iriried applied
L sciences

Article

CoVSCode: A Novel Real-Time Collaborative
Programming Environment for Lightweight IDE

Hongfei Fan 110, Kun Li !, Xiangzhen Li !, Tianyou Song !, Wenzhe Zhang !, Yang Shi 1-*
and Bowen Du %*

1 School of Software Engineering, Tongji University, Shanghai 201804, China; fanhongfei@tongji.edu.cn (H.E);

1553321@tongji.edu.cn (K.L.); 1552970@tongji.edu.cn (X.L.); 1551177@tongji.edu.cn (T.S.);
1551719@tongji.edu.cn (W.Z.)

Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
Correspondence: shiyang@tongji.edu.cn (Y.S.); B.Du@warwick.ac.uk (B.D.)

check for

Received: 27 August 2019; Accepted: 24 October 2019; Published: 31 October 2019 updates

Abstract: Real-time collaborative programming is an emerging approach that supports a team of
programmers to view and edit shared source code at the same time. Each programmer can edit any
part of the source code, and changes become instantly visible at other collaborating sites. With a
broad range of application scenarios and benefits, real-time collaborative programming has attracted
increasing interest from academia and industry. Lightweight integrated development environments
(lightweight IDEs) have rapidly grown in popularity in the recent years, but there are serious problems
and limitations with existing real-time collaboration support for lightweight IDEs. In this study,
we contribute a novel real-time collaborative programming environment named CoVSCode that
supports unconstrained and flexible real-time collaboration based on Visual Studio Code, one of the
most popular and widely used lightweight IDEs. We present design objectives and rationales, the
workflow and functional design from collaborating programmers’ perspectives, major technical issues
and solutions, and prototype implementation, as well as a set of experimental evaluations that have
demonstrated the technical feasibility and good performance of the prototype system. All approaches,
techniques and solutions derived in this work are generic, which can also be applied in building
real-time collaborative programming environments for other lightweight IDEs.

Keywords: computer-supported cooperative work (CSCW); collaborative computing; collaborative
software development; real-time collaborative programming; software development environment

1. Introduction

Software development requires effective collaboration among programmers with diverse skills
and experiences. For supporting collaboration in the programming process, there are two general
categories of approaches and techniques, namely non-real-time collaborative programming and real-time
collaborative programming [1]. Non-real-time collaborative programming is a traditional approach
that has been widely adopted and practiced in the communities for a long time, which is commonly
supported by version control systems such as Git [2]. It is considered to be a kind of non-real-time
collaboration because each programmer’s modification on the source code copy will be kept private
until the updated source code is uploaded to the repository and merged into other programmers’
local source code copies. In contrast, real-time collaborative programming is an emerging approach
that supports a team of programmers to view and edit a set of shared source code documents at the
same time [3]. During a real-time collaboration session, each programmer can edit any part of the
source code, and changes become instantly visible at other collaborating sites. Unlike non-real-time

Appl. Sci. 2019, 9, 4642; doi:10.3390/app9214642 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-0352-9730
http://dx.doi.org/10.3390/app9214642
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/21/4642?type=check_update&version=2

Appl. Sci. 2019, 9, 4642 20f 25

collaborative programming, concurrent changes made by several programmers can be automatically
integrated in real-time collaboration processes without manual conflict resolution.

Real-time collaborative programming is an important supplement to non-real-time collaborative
programming, which provides benefits in a broad range of scenarios. Firstly, several programmers
may need to edit one source code file that cannot be further decomposed due to certain reasons. It is
a well-known challenge for programmers to resolve conflicts in non-real-time collaboration while
they concurrently edit and commit the same file. Secondly, in agile software development processes,
programmers commonly work with frequent iterations to meet the changing requirements, and source
code modules may not be well defined and isolated. Under such circumstances, programmers’
tasks are strongly related and interdependent, which forces them to collaborate in a closely-coupled
fashion. Thirdly, real-time collaborative programming is useful for supporting and enhancing pair
programming, where two (or more) programmers, even geographically dispersed, can conduct pair
programming work over the Internet. In addition, this emerging technique is also beneficial in
supporting collaborative learning among students in a programming course, achieving collaborative
diagnoses and troubleshooting between a support engineer at a customer’s site and a senior engineer at
the headquarter, and many other cases. Because of its wide application scenarios and benefits, real-time
collaborative programming has attracted increasing interests from both academia and industry over
the past decade [1,3-15].

Lightweight integrated development environments (lightweight IDEs), such as Sublime Text [16],
Atom [17] and Visual Studio Code [18], have rapidly grown in popularity in recent years. For example,
it is notable that Visual Studio Code was ranked as the most popular development environment in the
Stack Overflow’s 2019 Developer Survey [19] only four years after its initial release in 2015. Lightweight
IDEs are highly customizable, and can be significantly extended with a large number of available
plugins to support various development tasks and programming languages. However, there is very
limited support for real-time collaboration with lightweight IDEs. For example, even with the official
real-time collaboration plugins for Visual Studio Code and Atom, programmers can only collaborate in
a specific pattern that does not support truly unconstrained real-time collaboration and has serious
limitations. In Section 2.3, we analyze these problems and limitations in details.

Given the increasing popularity of lightweight IDEs as well as our observation of the limitations
of real-time collaboration support for them, we proposed, designed and implemented a novel real-time
collaborative programming environment for Visual Studio Code, one of the most popular and widely
used lightweight IDEs. The proposed environment met three design objectives: (i) preserving full
compatibility with the existing lightweight IDE; (ii) supporting real-time collaborative programming
with intuitive awareness; and (iii) achieving unconstrained and flexible real-time collaboration for
programmers with equal roles. In this paper, we present the system architecture, workflow and
functional design, major technical issues and solutions, prototype implementation, and a set of
experimental evaluations. The approaches, techniques and solutions are generic, which can also be
applied to building real-time collaborative programming environments for other lightweight IDEs.

The rest of this paper is organized as follows. In Section 2, we review related studies and
present problems and limitations of existing real-time collaboration support for lightweight IDEs.
In Section 3, we present and explain three design objectives for the proposed environment. In Section 4,
we propose the system architecture with design rationales, and present the design of workflow and
functionalities from collaborating programmers’ perspectives. In Section 5, we discuss major technical
issues and solutions for system building. In Section 6, we demonstrate the implemented prototype
system, and present experimental evaluations in detail. In Section 7, we discuss the generality of the
proposed approaches and techniques, and compare this study with related work. Finally, in Section 8,
we summarize this study and identify potential research issues for the future work.

