmed by the
experimental data obtained in some other studies, e.g., References [33,60].

Since proprioceptive, kinaesthetic, and visual feedback are essential for the completion of many
movements, impaired utilization of sensory feedback may retard the effective learning of motor
programs. Based on this hypothesis, Fucetola and Smith [61] investigated the effects of a distorted
visual feedback on the drawing performance of Parkinsonian patients. They observed that patients
were less able than controls to adjust the size of their drawing to compensate for distortions in visual
feedback. The effect was particularly pronounced when patients were required to draw smaller than
normal. Nevertheless, with practice, PD patients showed a similar degree of improvement in size as
controls, although they did not match the control group’s level of performance.

Oliveira et al. [62] investigated whether micrographia in individuals with PD is lessened either
by giving visual targets or by continually reminding them that they should write in a normal way.
In a first trial of free writing, patients showed micrographia, as they reduced their letter size over
time within the trial. However, the letter size increased significantly when they were given either
visual targets or constant auditory reminders. This improvement persisted when, shortly afterwards,
the patients were requested to write freely without external cues.

Teulings et al. [33] investigated whether Parkinsonism reduces coordination of fingers, wrist,
and arm in fine motor control. These movement problems contribute to an increase in jerk levels, as
jerk represents the rate of change of acceleration over time. In the PD group, back-and-forth strokes
involving coordination of fingers and wrist showed larger normalized jerk than strokes performed
using either the wrist or the fingers alone. Moreover, wrist flexion showed greater normalized jerk
in comparison to wrist extension. The elderly control subjects showed no such effects as a function
of coordination complexity. Thus, the authors hypothesized that fine motor control problems in PD
patients may be caused by a reduced capability to coordinate the fingers and wrist and by a reduced
control of wrist flexion.

Van Gemmert et al. [63] tested the hypothesis that PD patients are more vulnerable to a moderate
level of secondary task load than elderly or young controls due to a heightened variability in the
motor system. Patients and the two control groups were requested to write a sentence under four load
conditions: start writing after they heard the recorded word “start”; ignore auditory presented digits
while writing; repeat orally the presented digits; and subtract the number 2 from each presented digit
and pronounce the outcome aloud. The results obtained showed that, in contrast to young and elderly
controls, PD patients tended to increase movement time and normalized jerk when the secondary task
consisted primarily of motor load. Furthermore, it was shown that PD patients did not reduce writing
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size because of a high level of mental load: this suggested that writing in an automated fashion does
not cause micrographia.

Van Gemmert et al. [60] investigated whether PD patients can have difficulty in increasing stroke
size, decreasing stroke duration, or both during the execution of noncomplex handwriting tasks. To this
end, they designed an experiment comprising simple writing patterns, such as straight lines and circles,
requesting participants to vary writing size and speed. Although the different handwriting patterns
affected movement time and writing size significantly, patients did not show increasing difficulty in
maintaining writing size and/or stroke duration because of a decrease of pattern complexity: thus, it
was argued that the complexity of a pattern is likely to not be a relevant factor in handwriting.

In Reference [64], Swinnen et al. addressed the problem of determining whether practice modifies
the temporal and spatial features of handwriting in PD patients. The findings obtained showed that
PD patients can change their performance thanks to practice, suggesting that practice may help them
to partly overcome bradykinesia. Nevertheless, they never reached the performance level obtained by
the elderly control group.

Van Gemmert et al. [65] hypothesized that the cause of micrographia in PD patients can be
associated with the concurrent processing demands that result from the coordination and control of
fingers, wrist, and arm during writing and processing of future words. In their experiments, patients
and controls were requested to write four different phrases of various word counts. All phrases started
with an [lll pattern, and this pattern was repeated later in the phrase. PD patients reduced stroke
size when the number of words increased in the phrase, i.e., when the processing demand increased.
This finding suggested that the motor system of PD patients anticipates increased processing demands
by reducing stroke size rather than increasing stroke duration.

Teulings et al. [66] compared PD patients to elderly people and young adults with respect to their
ability to use visual feedback to control handwriting size. Participants wrote sequences of cursive
I-shaped loops on a digitizer display, which enabled the authors to distort the visual feedback without
the participant’s knowledge by altering the vertical dimension of handwriting. The results showed that
controls gradually corrected loop size by enlarging (or reducing) the size of the entire loop sequence.
Conversely, PD patients showed an entirely different response: instead of correcting for the distortions,
they progressively amplified its effect. This suggested that PD patients do not adapt their visuomotor
map in response to the distorted visual feedback of handwriting. Instead, they seem to rely constantly
on the visible trace feedback during the ongoing movement. The authors thus hypothesized that they
either plan their writing based on the visual feedback of their previous strokes or that they attempt to
track the ongoing, distorted handwritten trace.

Van Gemmert et al. [67] evaluated the ability of PD patients to increase stroke size independently
of stroke duration for different sizes. Patients and controls were requested to write cursive patterns at
different sizes (1, 1.5, 2, 3, and 5 cm). Each target pattern was displayed at its required size on the tablet
but disappeared as soon as the pen touched the surface of the screen. In contrast to controls, patients
with PD undershot the target size of 2 cm and, when required to write as fast as possible, they even
undershot the 1.5 cm target size. These findings support the hypothesis that the range in which stroke
size can be manipulated without significant changes in stroke duration is smaller in Parkinsonian
handwriting than in the healthy handwriting.