Appl. Sci. 2019, 9, 4642 30f25

2. Related Work

2.1. Real-Time Collaborative Editing

Similar to many real-time collaborative applications in other domains, one of the fundamental
techniques for supporting real-time collaborative programming is the generic real-time collaborative
editing technique, which allows a group of collaborators to concurrently edit a shared document at the
same time [20,21]. To achieve high local responsiveness (i.e., for a user’s local editing operation to take
effect immediately in the local document without delay), real-time collaborative editing systems have
commonly been designed with a replicated architecture, where the shared document is replicated at all
collaborating sites [22]. Consequently, there is an essential consistency maintenance requirement that
after all editing operations have been propagated and replayed at remote sites, the shared document at
each site must be identical.

To illustrate the consistency maintenance problem, a simple example is presented in Figure 1
(left side). Suppose that there are two collaborators, namely A and B, who are editing the shared
document at the same time. The document’s initial content was “abcdef”. At one moment, A issues
an operation ins[0, “xy”] (to insert the text “xy” at the position 0 of the document), while at the same
time, B issues an operation del [2,3] (to delete the text “cde” from the position 2 of the document).
After the two operations have arrived at remote sites and been replayed, the evolved documents
became inconsistent.

@ & 3
(a) (8
G =) | G)
ins[0, “xy”] del[2, 3] |ns[0 “xy"] del[2, 3]
e=3 e
del[2, 3] ins[0, “xy"] del[4, 3] ins[0, “xy"]

Inconsistent Consistent

Figure 1. A simple example of operational transformation for consistency maintenance.

The illustrated problem has been well investigated within the community of computer-supported
cooperative work (CSCW) over the past decades, and can be solved by the operational transformation (OT)
technique [20,23-25]. In essence, the OT technique is capable of meeting two fundamental consistency
requirements (i.e., convergence and intention-preservation) in real-time collaborative editing [21,25].
Supported by the OT technique, the inconsistency problem in the above example can be solved as
illustrated in Figure 1 (right side). When the remote operation del [2,3] arrives at A’s site, it has
been transformed into del [3,4] (i.e., the operation’s position has increased from 2 to 4). Eventually,
the transformed operation correctly deletes the intended text “cde” from the document, and achieves
correct and consistent results.

It is worth noting that the example presented here is an extremely simple one, whereas numerous
cases and issues exist that are far more complex. Fortunately, the CSCW community has made significant
efforts in dealing with those problems, and has contributed mature and reliable OT techniques that can
be utilized in building real-time collaborative applications [25,26].

2.2. Building Real-Time Collaborative Applications by Transparent Adaptation

Transparent adaptation (TA) is a generic system building approach for converting existing single-user
applications into multi-user collaborative applications without knowing or changing the source code
of the original applications [22]. Following the TA approach, the implemented applications can

Appl. Sci. 2019, 9, 4642 40f25

support both conventional single-user functionalities (provided by existing applications) and extra
collaboration features (derived from emerging research). Technically, a TA-based collaborative
application consists of an existing single-user application and an additional collaboration adaptor
that invokes the programming interface provided by the single-user application. The OT technique
(introduced above) plays an important role in the collaboration adaptor.

The benefits of the TA approach can be recognized from two perspectives [22]. For end-users of
the collaborative applications, they can continue to use existing functionalities and user interfaces
that are available in the single-user applications without learning new knowledge, while at the same
time enjoying extra collaboration features. Meanwhile, researchers and software developers who are
building the collaborative applications can concentrate on inventing novel collaboration techniques,
and efficiently implement the applications without reinventing existing features and user interfaces.

The TA approach had been adopted and practiced in the design and implementation of a broad
range of real-time collaborative applications in the past studies. Examples of TA-based collaborative
applications include (but are not limited to): (i) real-time collaborative word processing applications
such as CoWord [27] and the real-time collaboration plugin for OpenOffice Writer [28]; (ii) real-time
collaborative 3D design tools such as CoMaya [29] and Co-AutoCAD [30]; (iii) real-time collaborative
plain text editors such as CoVim [31]; (iv) real-time collaborative 2D graphical editing systems such as
CoWebDraw [32]; and (v) real-time collaborative web-based editors such as Codox Wave [33]. In this
study, we continue to follow the TA approach for building a real-time collaborative programming
environment based on an existing single-user lightweight IDE, which will be discussed in Sections 4.1
and 5.1 in detail.

2.3. Problems and Limitations of Existing Real-Time Collaboration Support for Lightweight IDEs

As introduced above, lightweight IDEs have rapidly grown in popularity in the recent years.
However, to the best of our knowledge, there is very limited support for real-time collaboration with
lightweight IDEs. The two official real-time collaboration plugins for Visual Studio Code and Atom,
namely Visual Studio Live Share [34] and Teletype for Atom [35], are the most sophisticated and mature so
far, but they only support a specific collaboration pattern, with major problems and limitations.

Both Live Share and Teletype have been designed with only one specific collaboration pattern, which
can be named as a host-participator pattern: one programmer acts as the host, while other programmers
act as participators. The complete source code copy of the collaboration session is only maintained at
the host’s local workspace. Whenever a group of programmers start to collaborate, there must be
one host who prepares the base of the source code at the local workspace, initializes the collaboration
session and then invites others to join. During the collaboration session, each participator may be able
to view the source code tree, but the content of any concrete source code file is only transmitted when
the participator opens that file. Specifically, with Teletype, this is even more constrained—only the host
can open/close files, whereas participators can only view and edit files that are currently opened at the
host’s site. Moreover, for both Live Share and Teletype, even after a source code file has been transmitted
to the participator’s site, it only resides in the memory (but not on the local disk). Such architectural
and functional design leads to the following problems and limitations:

1. Because each source code file is only transmitted from the host to the participator on-demand, the
network latency greatly affects the user experience at the participator’s site, and when a file is
opened, it takes a while to show up, which depends highly on the network condition.

2. The host must preserve an active network connection at all times during the collaboration session.
Whenever the host encounters an issue and temporarily loses the network connection, the whole
session is terminated, and all ongoing work made by the participators (that have not been
transmitted to the host yet) will be lost.

3. Ateach participator’s site, the source code files are incomplete and reside in the memory only, and
as a result, there is very limited language support (because many IDE features rely on cross-file or
even project-wide knowledge, such as the “go to definition” feature).

Appl. Sci. 2019, 9, 4642 5 of 25

4. The debugging feature is commonly not supported at the participators’ sites because of the
incomplete and memory-residing source code files. Although Live Share is claimed to support
collaborative debugging, the program execution actually takes place at the host’s site during the
debugging process, and no participator can independently debug or test the program without
interfering with the host’s ongoing work.

In addition to the major limitations presented above, there are also various minor issues with the
two official real-time collaboration plugins. For example, both of them require Internet connections
with servers hosted in the cloud, and thus are not suitable for internal development teams with high
security concerns.

3. Design Objectives and Rationales

Given the popularity of lightweight IDEs together with the problems and limitations of existing
real-time collaboration support (as presented above), we proposed, designed and implemented a novel
real-time collaborative programming environment for a lightweight IDE. Firstly, the following three
design objectives are proposed, which serve as high-level guidance for architectural and functional
design, technical research and prototype implementation.

3.1. Design Objective A: Preserving Full Compatibility with the Existing Lightweight IDE

Existing lightweight IDEs (such as Visual Studio Code and Sublime Text) have been widely used in
the communities, and provide sophisticated features and user interfaces covering a variety of software
development tasks. For example, they commonly provide functionalities and features on source code
editing, intelligent assistance, language-specific support, debugging, version control and so on.

The proposed environment should be fully compatible with the existing single-user lightweight
IDE, in the sense that it must fully preserve all existing functionalities and features, user interfaces
and workflows for traditional single-user programming and non-real-time collaboration. With such
compatibility, programmers would effectively reuse their knowledge, skills and experience in a familiar
environment, while enjoying extra real-time collaboration functionalities derived from this research.

3.2. Design Objective B: Supporting Real-Time Collaborative Programming with Intuitive Awareness

While preserving compatibility with single-user programming and non-real-time collaboration in
the existing lightweight IDE, the proposed environment would support additional functionalities and
features for real-time collaboration. Within a real-time collaborative programming session, a group of
programmers can concurrently view and edit a shared collection of source code directories and files
(i.e., the source code tree) as well as the contents of the source code files. Each programmer’s change
will be made instantly visible to other collaborators in real-time, and the consistency of the source code
copies will be automatically maintained by the system.

During a real-time collaboration session, the proposed environment should ensure high local
responsiveness at all sites, in the sense that each local editing operation performed on the source code
must immediately take effect without noticeable delay (i.e., they must be as responsive as the local
operations in traditional single-user programming without real-time collaboration).

In addition, the proposed environment would also support effective and intuitive awareness
among programmers in a real-time collaboration session, which assists programmers in preventing
potential conflicts in the closely-coupled collaborative work.

3.3. Design Objective C: Achieving Unconstrained and Flexible Real-Time Collaboration for Programmers with
Equal Roles

As discussed in Section 2.3, the two official real-time collaboration plugins support the
host-participator pattern only, which has serious limitations in meeting diverse collaboration needs.
In this study, the proposed environment must support unconstrained and flexible real-time collaboration

Appl. Sci. 2019, 9, 4642 6 of 25

where collaborating programmers’ roles are exactly equal. Given a collaborative team and a shared
software project, each team member can flexibly access the project and edit the shared source code at
any preferred time. Programmers may work individually at different times or collaboratively at the
same time based on their collaboration needs.

Under all circumstances, the proposed environment ensures that: (i) whenever a programmer
accesses the source code of the shared software project, the programmer always retrieves the latest
version and continuously receives real-time updates from other active collaborators in the session;
and (ii) whenever a programmer edits the source code, the change is immediately visible to other
real-time collaborators, and also available to any incoming collaborator later.

4. System Architecture, Workflow, and Functional Design

In this section, we firstly describe the system architecture and its design rationales, and then
present the design of the workflow and major system functionalities from the perspective of end-users
(i.e., collaborating programmers).

4.1. System Architecture

Following the design objectives above, we herein present the overall system architecture,
as illustrated in Figure 2. The proposed environment contains a server and several clients (as
many as are needed), which are connected by communication networks. Each client will be used by
one collaborator, while the server can be deployed internally within an organization or hosted via a
cloud service.

User Account Management Real-Time Collaboration
Session Management

Team Management

Operation Propagation

Project Management
Communication

Repository Management Management

Communication Networks —

| Client Adaptor
@ § 3 Visual Studio Code

&

CoVSCode Client

Figure 2. The CoVSCode system architecture.

To achieve Design Objective A (Section 3.1), we follow the TA approach (Section 2.2), and transparently
convert the existing Visual Studio Code (referred to as VS Code hereafter) IDE into a novel real-time
collaborative programming environment named CoV5Code without knowing or changing the source
code of the original VS Code IDE. Each client consists of an existing VS Code and an additional
adaptor that runs as a plugin of the underlying IDE. This ensures that all traditional single-user
programming functionalities (e.g., source code editing, compilation, debugging, coding assistance)
and user interfaces will be fully preserved. Since VS Code can be used for programming in almost
every major programming language (such as Python, C/C++, C#, Java, Go, JavaScript, TypeScript, and
many more) [36], the proposed CoVSCode would also be capable of supporting real-time collaborative
programming in those major programming languages by nature. In addition, all extra functionalities
of real-time collaboration will be embedded in the adaptor, which invokes various application
programming interfaces (APIs) provided by the underlying IDE (but does not alter the IDE).

In this study, we have selected VS Code based on the following considerations. Firstly, VS Code
has been designed with great extensibility by nature [37], and almost every part of the IDE can be

Appl. Sci. 2019, 9, 4642 70f25

customized and enhanced by utilizing the Extension API (i.e., programming interfaces provided by the
IDE), which meets the fundamental requirements of this work. Secondly, VS Code has been widely
used by a large number of developers in the communities [19], which implies the potential value of
this work, as well as the opportunities for usability study and evaluation in the future. It is worth
noting that all approaches and techniques derived in this work are generic, and can also be applied
in building real-time collaborative programming environments for other lightweight IDEs of similar
natures (such as Atom and Sublime Text), as long as the selected IDE provides necessary API support.
In Section 5.1, we will describe what necessary API support is required.

To achieve Design Objective B (Section 3.2), major real-time collaboration mechanisms and
functionalities will be implemented and distributed in the adaptor of each client. Particularly, to meet
the requirement of high local responsiveness, the replicated architecture must be adopted, in which
the source code copy is replicated at the local workspace of each site. This ensures that all local
editing operations can take effect immediately without communicating with the server. In addition,
to maintain source code consistency at all sites, certain mechanisms and techniques will be adopted
and implemented in the adaptor. Under the current architecture, each client is directly connected to
the server, and consequently, all editing operations are relayed by the server to other collaborating
sites, which preserves the cause-effect relationships among editing operations.

The server contains (i) a real-time collaboration service (RTCS) component, (ii) a general service (GS)
component, and (iii) a service gateway (SG) component which supports communications with clients.
The GS component is responsible for managing user accounts, collaborative teams, software projects,
and the corresponding source code repositories. The RTCS component is responsible for supporting
real-time collaboration, including session management and operation propagation. In particular,
to meet Design Objective C (Section 3.3), the RTCS always maintains the latest source code copy during
a real-time collaboration session. When the session begins, the RTCS retrieves a copy of the source
code from the GS. During the session, whenever an editing operation is relayed by the RTCS, it is also
applied to the source code copy maintained at the RTCS component. When the session terminates,
the latest source code will be sent back to the repository maintained by the GS.

4.2. Workflow and Functional Design

In this section, we propose a general workflow for a team of programmers to work in a real-time
collaborative manner, and present the design of major system functionalities for each phase of
the process.