Caligiuri et al. [68] examined the handwriting dynamics of patients with idiopathic PD,
schizophrenia, and drug-induced Parkinsonism (SZ) and of healthy control. Participants were
instructed to write the word hello twice at three vertical height scales. The (in)ability to scale movement
velocity with increasing movement distance was quantified. Four observations were drawn: (1) both
SZ patients with drug-induced Parkinsonism and PD patients exhibited impaired movement velocities
and velocity scaling; (2) performance on the velocity scaling measure can distinguish drug-induced
Parkinsonism from controls with 90% accuracy; (3) SZ, but not PD, participants displayed abnormalities
in movement smoothness; and (4) there was a positive correlation between age and magnitude of the
velocity scaling deficit in PD participants.
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Ponsen et al. [69] were among the first to analyze handwriting in newly diagnosed, untreated PD
patients. The results of the study showed that newly diagnosed patients are impaired in performing
complex uni-manual upper limb motor tasks in comparison to healthy subjects. They appeared to be
particularly impaired in their handwriting, exhibiting reduced sentence length and writing velocity
and a decrease in letter height during writing. Therefore, the authors concluded that impairments in
performing tasks involving complex uni-manual upper limb movements are an early characteristic of
PD; thus, they could be used for the early disease diagnosis.

Broderick et al. [70] considered a drawing task instead of handwriting ones to address the
hypothesis that PD patients exhibit deficits in controlling acceleration when the task involves an increase
in inertial load, specifically under the requirement to increase movement amplitude and/or speed,
and in the weight of the pen. Patients showed significantly lower mean velocity, lower acceleration,
higher constant error of stroke length, and higher normalized jerk scores than controls. Nevertheless,
these effects were not worsened by adding weight to the pen. The observed smaller-than-required
movement amplitude suggested a relationship between hypometria and bradykinesia in drawing
and/or handwriting.

In Reference [71], Dounskaia et al. tested the hypothesis that PD affects differently handwriting
movements depending on the coordination pattern of wrist and finger motions. To investigate this
hypothesis, the groups under study were requested to perform three types of cyclic wrist and finger
movements: drawing two lines and a circle. Although both groups deformed the circle during fast
movements, the deformation was more pronounced in patients than in controls. A possible reason for
this is that PD patients may be unable to properly regulate the influence of biomechanical factors on
wrist and finger motion.

In the model of PD handwriting proposed in Reference [59], basal ganglia nuclei is modeled as
lumped units, with activity levels represented by rate codes. Basal ganglia dynamics is described in
terms of fixed-point behavior; thus, only magnitude-related aspects of handwriting—faster/slower,
larger/smaller, etc.—can be captured. Gangadhar et al. [72] presented an alternative model of
Parkinsonian handwriting, which produces a stable rhythm in a network of oscillators and resolves the
stroke output in a Fourier-style. In the paper, the model predictions were compared to handwriting
data obtained by patients and controls. PD handwriting statistically exhibited smaller size and
larger velocity fluctuation compared to normal handwriting. These findings were reflected in both
experimental data and network predictions.

Bidet-Ildei et al. [35] hypothesized that, if it is true that PD patients produce sequential movements
in a more segmented fashion, then they should have difficulties in anticipating the forthcoming letter.
Their experimental findings revealed that handwriting in PD patients did not exhibit any sign of motor
anticipation: although they could write three letters without pauses, PD patients tended to produce
each letter in a more independent manner. In order to explain this, the authors suggested that the
difficulty in anticipating the upcoming letters may be the expression of a general difficulty in producing
simultaneous actions.

Ma et al. [73] noticed that all the published studies investigating micrographia in PD examined
handwriting only in the horizontal direction, as the handwritten samples analyzed were primarily in
Western languages. However, several other languages, as those from Eastern Asia, can be written not
only horizontally but also vertically, from top to bottom. Since different directions require different joint
coordination patterns and writing horizontally requires more wrist extension than writing vertically,
the micrographia reported in horizontal writing may not be generalized to characters written vertically.
To investigate on this problem, the authors asked patients and controls to write Chinese character
Zheng. The main finding was that the PD group had a linear decrease in overall character size and
horizontal strokes along the writing sequence in the horizontal direction but not in the vertical direction.
This observation confirms that micrographia in PD may be associated with wrist extension.
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Broeder et al. [74] obtained results in line with the abovementioned study by Van Gemmert et al. [63]:
they observed that PD patients experience more dual-task interference during writing than controls
when performing a cognitive tone-counting task and a writing task simultaneously. Dual-task
interference refers to the decreased performance experienced during dual tasking, i.e., when two motor
tasks with different goals are combined. More specifically, the secondary task consisted in counting
high and low tones during writing. The results obtained showed that dual-task performance was
affected in PD patients. In particular, they suggested that the control of writing at small amplitudes
requires more compensation brain-processing resources in PD than controls.

Smits et al. [36] investigated handwriting tasks that may be helpful to provide a quantitative
method to differentiate between PD patients and healthy controls: circle, star, and spiral drawing;
elel; and writing a sentence. The drawing and writing tasks were analyzed to evaluate the speed
of movement to assess bradykinesia and the size of writing to assess micrographia. In addition,
a frequency analysis was carried out to assess rest tremor. The results showed that Parkinson patients
tend to be slower than healthy control participants. PD patients also wrote smaller than controls.
Furthermore, rest tremor was detected in the group of patients who were clinically assessed as having
rest tremor.

In a very recent work [75], Senatore and Marcelli proposed a novel paradigm aimed at emulating
the early stage of handwriting learning in proficient writers by asking them to produce a familiar
I-shape with a novel, unfamiliar motor plan. In other words, participants were asked to produce the
sequence of strokes by using a motor plan different from the one an individual is used to. The authors
involved young and elderly healthy participants comparing them with the data of the pathological
group of the PaHaW dataset. The authors found that Parkinsonian writing during a familiar movement
is characterized by lack of fluency, slowness, and abrupt changes of direction, as the handwriting
produced by beginner writers. These results support the hypothesis that the fine tuning of the motor
plan parameters involved during the production of handwriting is deteriorated by PD.

3.1.2. Disease Monitoring

Papers falling in this category mainly investigated two kinds of treatment: antiparkinson
medication and neurostimulation. Concerning the former, in particular, PD treatment often involves
the administration of levedopa to reduce the associated rigidity and bradykinesia. During this
treatment, a conversion process occurs in the brain so that levedopa becomes dopamine and the
reduced level of the body own’s dopamine is compensated.