4.2.1. Preparation of Real-Time Collaboration: User Accounts, Teams, and Projects

To use the proposed environment, a programmer should firstly obtain a user account, and then
join (or create) a team. Each team may work on one or several software projects. The system provides
functionalities for user account management (such as user registration, login authentication), team
management (managing memberships for each team), and project management (such as project
creation/deletion, managing relationships between teams and projects, and managing source code
repositories for the projects). The system ensures that the source code copy stored in the server-side
repository always represents the latest source code version for the project.

When a programmer (a registered user) logins into the system, he/she can select a team (if the
programmer currently belongs to several teams). Consequently, the programmer may view the list of
projects managed by the team and select an existing project or create a new project. When creating a
new project, the programmer is allowed to upload an initial version of the source code (serving as the
basis of the team’s collaborative work).

4.2.2. Initializing a Real-Time Collaboration Session

When a programmer selects a project to work on (that is not currently being edited by anyone
else), the current source code copy (including directories and files) will be downloaded from the server

Appl. Sci. 2019, 9, 4642 80f25

to the local workspace of the client. In the meantime, this triggers the initialization of a real-time
collaboration session.

When there is only one programmer in the session, the programming work is almost the same as
in a traditional single-user programming work, and the only difference is that whenever an editing
operation is being performed, the change is also transmitted to the server and applied to the source
code copy at the server-side. This mechanism ensures that when another member joins the session later,
he/she can directly retrieve the latest copy of the source code from the server. Under all circumstances,
the server always keeps a latest copy of the source code for the team, provided that all editing operations
have arrived at the server.

4.2.3. Joining a Real-Time Collaboration Session

From a collaborating programmer’s perspective, joining a session is the same as initializing a
session. Whenever a programmer selects a project to work on, if there is an active ongoing session
corresponding to that project, the server will dynamically add the current programmer to the session
and transmit the latest copy of the source code to the programmer’s client. After the programmer joins,
all programmers in the session will resume collaborative work based on the same version of the source
code. To maintain the source code consistency and ensure a smooth transition during the joining process,
a distributed mechanism will be designed and deployed (to be presented in Section 5.4). In addition,
as a collaboration awareness feature, whenever a programmer joins, all existing programmers in the
session will be notified in the user interface.

4.2.4. Working in a Real-Time Collaboration Session

In a session with two or more programmers, each programmer edits the local source code in the
same way as the traditional single-user programming. The client system automatically detects each
fine-grained editing operation and immediately propagates it to all other active collaborators via the
server. In the meantime, the client also maintains a live communication with the server for receiving
real-time editing operations from other sites. Whenever a remote editing operation arrives, it will be
replayed in the local source code copy. As a result, multiple programmers can concurrently edit any
part of the shared source code, while changes are instantly visible and integrated at all sites.

Precisely, there are two levels of real-time collaboration sessions. Firstly, the abovementioned
session can be regarded as a project-level session. Secondly, within the project-level session, if any source
code file is being viewed or edited by two or more programmers at the same time, then there is a
corresponding file-level session (which manages real-time editing operations on the contents of this
particular file). Correspondingly, programmers may issue two types of editing operations: (i) the
project-level editing operation, which creates, removes or renames a source code item (i.e. a file or
directory within the source code tree) in the project; and (ii) the file-level editing operation, which edits the
contents of a source code file. The timeliness of real-time operation propagation is designed as follows.

Firstly, when a programmer issues a project-level editing operation, it will be immediately
transmitted to other sites within the same project-level session. To deal with possible conflicts among
concurrent project-level editing operations, certain mechanisms and techniques will be adopted and
deployed (to be presented in Section 5.3.2).

Secondly, when several programmers are viewing or editing the same file concurrently, operations
performed by each programmer will immediately be transmitted to other sites within the same file-level
session. However, only when this file is being saved by a programmer within the file-level session
is the saved version transmitted to other programmers within the project-level session. The design
rationale is that programmers outside the file-level session may not be interested in the latest content
of a file’s working copy before saving, and such propagation-on-saving feature also helps to improve
system performance and reduce usage of communication bandwidth. To deal with possible conflicts
among concurrent file-level editing operations and maintain the consistency of source code copies,
certain mechanisms and techniques will be adopted and deployed (to be discussed in Section 5.3.1).

Appl. Sci. 2019, 9, 4642 9 0f 25

4.2.5. Leaving and Terminating a Real-Time Collaboration Session

A collaborating programmer may leave the ongoing session at any time. When the programmer
closes a source code file in the editor, he/she leaves the file-level session. When the programmer closes
the entire project, he/she leaves the project-level session. Similar to the joining process in Section 4.2.3,
the leaving process will also be controlled by certain mechanisms that ensure the smooth transition
and the consistency of source code copies. In addition, whenever a programmer leaves a session,
all remaining programmers will be notified.

When the last active programmer leaves a project-level session, the entire session is terminated.
Upon termination, the latest source code is maintained at the server-side, which will serve as the basis
of programming work when the next session is initialized.

5. Major Technical Issues and Solutions

In this section, we present several major technical issues and solutions involved in system design
and prototype implementation.

5.1. Utilizing Programming Interfaces (APIs) of the Underlying IDE

Following the TA approach (Section 2.2), the client adaptor invokes programming interfaces
(APIs) provided by the underlying IDE without knowing or changing its source code. To implement
the proposed real-time collaboration functionalities and features, the system requires a collection of
APIs, which are listed in Table 1. The left column of the table gives generic descriptions of the API
requirements, while the right column presents the concrete VS Code APIs that have been utilized in our
prototype implementation.

Table 1. Major APIs required for implementing real-time collaboration functionalities.

Generic API Requirement Concrete VS Code API (Descriptions Can Be Found at [38])

m vscode.workspace.createFileSystemWatcher (globPattern: GlobPattern,
ignoreCreateEvents?: Boolean, ignoreChangeEvents?: Boolean,

(@) Detecting editing operations on ignoreDeleteEvents?: Boolean): FileSystemWatcher

source code directories and files (i.e.,

source code tree) m FileSystemWatcher.onDidCreate: Event<Uri>
m FileSystemWatcher.onDidDelete: Event<Uri>
m FileSystemWatcher.onDidChange: Event<Uri>
(b) Detecting editing operations on m vscode.workspace.onDidChangeTextDocument:
source code file contents Event<TextDocumentChangeEvent>
(¢) Detecting file saving operations m vscode.workspace.onDidSaveTextDocument: Event<TextDocument>
(f) Retrieving the positions of m vscode.window.onDidChangeTextEditorSelection:
editing cursors Event<TextEditorSelectionChangeEvent>
(g) Retrieving the highlight ranges in m vscode.window.onDidChangeTextEditorSelection:
source code Event<TextEditorSelectionChangeEvent>

m vscode.textEditor.setDecorations(decorationType:
TextEditorDecorationType, rangesOrOptions:
Range[]|DecorationOptions|[]): void

(h) Setting the positions of
editing cursors

m vscode.textEditor.setDecorations(decorationType:
TextEditorDecorationType, rangesOrOptions:
Range[]|DecorationOptions|[]): void

(i) Setting the highlight ranges in
source code

m vscode.window.createWebviewPanel(viewType: string, title: string,
showOptions: ViewColumn|{preserveFocus: boolean, viewColumn:
ViewColumn}, options?: WebviewPanelOptions &
WebviewOptions): WebviewPanel

m vscode.window.showInformationMessage(message: string, options:
MessageOptions, ... items: string[]): Thenable<string|undefined>

m vscode.window.showErrorMessage(message: string, options:
MessageOptions, ... items: string[]): Thenable<string|undefined>

() Implementing other
collaboration-related user
interface elements

Appl. Sci. 2019, 9, 4642 10 of 25

5.2. Client System Architecture and Major Components

Given the overall system architecture (Section 4.1), the CoVSCode client adaptor plays a critical role
in supporting real-time collaboration. As illustrated in Figure 3, the client adaptor has been designed
with eight major functional components. Some of the components invoke APIs provided by the three
modules in the underlying VS Code IDE, which are indicated by the labeled arrows (each letter refers
to a corresponding item in Table 1 above).

CoVSCode Client Adaptor Connection with Server

Local Operation Communication Remote Operation
Processor (LOP) Controller Processor (ROP)

File-Level Project-Level Operational RTCP General
RTCP RTCP Transformation Awareness Service
Controller Controller Controller Controller
1 ("‘6 A . .
> N ~ \2" A

Y

vscode.workspace vscode.textEditor vscode.window

> visual Studio Code

Figure 3. The CoVSCode client system architecture and major functional components.

The File-Level RTCP Controller (the term RTCP represents “real-time collaborative programming” in
this figure) detects local operations and replays remote operations in source code editors for supporting
file-level sessions. The Project-Level RTCP Controller detects local operations and replays remote
operations in the IDE’s project explorer (i.e., the source code tree) for supporting project-level sessions.
The RTCP Awareness Controller retrieves the local programmer’s editing cursor and/or highlight range,
displays all remote programmers’ editing cursors and/or highlight ranges, and delivers notification
messages for supporting real-time collaboration awareness features (visually presented in Section 6.1.3).
The Operational Transformation Controller is the key to supporting consistency maintenance of the
source code, with the OT technique as the cornerstone (see Section 2.1). Technically, each local editing
operation will be processed by the controller, and each remote editing operation will be transformed
by the controller before its replay.

The Local Operation Processor (LOP) integrates four controllers, and is dedicated to detecting and
propagating local editing operations performed by the local user in the source code. When the user
opens a source code file in the editor, the component registers a specific listener with the source code
editor in the initialization procedure. Consequently, whenever the local user issues an editing operation
in the programming process, the listener captures the changes that have occurred in the source code.
It is worth noting that one editing operation may result in one or many changes, depending on the
actual situations. The changes are then processed by the operational transformation controller, and
transmitted to the server for propagation to all collaborating sites within the same session.

The Remote Operation Processor (ROP) also integrates the four controllers, and is dedicated to
applying remote editing operations performed by remote users to the local source code. Each remote
editing operation that arrives is firstly processed by the operational transformation controller, and then
replayed in the source code file, which immediately becomes visible in the user interface.

Given each source code file that is being edited, there will be a pair of parallel threads that
correspond to the LOP and ROP, as illustrated in Figure 4. The two processors involve some shared

Appl. Sci. 2019, 9, 4642 11 0f 25

components, such as several VS Code modules (for invoking APIs) and the operational transformation
controller (for processing and transforming operations). Certain mechanisms (e.g., mutex, semaphore)
are needed to control the parallel execution of both threads and serialize concurrent access to the
shared components in the system.

Local Operation Processor (LOP)

Local editing Processing of Propagation of
operation detected editing operation editing operation
| | |

VS Code Operational Communication
Modules Transformation Controller Controller
| | |
1 1 1
Execution of Transformation of Remote editing
editing operation editing operation operation arrived

Remote Operation Processor (ROP)

Figure 4. Local operation processor (LOP) and remote operation processor (ROP).
5.3. Consistency Maintenance of Replicated Source Code Copies

As mentioned above, to achieve high local responsiveness in real-time collaboration sessions
(as specified in Design Objective B), the system has been designed with a replicated architecture, and
each collaborating site must hold a distributed copy of the source code. Consequently, any local editing
operation performed can be immediately executed on the local replica, and then be propagated to
remote sites within the same session. One major technical issue here is the consistency maintenance
of the source code (i.e., after all editing operations have been propagated and executed at all sites,
the distributed source code copies must be identical). For the two levels of real-time collaboration
sessions (file-level sessions and project-level sessions), certain consistency maintenance mechanisms
and techniques have been adopted and deployed as follows.

5.3.1. Consistency Maintenance in File-Level Sessions

In a file-level session, programmers concurrently edit the content of a shared source code file.
Technically, a source code file is a string of textual characters with a single linear address space, and each
character can be addressed by a positional value. There are two primitive editing operations that can
be executed:

e insertString [p, s]: to insert a string s at the position p of the source code file.
o deleteString [p, I]: to delete a string starting from the position p with the length /.

All complex editing operations will result in one or several primitive editing operations defined
above. For example, replacing several lines of the source code by pasting texts may lead to a
deleteString operation and an insertString operation. The registered listener (item b in Table 1) will
automatically detect the textual changes in the source code file and produce these primitive operations
for further processing.

As discussed in Section 2.1, concurrent editing operations may lead to inconsistent document
states if they are directly applied at remote sites. The operational transformation controller in the client
adaptor is dedicated to file-level source code consistency maintenance, which has embedded mature
OT mechanisms and techniques that were derived in prior works [21,23,25]. Whenever a local editing
operation is detected and presented by the registered listener, it will be processed by the operational
transformation controller, and then transmitted to the server. Whenever a remote editing operation
arrives, it will be processed by the operational transformation controller, and then applied in the source
code file.

Appl. Sci. 2019, 9, 4642 12 of 25

5.3.2. Consistency Maintenance in Project-Level Sessions

Similar to file-level editing operations, when two project-level editing operations target source
code items in one directory or in hierarchically-related directories, they may also conflict with each
other and result in inconsistent source code trees. To support consistency maintenance in project-level
sessions, we have adopted conflict resolution and consistency maintenance techniques that have been
proposed and widely applied in prior studies [39—41].

In essence, three primitive project-level editing operations can be performed on the source code
tree of a project:

o createSourceCodeltem (n, parent): to create a new source code item 7 in the directory parent.

o removeSourceCodeltem (n, parent): to remove an existing source code item # from the directory parent.

o renameSourceCodeltem (on, nn, parent): to rename an existing source code item from on to nn in the
directory parent.