Eichhorn et al. [17] used a computational analysis of open-loop handwriting movements to
monitor the effect of levodopa and apomorphine in three groups of Parkinson patients: those with
untreated probable Parkinson’s disease, those with fluctuating PD, and some other patients with known
levedopa unresponsive Parkinsonism. Subjects were instructed to draw fluently concentric circles.
After apomorphine injection, the group with untreated probable PD and the group with long-standing
PD showed significant improvement of kinematic features. The patients with levedopa unresponsive
Parkinsonism did not change significantly in any of the parameters under study. In conclusion of
the paper, the authors observed that the improvement of handwriting kinematics by dopamimetic
stimulation may be helpful to predict responsiveness to levodopa treatment in Parkinsonian syndromes.

Levedopa levels decay over several hours; thus, every few hours, another dose of levedopa
should be taken. In light of this, Contreras-Vidal et al. [76] and Poluha et al. [77] hypothesized that
Parkinsonian handwriting would change across the levedopa cycle. The most remarkable finding of
these studies was that handwriting up-stroke duration varied significantly across the medication cycle.

In Reference [78], Siebner et al. investigated the effect on handwriting of high-frequency
stimulation of the subthalamic nucleus (STN), which is a therapeutic approach in patients with
severely disabling PD. During high-frequency STN stimulation, handwriting movements became faster
and smoother, indicating a partial restoration of the open-loop automatic performance. In addition,
a stimulation-related reduction in micrographia was observed.
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Cobbah and Fairhurst [79] investigated the dynamic changes evident in ordinary handwriting
under strict dopamimetic challenge test conditions. Patients with Parkinsonism were requested to
write handwriting patterns before medication and once again at peak motor performance, after doses
of apomorphine or levodopa were administered. The results obtained suggested that a differentiation
between on and off states in dopamimetic tests is possible by using ordinary handwritten samples.
The effects reflected on kinematic features of handwriting, in fact, suggested improvements in movement
efficiency in the on state.

Boylan et al. [80] studied the therapeutic potential of repetitive transcranial magnetic stimulation
(r'TMS) for PD by delivering stimulation at high intensity and frequency over time. rTMSis a noninvasive
technique that allows the cortical excitability to be altered; thus, it can induce a dopamine release
in the stratum of people with PD. Among some other tests, assessment included spiral drawing as
handwriting task. The major finding of the study was the worsening of motor performance on spiral
drawing with active rTMS to the supplementary motor area (SMA) of patients.

Lange et al. [81] carried out a battery of experiments to study the role of dopamine in movement
execution during handwriting. The findings of the experiments showed that alterations of the
dopamine system adversely affect movement execution during handwriting. All experiments showed
that the number of inversions of the direction of velocity is increased in participants with an altered
dopaminergic neurotransmission.

A study analogous to the one reported in Reference [81], with the same apparatus and procedure,
allowed the authors to reach some other conclusions on the dopaminergic effects on handwriting
movements [18]. The main finding was that dopamine medication results in a partial restoration
of automatic movement execution: although dopaminergic treatment in PD patients resulted in
marked improvements in the handwriting dynamics, patients never reached an undisturbed level
of performance.

Analogously to Reference [80], Randhawa et al. [82] investigated whether the delivery of rTMS
impacts handwriting performance. The authors found that 5-Hz rTMS over SMA increased the global
size of handwriting. Moreover, the stimulation led to a decrease in the amount of pen pressure. These
findings suggested that 5-Hz rTMS over SMA can influence key aspects of handwriting including
vertical size and axial pressure, at least in the short term.

In Reference [83], Smits et al. evaluated the validity of a battery of graphical tasks useful to assess
upper limb functions in individuals with probable PD. The Purdue Pegboard Test (PPT), in which metal
pins have to be placed within holes, was used as a reference test. Only PD patients, who were on and
off medication, performed the tasks. Moderate correlations between performance on graphical tasks
and the PPT test were obtained, suggesting that the set of graphical tasks is a valid tool to assess and
monitor upper limb functions in PD. In addition, the study showed that this set can be used to detect
subtle changes in performance after medication that are barely visible by only observing the patient.

Considering that handwriting involves linguistic processes that can be influenced by cognitive
impairments and sociocultural factors, Danna et al. [84] focused only on drawing tasks, particularly
spiral drawing, which have the advantage to involve exclusively motor mechanisms. Different analyses
were carried out to evaluate the effectiveness of digitized spiral drawing in distinguishing patients
with and without medical treatment. The results obtained confirmed this hypothesis. Surprisingly,
the general performance of PD patients was not impacted by handedness, suggesting that the
side-dominance of PD symptoms can prevail over handedness.

3.1.3. Disease Diagnosis

In Reference [22], Unlii et al. focused on approaches for PD diagnosis based on the pressure
information provided by the electronic biosensor BiSP pen. It turned out that the most discriminating
feature, which achieved an Area Under the ROC Curve (AUC) equal to 0.933, was based on the
difference between the controlled writing pressure in the x-y direction and the tilt tremor of the pen. It
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was observed, in fact, that, for PD patients, the tremor control is better achieved during movements
(like handwriting) instead of constant pressure (pen tilt).

A remarkable contribution to the application of machine learning algorithms to the automatic
discrimination of PD was provided by Drotar et al. All their studies were carried out on a same
dataset, i.e., PaHaW, which the authors made freely available. In Reference [85], by comparing the
predictive potential of models built on every task individually and models trained merging all tasks,
the authors found that the best classification performance was reached by the combination of all
tasks. In Reference [86], the authors investigated the extent to which classification performance can be
improved considering not only on-surface but also in-air movement, since the two modalities appear
to carry on nonredundant information. They found that in-air features outperform on-surface features.
These findings were further improved in Reference [87], where different feature selection strategies
were employed. In addition to conventional kinematic handwriting measures, Drotar et al. [37] also
computed novel measures based on entropy, signal energy, and empirical mode decomposition of
the handwriting signals. These features provided more insight and better understanding of the data.
It is worth noting that, in this study, only on-surface movement was considered. In Reference [88],
instead, the authors employed these novel features also considering in-air movement. In Reference [38],
the authors introduced additional features based on the pressure exerted over the writing surface.
The fundamental pressure features were the value of pressure as captured by the tablet during the
particular task and the rate at which pressure changes with respect to time. Then, they introduced
correlation coefficients to capture the relationship between pressure and kinematic features.