The registered listener (item a in Table 1) captures changes in the source code tree and produces
primitive operations as defined above. Consequently, based on the conflict/compatible relationships
among project-level editing operations, the operational transformation mechanism (deployed in the
operational transformation controller) processes local and remote editing operations in a similar fashion
to that in file-level sessions, and ensures source code consistency.

5.4. Smooth Transition in Real-Time Collaboration Sessions

As specified in Design Objective C, the system should support unconstrained and flexible real-time
collaboration where programmers can join and leave a real-time collaboration session at any time.
When an ongoing session accepts a new member, the server should deliver the latest source code to
the member, and meanwhile, ensure the smooth transition of the session. After the new member
joins, all session members should continue their work based on a consistent copy of the source code.
To achieve the smooth transition in a reliable way, the following mechanism is deployed:

Client When a client requests to join an ongoing real-time collaboration session, the client sends a
REQUEST message to the server.

Server When the REQUEST message arrives, the server broadcasts an INIT message to all existing
clients in the session.

Client Upon receiving an INIT message from the server, the client temporarily prevents new local
editing operations, and sends back an OK message to the server.

Server After receiving OK messages from all existing clients, the server further broadcasts a COMPLETE
message to all clients, which signifies the completion of the procedure.

Client When the COMPLETE message arrives, a client resumes editing work immediately. Particularly,
for the incoming client, the latest source code copy will be transmitted from the server to the
client, following the COMPLETE message.

A graphical example is presented in Figure 5, which illustrates how the above mechanism works
when a programmer (D) joins a session with three existing programmers (A, B and C).

H)
i Server Real-Time Collaboration Service (RTCS) '
skl .. WL L. . @ @ o Sl ;

r 3 3 r > N r > K 1 4
FTTTTTEIITT B, o e o 1 1 REQUEST b 1
H E H E ; E 2 INIT : E
5 b P : 3 oK : ;
E Programmer A E E Programmer B E E Programmer C E 4 COMPLETE i Programmer D E

Figure 5. A graphical example illustrating the transition when a member joins the session.

Appl. Sci. 2019, 9, 4642 13 0f 25

In a real-time collaboration session, each client-server communication is based on a WebSocket
connection, which is essentially a FIFO communication channel. When all clients in the session have
received the COMPLETE messages, the entire session reaches a temporary state where (i) there is no
message being transmitted, and (ii) all clients have executed the same editing operations, holding
consistent source code copies. Eventually, the incoming client receives the latest source code, and all
clients continue programming work based on a consistent source code copy as if a fresh session has
been started. In addition, when a client leaves a session, the mechanism is relatively simple—the client
simply sends a leaving request to the server, and the server removes the client from the member list.
For both joining and leaving, notification messages will be sent to all existing clients.

6. Prototype Implementation and Evaluations

Following the system architecture in Section 4.1, the workflow and functional design in Section 4.2,
and various techniques proposed and devised in Section 5, we have successfully implemented the
CoVSCode prototype. In this section, we demonstrate the prototype system and present preliminary
user evaluations along with a comprehensive set of experimental evaluations.

6.1. Major User Interfaces of CoVSCode Prototype System

6.1.1. Login and Initialization: Preparation of Real-Time Collaboration

Figure 6 presents the CoVSCode client Ul for a programmer to start real-time collaborative
programming. Upon clicking the “Start CoVSCode” button in the status bar, a login panel is displayed
in the IDE. The programmer may login into the system with an existing username and password,
or simply register as a new user.

[J [Extension Development Host] - CoVSCode: Login — react-master-6f3c8332d8b2f92784a731e6cc6a707a92495a23

@ EXPLORER = CoVSCode: Login X

> OPEN EDITORS

p > REACT-MASTER-6F3C8332D8B... (: OV < : O d e
> OUTLINE

> MAVEN PROJECTS Real-Time Collaborative Programming for Visual Studio Code
> NPM SCRIPTS

@ 0AO0 & Start CovSCode QInitializing JS/TS language features

Figure 6. Ul snapshot of the CoVSCode client’s login panel.

As presented in Figure 7, upon successful authentication, the programmer may create a team, join
a team, or select an existing team that he/she has already joined or created, from the list on the left side.
When a team has been selected, the programmer can further select a project that belongs to the team
(or create a new project) from the list displayed on the right side.

When a new project is created, the programmer will be asked to specify a folder on the local
disk, which contains the initial base of the source code for real-time collaboration. When an existing
project is selected, the programmer will be asked to specify a local folder for hosting the project, and
the latest source code copy will then be downloaded from the server to the specified local folder. Upon

Appl. Sci. 2019, 9, 4642 14 of 25

completion of the initialization process, the programmer starts to edit the source code in a real-time
collaboration session.

[Extension Development Host] - CoVSCode: Select Team and Project for Collaboration — react-master-6f3c8332d8b2f92784a731e6cc6a707a92...

EXPLORER = CoVSCode: Select Team and Project for Collaboration X ¢ [0

> OPEN EDITORS

> REACT-MASTER-6F3CS8... H I I K L e |
> OUTLINE e o I u n I o

> MAVEN PROJECTS
> NPM SCRIPTS Step 1: Select a Team Step 2: Select a Project

tongji-sse-51¢

Q0A0 & Start CovSCode
Figure 7. Ul snapshot of the CoVSCode client’s initialization panel.

6.1.2. Real-Time Collaborative Programming

Following the initialization process in the previous step, the programmer starts to work in the
real-time collaboration session. Figure 8 presents the Ul snapshots of two CoVSCode clients used by
two programmers, Kun Li (Site A, the upper figure) and Wenzhe Zhang (Site B, the lower figure), in a
real-time collaboration session. At this particular moment, Site A (Kun Li) is editing Line 52 of the
source code file, while Site B (Wenzhe Zhang) is editing Line 37 of the same file. Both of them can see
each other’s work in real-time.

As presented, the client user interface looks the same as the original single-user VS Code IDE, and all
existing functionalities have been fully preserved. The document explorer on the left looks similar to
that in the original VS Code, but real-time collaboration functionalities have been integrated: whenever
the programmer creates, deletes or renames any source code item in the explorer, the operation is
immediately transmitted to remote sites; and conversely, remote programmers’ changes in the source
code tree can also be replayed in the local explorer in real-time.

Similarly, the IDE’s built-in source code editor has also been equipped with additional real-time
collaboration features. During the programming process, each local operation is instantly detected
and propagated to remote sites, while remote operations are also replayed and viewed in a real-time
fashion. The source code consistency is always maintained by the system, provided that all operations
have arrived at remote sites.