It is worth remarking that, in all of the studies by Drotar et al., the spiral task was undertaken with
no significant impact on classification. This may have been due to the use of measures only tailored to
handwriting; instead, visual features, for example, those provided by deep learning algorithms [25,89],
seem to overcome this issue.

Rosenblum et al. [21] assessed whether simple characteristics of handwriting can provide
quantitative measures to accurately differentiate between PD patients and controls. Study participants
were requested to write their name and to copy an address. Significant group effects were observed:
compared to controls, patients wrote smaller letters, applying less pressure and requiring more
performance time. A discriminant function was found for the effective group classification of all
participants. Furthermore, the authors highlighted the importance to analyze handwriting not only
on-paper but also in-air, as significant differences were observed between these two writing conditions.
In fact, as the authors wrote, in-air time is a manifestation of “planning the next movement”, which
can reflect cognitive ability and supply information about the writer.

In Reference [23], Pereira et al. proposed NewHandPD, a dataset of signals extracted from the
BiSP smart pen comprising spiral and meander drawings. Each sensor of the device outputs the
whole signal acquired during the handwriting tasks; thus, it can be subsequently represented as a time
series. The authors used CNNs and meta-heuristic-based optimization techniques to fine-tune the
network hyper-parameters due to their ability to learn without human intervention. Hence, the main
contribution of the work was the application of a deep learning-oriented approach to aid PD diagnosis
as well as the design of a signal-based dataset.

The abovementioned work was extended by the authors in References [52,90]. In Reference [90],
CNNs were used to learn features directly from time-series-based images. The main hypothesis was
that texture-oriented features are able to encode the tremors during handwriting. In Reference [52],
the recurrence plot technique was used to map the pen signals into the image domain;
then, these images were used to instruct a CNN on how to learn discriminating features.
A recurrence plot enables to visualize repeated events of higher dimensions through projections
onto low-dimensional representations.

San Luciano et al. [29] assessed the validity of the digitized Archimedes spiral drawing as
a biomarker for the early diagnosis of PD. Spatial and temporal variables of handwriting were,
in general, significantly different between PD subjects and controls. A model using all features
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showed high discriminating validity. Therefore, the authors claimed spiral analysis to be a promising
quantitative biomarker for the early disease diagnosis.

Kotsavasiloglou et al. [91] asked patients and healthy subjects to draw a horizontal line on the
tablet’s surface, keeping the pen’s velocity as constant as possible. The choice of this simple task was
made with the expectation that one should be able to detect differences between the groups even in very
simple tasks, as the impairment manifests independently of the complexity of the task. Indeed, good
accuracy performance were obtained with a Bayesian classifier. It is worth noting that, as an additional
contribution, the authors introduced a new metric, termed normalized velocity variability, which
quantifies the variability of the pen’s horizontal speed as the line is drawn.

The majority of the studies focused on the binary discrimination healthy vs unhealthy;,
independently of the degree of disease severity. In other words, the Parkinsonian group is typically
considered as a single cluster in which all subjects share the same degree of disease severity.
In Reference [92], Zham et al. addressed this issue by investigating the correlation between the
speed and pen pressure while sketching a spiral and the severity of disease symptoms. The strongest
correlation was found with a combination of these two parameters, which turned out to be useful for
the automatic differentiation between the low and high degree of severity. However, this measure
was not able to differentiate between low and middle and between middle and high disease severity.
In Reference [93], classification accuracy was refined by focusing on angular features and the count of
direction inversion during the sketching of the spiral.

In Reference [24], Impedovo et al. also addressed this problem by performing a classification
study on only a subset of the PaHaW dataset, focusing on the earlier and mild degree of disease severity.
They found that classification performance significantly drops when considering this subset, instead of
taking into account the entire dataset including the more severe cases. In this work, the authors also
showed how a multi-expert approach based on ensembling the different tasks at disposal can provide
better results than combining the features coming from each task into a unique high dimensional
feature vector.

Gallicchio et al. [94] further explored the application of deep learning techniques to aid PD
diagnosis through handwriting by exploiting recurrent neural networks. These networks were used to
obtain automatically significant features without human intervention from the time series data of the
ParkinsonHW dataset [43].

Mucha et al. proposed a new methodology for the kinematic feature analysis of PD handwriting
based on fractional derivatives of arbitrary order. Promising results using this techniques have been
reported in Reference [95].

In Reference [96], the author improved the results obtained on the PaHaW dataset [37] by
combining more classic features to new velocity-based features. The extended set of features include
parameters obtained from the application of the sigma-lognormal model, the Maxwell-Boltzmann
distribution, and the Discrete Fourier Transform to the velocity profile of handwriting.

Confirming the findings reported in Reference [21,87], Jerkovic et al. [97] found that in-air
and on-surface movement on the tablet tend to be statistically independent and to carry on
nonredundant information. The highest prediction accuracy in discriminating patients with PD
and atypical Parkinsonism from controls, in fact, resulted from the combination of both in-air and
on-surface parameters.

In Reference [98], Loconsole et al. were among the first to use features based on the gyroscope
signal obtained by the tablet. Unfortunately, their classification study was based on a very small
sample of participants.

Rios-Urrego et al. [99], in addition to using kinematic features, proposed to use geometrical
and nonlinear dynamic features. The latter, in particular, was meant to capture the distortions and
irregularities of handwriting, which are assumed to increase as the disease advances.

Diaz et al. [25] recently proposed a “dynamically enhanced” handwriting representation which
consists of synthetically generated images obtained by exploiting simultaneously static and dynamic
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properties of handwriting. Specifically, they proposed a static representation that embeds dynamic
information based on drawing the points of the samples, instead of linking them, so as to retain
temporal/velocity information, and that adds pen-ups in the same way. The new handwriting
representation was able to outperform the results obtained by using static and dynamic handwriting
separately on the PaHaW dataset.

Ribeiro et al. [55] focused on the analysis of tremor, being one of the most distinctive characteristics
of PD. In particular, they proposed to learn temporal information from time-dependent signals collected
from handwriting exams by exploiting bidirectional gated recurrent units along with an attention
mechanism. These units are a gated mechanism in recurrent neural network architectures. In addition,
the authors also introduced the concept of “bag of samplings” as a compact representation of the signals.
Experimental results on the NewHandPD dataset compared favorably with the previous literature.

In Reference [53], Ammour et al. proposed to use a clustering method to analyze several factors (i.e.,
age, intellectual level, frequency of writing per week, etc.), which can intervene in the characterization
of the groups under study. Then, by using a semi-supervised approach, the authors developed a model
for distinguishing the aspects of handwriting pertaining those factors from those related to pathological
conditions. A balanced cohort of healthy subjects and PD patients were involved, and they were
asked to copy a given Arabic text. Interestingly, among the features used, the authors also considered
measures of pen inclination based on the azimuth and altitude information provided by the tablet.
During data analysis, three clusters were observed: one where the pathological factor appeared to
be the only discriminating element of the corresponding subpopulation; another cluster with mostly
healthy people; and one characterized by a mixture of elderly controls (ECs) with medium intellectual
level and PD patients with high intellectual level and writing frequency. This finding corroborates the
hypothesis that education level may act as a resilience mechanism against the deterioration caused by
neurodegeneration [16].

3.2. Alzheimer’s Disease

Similarly to the classification of studies on PD made in the previous subsection, papers focusing
on handwriting in AD can be grouped in accordance with two main research questions:

e Disease insight: a group of papers examined changes in handwriting of AD and MCI patients to
identify patterns of sensorimotor dysfunction associated with the disease;

e  Disease diagnosis: another group of works applied dynamic handwriting analysis for the purpose
to develop a computer-aided diagnosis system.

A schematic overview is provided in Table 4.

It is worth noting that, in contrast to studies focusing on PD, less research effort has been made
towards the investigation of AD; moreover, the literature still lacks studies involving the application of
dynamic handwriting analysis to support monitoring of disease progression. This is largely due to the
absence of effective cures that slow down disease symptoms. However, as MCI patients are at high
risk to develop in AD, handwriting changes found in this condition may be used not only for the early
disease diagnosis but also to monitor disease progression.
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Table 4. Summary of studies on AD (EC = elderly controls; YC = young controls; DEP = depressed

patients).
Reference Groups Tasks Main Features Main Findings
Disease insight
Slavin et al., 1999 16 AD, 16 EC No-sense word Kinematic and spatiotemporal ~ AD patients exhibit less consistent

Schroter et al., 2003

Yan et al., 2008

Impedovo et al., 2013

Faundez-Zanuy et al.,
2014

Yu and Chang, 2016

35 AD, 39 MCI, 39 DEP,
40 EC

9 AD, 9 MCI, 10 EC

Circle drawing

Handwriting patterns
requiring the
coordination of finger
and/or wrist

ISUNIBA

Not specified

20 AD, 12 MCI, 16 EC

House drawing

Line and circle drawing

Kinematic

Kinematic and spatiotemporal

Kinematic

Kinematic and pressure

Kinematic

movement than controls

AD and MCI patients differ from
healthy subjects in automation
parameters and regularity of
movement sequence

Patients show slow and
uncoordinated movements

Handwriting in impaired subjects
presents strongly irregular
velocity profiles

Group differences are reflected by
cognitive impairments than motor
ones

The degree of motor impairment
may help identify those at risk
for AD

Disease diagnosis

Werner et al., 2006

Pirlo et al., 2015

Garre-Olmo et al., 2017

Kawa et al., 2017

Miiller et al., 2017a;
2017b
El-Yacoubi et al., 2018

Ghaderyan et al., 2018

Angelillo et al., 2019

Impedovo et al., 2019

Ishikawa et al., 2019

22 AD, 31 MCI, 41 EC

29 AD, 30 EC

23 AD, 12 M(I, 17 EC

37 MClI, 37 EC
20 AD, 30 MCI, 20 EC

Different aging
conditions
15 AD, 13 MCI, 15 EC

36 MCI, 29 EC

71 MCI, 34 EC

10 AD, 25 MCI, 36 EC

Functional tasks

Signature

Sentence copying and
writing, figure copying,
and CDT

Single letter and
sentence writing
House drawing and CDT

Word and sentence
writing

Spiral drawing and word
writing

Attentional matrices

Standard and
nonstandard writing and
drawing tasks

Standard writing and
drawing tasks

Kinematic and spatiotemporal

Sigma-lognormal-based

Kinematic and pressure

Spatiotemporal
Spatiotemporal
Kinematic and spatiotemporal

Kinematic and spatiotemporal

Kinematic and entropy

Kinematic

Kinematic

Handwriting measures, especially
those related to in-air movements,
are promising for the automatic
discrimination

Signature deterioration can be

a disease predictor

Higher specificity in
distinguishing between normal
and impaired condition and
higher sensitivity in
distinguishing between AD

and MCI

MCI writing is significantly
slower than the normal one
In-air time is a good predictor for
disease diagnosis

Classification based on temporal
representations improves
Individual variability of
handwriting can be mitigated by
noise-robust methods such as
singular value decomposition
Digitized attentional tasks are
promising for discriminating
cognitively impaired individuals
from controls

An integrated protocol for disease
diagnosis based on handwriting
is proposed

The usefulness of digitizing
neuropsychological tests on the
tablet is supported

Disease Insight

Slavin et al. [34] were among the first to assess handwriting dynamics in patients with dementia
of Alzheimer’s type by making use of a digitizing tablet. Irrespective of medication or disease severity,
patients wrote strokes of significantly less consistent length than controls and were disproportionately
impaired by a reduction of visual feedback. Moreover, patients’ strokes had a significantly less
consistent duration and a significantly less consistent peak velocity than controls. The authors
suggested that the more variable performance of patients indicates a degradation of the base motor
program and resembles that of Huntington’s disease rather than PD. It may indeed reflect frontal

rather than basal ganglia dysfunction; thus, it seems that relative movement duration may be useful to
differentiate between subcortical dementias (like PD) and cortical dementias (like AD).