6.1.3. Collaboration Awareness and Notification

Collaboration awareness is an important feature in real-time collaborative programming
that enables distributed programmers to learn where other users are and what they are doing.
In closely-coupled real-time collaboration sessions, awareness features help programmers prevent
potential conflicts, and improve mutual understanding about the relationships among concurrent
programming tasks. In addition, awareness information must be intuitive for programmers to receive
with minimal effort, and should not interrupt programmers’ ongoing work.

Appl. Sci. 2019, 9, 4642 15 of 25

. [Extension Development Host] - RulesOfHooks.js — react-master-6f3c

EXPLOREF I L[] Js RulesOfHooks.js @ Js

D o

OPEN EDLI.. 5 UNSAVED r kage 3 n-r
IS ir Js

JS RulesOfHooks.js .

{} pac

% ® O

REACT-MASTER-6F3C8...

Js ExhaustiveDeps.js

B

Js index.js
Js RulesOfHooks.js
Js index.js

{} pa

S K

OUTLINE
) create

etFunctionName

2ntName

{g} MAVEN PROJECTS

NPM SCRIPTS } else
Q040 & covsCode | Team: tongji-sse-518 | Project: react Ln52,Col 36 Spaces:2 UTF-8 LF JavaScript AESLint @ A1
(Site A)
® [} [Extension Development Host] - RulesOfHooks.js — test_workspace
RulesOfHooks.js ® ndex.js ExhaustiveDeps.js index.js W
1
v OPEN EDITORS ' 1UNSAVED k Q
; . RulesOfHooks.js ... U 29 } else if (
yackage... U
indexspackeo 30 node.type === 'MemberExpression' && E
0o ExhaustiveDeps.... U frind FeiveE
J‘K‘ index.js package... U 31 -node. compute:
 TEST.WORKSPACE 32 isHook(node.property)
1% 33) {
v packages 34 // Only consider React.useFoo() to be namespace hooks for now to avoid
ELI > create-subscription false positives.
o v eslint-plugin-react.. 35 // We can expand this check later.
> _tests_ 36 const obj = node.object;
> npm 37 ob|
e 38 re £obj Type TabNine::sem to enable seman..(® := 'React';
F:1aus\|veDeps . E 39 } el %'object
index.js o
40 re
RulesOfHooks.js U “ } ﬁOb]_eCts o
Kidex|s v /?objectContaining
e loon » 42)} /* observable
D README.md u 43
> events 44 /xx
> jest-mock-schedul... 45 * Checks if the node is a React component name. React component names must
> jest-react 46 * always start with a non-lowercase letter. So ‘MyComponent' or
> react * _MyComponent®
> react-art 47 * are valid component names for instance.
> react-cache 48 */
v OUTLINE 49
v @ create i
/6 CallExpression 50 function isComponentName(node) {
T T 51 if (node.type === 'Identifier') {
Joi ieaciticoka 52 return !/~[a-z /.(est(node.namep';(i
(@) reactHook 53 } else { Gl
ég} D n-anoanr 54 return false;
> NPM SCRIPTS

Pmasterr © @O0AO0 & CovSCode | Team: tongji-sse-518 | Project: react Ln37,Col7 Spaces:2 UTF-8 LF JavaScript @ M1

(Site B)

Figure 8. Ul snapshots of two CoVSCode clients in a real-time collaboration session.

Figure 9 illustrates the collaboration awareness features implemented in the CoVSCode client.
In a real-time collaboration session, a unique color is assigned to each programmer and used to
indicate the programmer’s position (cursor) in the source code at remote sites. In addition, when a
programmer selects a region of source code text, the highlighted region will also be displayed at all
remote sites, which is particularly useful in a real-time online discussion over telephones or other

Appl. Sci. 2019, 9, 4642 16 of 25

communication tools. In this figure, it can be intuitively observed that the local programmer is editing
Line 51; one remote programmer is editing Line 37; and another remote programmer is highlighting
the source code comments in Lines 22 and 23.

B [Extension Development Host] - RulesOfHooks.js — react-master-6f3c8332d8b2f92784a731e6cc6a707a92495a23
EXPLORER lex ° Js RulesOfHooks.js ® Js

“ OPENEDI... 5 UNSAVED
® Js index.js
® Js RulesOfHooks.js ... l
® Js ExhaustiveDeps.j

® Js index.js

{

® {} package.json pa... isHook(node) {

f (node.type === 'Identifier’
return isHookName(node
else if (

node.type === 'MemberExpression’

v REACT-MASTER-6F3C8...
tests

v npm

Js index.js 'node. compu

v Src isHook(node.property)
Js ExhaustiveDeps.js {
Js index.js

JS RulesOfHooks.js obj = node

Js index.js eturn obj.type 'Identifier' &% obj.name === 'Reac
{} package.json
README.md
> events
v OUTLINE
v @ create

v @ CallExpression
] codePathSegm... *c name
abc codePathFunctionName
abc functionName
(@] reactHooksMap abc getFunctionName
D onCodePathEnd isComponentName (node) { abc isComponentName
f (node.type === 'Identifier' abc isHookName
n '/~ .test|(node.na))|;

actHooks

& countPathsFro...

@] cache
{g} > MAVEN PROJECTS

> NPM SCRIPTS :
Q®0A0 & cCovSCode | Team: tongji-sse-518 | Project: react Ln51,Col 34 Spaces:2 UTF-8 LF JavaScript AESLint @ A4

Figure 9. Ul snapshot of the CoVSCode client in a real-time collaboration session with three programmers.

Moreover, notification messages will be displayed in the bottom right corner of the IDE to show
the currently active members when a programmer joins a session, and to indicate other collaborators
joining and leaving during an ongoing session.

6.2. Preliminary User Evaluations

The CoVSCode prototype implementation validated the feasibility of the proposed approach and
techniques. A group of programmers participated in preliminary user evaluations on the prototype
system (Figure 10 illustrates a picture taken in the experiment), and provided positive feedback on
several key issues related to real-time collaboration features and performance. Firstly, the programmers
reported that all existing functionalities and Uls of the VS Code IDE were fully preserved without
change, and the local responsiveness of editing operations was good (i.e., the same as that of the original
IDE without real-time collaboration functionalities). Secondly, remote editing operations, remote
cursors and remote highlights could be performed and displayed in real-time (without noticeable
delay) in a LAN environment. Thirdly, when a programmer created a new project, the uploading of
the initial source code copy took some time depending on the source code size, but even for large-size
projects, it commonly took less than five seconds. Fourthly, when a new member joined an existing
session, the transition would be completed in a timely manner (less than one second), and only the
new member would encounter a slight delay for source code downloading during the initialization
process (depending on the project size, and commonly less than five seconds).

Appl. Sci. 2019, 9, 4642 17 of 25

Figure 10. A picture taken in a laboratory at the University of Warwick, where three programmers are
participating in the user evaluation of the CoVSCode prototype.