In Reference [28], Schréter et al. adopted dynamic handwriting analysis to quantify differences in
fine hand motor function in patients with probable AD and MCI compared to depressed patients and
controls. All participants were instructed to perform two tasks. The first one consisted in drawing
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concentric superimposed circles as fast and fluently as possible with the dominant hand; the second
task was identical to the first one but, in addition, participants were requested to simultaneously
perform a distraction task (pressing a counting device as often as possible) with the nondominant
hand. The results obtained showed that kinematic handwriting parameters were effectively related
to cognitive status in elderly patients. Patients with MCI and probable AD exhibited a loss of fine
motor performance: especially when compared to control subjects, movements of AD patients were
significantly less automated, accurate, and regular.

Yan etal. [100] investigated whether the decline in fine motor control and coordination characterizes
sensorimotor deficiencies of cognitively impaired patients with AD or MCI. Their findings supported
this hypothesis. Specifically, when performing handwriting tasks, movement slowing was associated
to MCIl and AD. When performing fine movements, the AD patients also showed more jerky movement
than the other groups.

In Reference [44], Impedovo et al. investigated the relationship between the delta-lognormal and
the sigma-lognormal models [49] and the early signs and symptoms of AD. The previously mentioned
dataset ISUNIBA was collected and used to perform the analysis. By looking at the speed profile along
the writing process, it was observed that the maximum speed value was almost always regular in
healthy subjects; instead, this regularity was strongly reduced for the patients at the beginning of the
disease and completely lost in the patients at advanced stages of the disease.

Faundez-Zanuy et al. [101] compared dynamic characteristics of drawing tasks performed by
patients with probable AD and controls. Although some pathological drawings looked “normal”
if only considering on-surface movements, in-air patterns and pressure appeared quite entangled.
Interestingly, pressure and in-air information were significantly different between the groups even
when controls were requested to perform the tasks with the nondominant hand. This suggested that
the differences between the groups may not reflect physical problems but cognitive ones.

Yu and Chang [102] explored the motor impairments of individuals with probable AD and
amnestic MCI through handwriting analysis. The results showed that slowness and irregularity
of movement of AD and MCI patients were not present in all the proposed tasks. For example,
impairments were not found when drawing straight lines and cursive-connected loops. Instead, AD
and MCI participants had more difficulty than the control group when drawing circles. The study
mainly provided evidence that MCl is characterized also by motor dysfunction.

3.3. Disease Diagnosis

The study by Werner et al. [40] was aimed at examining kinematically the handwriting process
of individuals with MCI compared with those with mild Alzheimer’s disease and healthy controls;
assessing the importance of the kinematic measures for the differentiation of the groups; and assessing
characteristics of the handwriting process across different functional tasks. Participants were requested
to perform five functional writing tasks, such as copying a phone number and a grocery list. Two
underlying assumptions guided the selection of these tasks: they are functional tasks related to the
performance of daily activities; moreover, they reflect an increase in difficulty, as they are long and
involve cognitive effort. An ANOVA test was used to test group differences across measures (both
on-surface and in-air) for each writing task. Furthermore, a discriminant analysis was carried out
to determine which features would be the best predictors for classification. The results of the work
showed significant differences between the three groups under study in almost all measures, with the
MCI group assuming, as expected by the authors, a position between the other two groups. Temporal
measures (especially in-air time) were higher in the more cognitively deteriorated groups, while the
mean pressure was lower. The results also showed that kinematic measures of the handwriting process,
together with cognitive status measures, provide an efficient way to differentiate between the groups,
although the classification of MCI was relatively poor. Finally, the writing characteristics of participants
in all groups showed that, although measures of velocity and pressure remained stable across the
different tasks, the temporal and spatial measures increased as the difficulty of the task increased.
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Although this finding might be obvious, it is interesting that the increase was reflected mainly in the
in-air movements.

In Reference [39], Pirlo et al. investigated the extent to which the analysis of dynamic features
extracted from handwritten signatures can be fruitfully used for the binary classification healthy vs.
AD. A signature, in fact, is well-known to convey a huge amount of information related not only to
the representation of the name and surname of the signer but also to the writing system (hand, arm,
etc.) as well as the psychophysical state. The feature extraction phase was accomplished in accordance
with the sigma-lognormal model of the Kinematic Theory of Rapid Human Movements. The best
classification performance was obtained by using a Bagging CART (classification and regression tree)
classifier. It is worth noting that some contrasting result was obtained by Renier et al. [103], who found
no significant correlation between signature deterioration and level of cognitive decline.

Garre-Olmo et al. [31] compared the dynamic characteristics of handwriting and drawing between
patients with probable AD and MCI and healthy controls. Participants were asked to copy one sentence,
to write a dictated sentence and an own sentence, to copy two and-three dimensions drawings, and to
execute the Clock Drawing Test. By means of discriminant analyses, the authors explored the value
of several kinematic features in order to classify participants depending on their degree of cognitive
functioning. The degree of correct classification was dependent on the nature of the groups to be
classified and the specific task. Classification performance showed higher specificity values when
distinguishing between normal and impaired cognition (MCI and AD) and higher sensitivity when
distinguishing between impaired cognition levels (MCI and AD). Interestingly, the results obtained
showed that, for the same task, the discriminant parameters differed depending on the type of group
to be discriminated, suggesting that they are not the dimensional features of the parameters but rather
the qualitative combination of these parameters that are relevant for group discrimination.

Kawa et al. [104] evaluated the usefulness of handwriting features obtained with an electronic
pen to distinguish MCI patients from controls. Subjects with confirmed MCI needed more time to
complete two out of three writing tasks, as their writing was significantly slower. These results were
associated with a longer time to complete a single stroke of written text. The written text was also
noticeably larger in the MCI group in all three tasks.

Miiller et al. [30] investigated movement kinematics between patients with early dementia due to
probable AD, patients with amnestic MCI, and cognitively healthy control individuals while copying
a three-dimensional house using a digitizing tablet. Receiver operating characteristic (ROC) curves and
logistic regression analyses were conducted to explore whether alterations in movement kinematics
could be used to discriminate patients with MCI and AD from controls. In-air time differed significantly
between the three groups, showing an excellent sensitivity and a moderate specificity to discriminate
MCI subjects from normal elderly and an excellent sensitivity and specificity to discriminate patients
affected by mild AD from healthy individuals. On-surface time differed only between controls and
patients with AD but not between controls and patients with MCI. Furthermore, the total time (i.e.,
in-air plus on-surface time) did not differ between patients with MCI and early dementia due to AD.

In Reference [105], Miiller et al. reported the results of an experiment analogous to the previous
one, employing the same apparatus and the same participants. What differed from the previous study
was the task the participants were requested to perform, which consisted in a digitized version of the
classic Clock Drawing Test. While the traditional CDT revealed only poor sensitivity but excellent
specificity in discriminating MCI patients from healthy individuals, excellent sensitivity and a good
specificity were obtained in discriminating these groups when considering the digital version of the test.
In Reference [106], this research was extended by comparing the digital Clock Drawing Test with the
traditional Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) neuropsychological
test score. Digital Clock Drawing Test (ACDT) provided a slightly better diagnostic accuracy for the
discrimination of amnestic MCI from controls than using the CERAD score. Instead, in differentiating
patients with mild AD from controls, both tests provided excellent accuracy.
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El-Yacoubi et al. [107] proposed a novel paradigm for studying handwriting changes due to
cognitive decline (or aging) by addressing the major limitations of the state-of-the-art solutions. The first
one is the assumption of a unique behavioural trend for each cognitive profile. This restriction was
relaxed by allowing, for each profile, the emergence of a multi-modal behavioural pattern reflecting
the diversity of behaviours within a given healthy condition. The authors achieved this by using
unsupervised or semi-supervised learning algorithms to uncover homogeneous groups of subjects and
byanalyzing how much information these clusters carry on about the cognitive profiles. The second
main limitation is the encoding of handwriting spatiotemporal dynamics only by using global or
semi-global parameters, assumed implicitly to be discriminant. The proposed method is based on
a representation learning approach which is suitable for treating sequential data from which temporal
feature representations can be uncovered. A key advantage of this temporal representation learning is
that it is fully explainable, as it can be visualized and easily understood. The main finding of the work,
from a diagnostic perspective, is that MCI individuals tend to form clusters either with controls or AD
patients, revealing that MCI individuals have fine motor skills with characteristics from both the two
extreme groups.

An approach similar to the previous one was followed by the authors in Reference [108].
In particular, they modeled the velocity trajectory of loop-like movements through a temporal
clustering based on dynamic time warping as a dissimilarity measure. For classification, the authors
used a Bayesian framework, which aggregates the contributions of the clusters by combining the
discriminating power of each oh them probabilistically.

In Reference [109], Ghaderyan et al. pointed out how shape and writing style differences among
individuals are sources of undesired variability in the handwriting signals which may affect the
recognition performance. In order to mitigate this effect, the authors proposed a noise-robust method
based on the singular value decomposition and a sparse nonnegative least-square classifier to make
the handwritten patterns less dependent on small individual variations.

In Reference [42], Angelillo et al. proposed a digitized version of the Attentional Matrices Test for
selective attention assessment: it is based on three matrices of increasing difficulty, and the subject
is asked to the mark target digits assigned. The authors observed how, although a pathological
matrix may look “normal” if considering only the on-surface pattern, the information provided by
in-air movements reveal a completely deteriorated search strategy of the targets to be marked among
the distractors. An ensemble built over three different classifiers trained on the matrices separately
provided the best classification performance.

In Reference [32], Impedovo et al. proposed a handwriting-based protocol for screening and
follow-up of dementia based on a digitized version of standardized cognitive and functional tests (such
as Mini-Cog and MMSE), together with handwriting and drawing tasks currently under investigation
by researchers. The proposed protocol achieved good specificity in distinguishing MCI patients and
controls. A similar work has been recently presented in Reference [110], where Ishikawa et al. proposed
to use a digitized version of neuropsychological tests developed on a digitizing tablet to learn to
distinguish between AD, MCI, and EC subjects.

4. Conclusions and Future Directions

The body of evidence on computerized handwriting analysis supports the hypothesis that
physical, cognitive, and psychological characteristics of individuals can be captured by handwriting
measures. In particular, changes in handwriting seem to be a prominent biomarker for the evaluation of
neurodegenerative diseases. Several works, in fact, provided evidence that the automatic discrimination
between unhealthy and healthy people can be accomplished on the basis of features obtained through
simple and easy-to-perform handwriting tasks. In this view, as the number of devices for data capturing
and processing is increasing all over the world, the use of handwriting to detect and monitor health
conditions is becoming more and more attractive. In particular, the advent of digitizing tablets and
electronic pens allow researchers to investigate not only the static characteristics of handwriting
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available only after the writing process has occurred but also dynamic characteristics collected when
the handwriting task is still in progress. Based on dynamic analyses, several works provided evidence
that certain aspects of the handwriting process are more vulnerable than others and may therefore
present diagnostic signs.

A handwriting-based decision support system has the potential to assist clinicians at the point of
care, providing a novel diagnostic tool while reducing the expenditure of public health care. Moreover,
it can be used to quantify aspects of the motor system and its disorders in order to better understand
the involved underlying mechanisms, e.g., the difficulties in coordinating the components of a motor
sequence movement. Finally, it can help study the effects of medication on handwriting with the aim
to monitor the responsiveness of the patient to therapy. More in general, handwriting can provide
a simple, user-friendly, and easy-to-use instrument to support the daily clinical trials. Artificial
intelligence and machine learning, in fact, are changing the way we think of health care from many
perspectives, and the use of computer aided tools within medical practice is continuously increasing.
The best perspective of this line of research is the integration of new medical tools which can increase
the level of diagnostic accuracy. Doctors can be provided with user-friendly tools in their daily practice,
even though they are not necessarily skilled in high-level algorithms. In this sense, a handwriting-based
tool is attractive since it not only provides the user with an automatic response within few seconds but
also allows the doctor to store useful metadata, e.g., the patient’s information and diagnosis, for later
use. Of course, handwriting-based intelligent systems are not expected to replace standard techniques
or even doctors but rather to provide additional evidence to further support the clinical assessment.
Intelligent systems technology is proving beneficial in a number of health domains, also including
neuroimaging [111] and cardiovascular risk assessment [112].

The present paper has been devoted to provide a comprehensive overview of the literature dealing
with the application of dynamic handwriting analysis to the assessment of Parkinson’s disease and
Alzheimer’s disease. Three well-defined research trends have been identified, ranging from studies
aimed at understanding the facets of fine motor control related to the disease to works investigating
the application of dynamic handwriting features to disease monitoring and diagnosis. Handwriting
features in PD and AD patients can overlap; in particular, handwriting is typically slower, less regular,
and less consistent in patients if compared to the healthy counterpart. However, the two diseases also
show distinctive characteristics. PD patients tend to exhibit rigidity of movements and unwanted
muscle contractions, while preserving, in most cases, their cognitive faculties. AD and MCI patients,
on the other hand, tend to exhibit a more pronounced alteration of their visuospatial abilities and
executive functions, while preserving their fine motor control. These features can be reflected on the
production of handwritten patterns, especially in more complex handwriting tasks.

Encouraging results have been so far obtained; however, there still remain open issues demanding
further research. First, interoperability is still a problem, since data are typically obtained from
different devices and different handwriting tasks. Some works, e.g., References [29,32,87], provided
the community with tentative hand-drawing/handwriting protocols for the assessment of PD and AD.
An integrated protocol, as the one proposed in Reference [32], may be useful to the research community
to collect different handwritten traits; at the same time, it may be of real use for doctors to support
their daily activities.

Another important problem is related to the collection of a statistically significant large amount
of samples. The research community still lacks a large benchmark dataset so that different tools,
algorithms, and techniques can be effectively evaluated and compared. The few datasets currently
available are composed by very few subjects and do not always consider other factors such as the stage
of disease, the medical treatment, and so on. Unfortunately, collecting a large benchmark database is
a time-consuming and expensive process. Furthermore, as neurodegeneration evolves during time,
such a dataset should longitudinally follow a same group over several years.

Senatore et al., in Reference [113], recently raised another important issue: the acceptance of
artificial intelligence-based diagnosis systems by physicians may be hampered by the black-box
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approach implemented by most state-of-art systems. To address this problem, the authors proposed
an evolutionary approach based on Cartesian Genetic Programming which allows for the automatic
detection of the presence of disease and, simultaneously, provides the explicit classification rules used
by the system. This approach can allow physicians to derive guidelines that may be used to define
novel testing protocols and intervention strategies. Also classic decision trees, which are capable of
providing the decision criteria in terms of both the most relevant features and how their values are
used to reach the final decision, can be used for the purpose [114]. Explainable AI can be therefore
a prominent research direction within this context.

The lessons learned from the mentioned body of evidence can be profitably used for other
health and psychological domains. For example, in Reference [115], handwriting was employed
with successful results to the problem of recognizing malingering in health care, i.e., the false
information given by patients about their health. Preliminary results suggested that a computerized
tool based on handwriting can help detect deception. A similar tool was used in Reference [116] for
capturing cognitive load implications during complex figure drawing. The work was then extended
in Reference [117], where the contribution of handwriting to classifying cognitive mental workload
was assessed. Also, handwriting-based measures recently showed promising results in investigating
emotional states, such as stress, depression, and anxiety [118].

It is worth noting that tablet technology enables the implementation of a multi-modal interaction
system in which not only the input provided by the electronic pen but also tactile, speech, or visual
input can be acquired. Promising results on noninvasive methods based on speech and handwriting
analysis for neurological disorder assessment have been obtained, e.g., Reference [119]. Moreover,
thanks to such a multimodal interface, the development of a mobile conversational agent appears to
be feasible. An example of a mobile conversational agent successfully used in the context of AD has
been recently reported in Reference [120]. A purely automatic diagnostic tool paws the way of a quick
instrument which enables mass screening of the population or even home training for improving
cognitive abilities.

Finally, another open issue is a technological one and is related to the realization of an all-in-one
solution specifically devised for the automatic differential diagnosis.

Some other aspects are related specifically to AD assessment. The most obvious observation that
can be drawn from the present survey is that less research effort has been done for AD; thus, additional
effort is necessary for advancing this line of research. Concerning disease insight, investigating
the neural process that underlies handwriting may provide further criteria for selecting the most
representative features associated to a writer, i.e., those containing more information about the message
the handwriting measures represent and the way to examine them profitably. This goal may be
achieved through a multidisciplinary approach, which involves both the analysis/comparison of
handwritten data provided by healthy subjects and patients affected by AD, and through the analysis
of the behavior of a neural network model that emulates the neural mechanisms occurring in the brain
areas involved in handwriting generation and learning. Understanding the neural process involved
in learning complex motor behaviors could also provide a meaningful help to the development of
devices and important insights in developing more effective treatments for the motor deficits affecting
AD patients.

In the context of AD diagnosis, the challenge appears to be to separate from healthy people the mild
cognitive impairment subjects, which are likely to evolve in AD. MCl is characterized by slight problems
with memory loss, language, or other mental functions; thus, finding deterministic patterns useful to
discriminate the impairment from a non-pathological condition is very difficult: this is well-known to
the research community working on neuroimaging. Some works, for example, References [40,104],
clearly indicated that such difficulty is also reflected on dynamic handwriting analysis.
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