During the user evaluations, we also discussed several usability issues with the programmers
and received positive feedback. Firstly, the programmers reported that the prototype was easy to use,
because the real-time collaboration features had been smoothly embedded in the original IDE without
modification to existing features and user interfaces. Secondly, the programmers reported that the
prototype was effective and useful in supporting real-time collaborative programming, and that they
could use the prototype for diverse collaboration needs. Thirdly, the programmers reported that they
were satisfied with the real-time collaboration features. Fourthly, the programmers found the user
interfaces intuitive and helpful for supporting real-time collaborative programming, especially the
colored-highlighting-based collaboration awareness features (see Section 6.1.3), which had effectively
assisted them in being aware of collaborators’ editing locations, understanding relationships among
collaborative work, and preventing potential conflicts accordingly.

6.3. Experimental Evaluations

In addition to preliminary user evaluations, we further conducted a set of experimental evaluations
on several key aspects critical to system performance and user experience. In each experiment,
there were several collaborating programmers using the CoVSCode prototype system to conduct
programming work based on an existing software project. To reflect real-world scenarios as much as
possible, we selected six existing open-source projects from GitHub with diversity in project sizes and
programming languages. Table 2 presents the names of the six projects, as well as the selected branch
and commit, the size of the source code copy, and the number of source code items for each project.

Table 2. Six open-source software projects selected for experimental evaluations.

Project Branch Commit Size (Bytes) Items
PythonCrawler master d0a29c2deb36d9986321£38f97{£352c1d589135 46,935 28
koa master 2c86b10feafd868ebd071dda3a222e6f51972b5d 357,477 103
flask master 33db5351088f58219d0d13f1a2efa7a85880eb55 1,485,367 255
sharedb master f01cf0e53fa0347dc27232dc248de517914£395¢ 1,994,093 111
python-twitter ~ master fd3479836aba62cecc479a8elec85c43ae48e8f8 13,617,305 261

react master 6£3¢8332d8b2f92784a731e6cc6a707a92495a23 12,025,260 1360

Appl. Sci. 2019, 9, 4642 18 0f 25

6.3.1. Performance of Local and Remote Editing Operation Processing

In a real-time collaboration session, whenever a local editing operation is performed, it will be
detected (by the listener), processed (by the operational transformation controller) and propagated
to the server; and whenever a remote editing operation arrives, it will be transformed and replayed.
The processing times of these local and remote editing operations are key factors of user experience.
To this end, we conducted 24 sets of experiments with two and three collaborating programmers
(the most common scenarios) working on the six selected projects, respectively. During each experiment,
we asked the participating programmers to concurrently edit the same source code file for at least five
minutes, measured the processing times of at least 200 local or remote editing operations during the
process, and finally calculated the average values. In terms of configuration, the experimental PC was
equipped with an Intel Core i7 @ 2.2 GHz processor and 16 GB of RAM, and the operating system was
macOS 10.14.6 (18G87).

Table 3 presents the experimental results, including the average processing times of local editing
operations in the two-collaborator sessions (2C sessions) and three-collaborator sessions (3C sessions),
and the average processing times of remote editing operations in the 2C and 3C sessions. It can be
observed that the processing of local editing operations was very efficient (less than one millisecond for
each operation), which demonstrates the high local responsiveness of the client system. The processing
of remote editing operations was also efficient, which contributes to the instant replay of remote editing
operations, and also implies that the duration from an operation’s generation (at its original site) to its
remote replay (at a remote site) mainly depends on its transmission over the network, rather than its
processing upon arrival.

Table 3. Average processing times of local and remote editing operations in two-collaborator sessions
(2C sessions) and three-collaborator sessions (3C sessions).

Project Local Editing Operation Remote Editing Operation

2C Session 3C Session 2C Session 3C Session
PythonCrawler 802 us 803 us 2.262 ms 0.833 ms
koa 876 us 864 us 4.650 ms 4.803 ms
flask 859 us 817 us 6.095 ms 5.940 ms
sharedb 852 us 905 us 2.801 ms 2.830 ms
python-twitter 853 us 836 pus 8.080 ms 5.869 ms
react 867 us 834 us 2.044 ms 4.294 ms

6.3.2. Performance of Project Creation and Session Joining

Whenever a new project is created, the initialization process involves uploading of the initial
source code copy. Whenever a member joins an ongoing real-time collaboration session, the joining
process involves downloading of the source code copy (for the new member only). These processing
times are important to the user experience. To this end, we conducted 12 sets of experiments to measure
the average processing times of project creation and session joining based on the six selected projects,
and the experimental results are presented in Table 4. The experimental PC’s configuration is the
same as that in Section 6.3.1 (i.e., Intel Core i7 @ 2.2 GHz processor, 16 GB of RAM, macOS 10.14.6
operating system).

It can be observed that even for large-size projects, the time costs for project creation and session
joining were still acceptable. More importantly, such time cost for joining a session was only incurred
at the new member’s client, as the source code of the project is directly fetched from the server without
involving other existing members.

Appl. Sci. 2019, 9, 4642 19 of 25

Table 4. Average processing times of project creation (involving source code copy upload) and session
joining (involving source code copy download).

Project Size (Bytes) Items Project Creation Session Joining
PythonCrawler 46,935 28 85.869 ms 75.698 ms
koa 357,477 103 274.540 ms 220.318 ms
flask 1,485,367 255 734.111 ms 599.690 ms
sharedb 1,994,093 111 777.637 ms 559.712 ms
python-twitter 13,617,305 261 3166.465 ms 3867.070 ms
react 12,025,260 1360 3923.432 ms 2480.144 ms

6.3.3. CPU Utilization and Memory Usage

In addition, two sets of experiments were conducted to measure the CPU utilization and
memory usage of the CoVSCode client and the CoVSCode server, respectively. For both experiments,
the experimental PC was equipped with an Intel Core i7 @ 2.2 GHz processor, 16 GB of RAM and the
macOS 10.14.6 (18G87) operating system.

Firstly, we monitored the CoVSCode client system’s CPU utilization and memory usage for a
five-minute duration (with one sample collected per second), in which the programmer was conducting
real-time collaborative programming work in a session. The experimental results are illustrated in
Figure 11. As observed, the system’s resource consumption was satisfactory in both aspects. Compared
with the original VS Code IDE, the implemented real-time collaboration plugin (i.e., the client adaptor)
did not incur significant extra cost in either the CPU utilization or the memory usage.

o

wv
!

H
1

N
L

[
Il

CPU Utilization (Percentage)
w

o

V1YL

0 50 100 200 250 300
Elapsed Time (Second)

400

w w
(% ~
o w

1 L

3251

Memory Usage (MB)

N w
~ o
(8] o
L 1

250

0 50 100 150 200 250 300
Elapsed Time (Second)

Figure 11. CPU utilization and memory usage of the CoVSCode client in a five-minute duration of a
real-time collaboration session.

In addition, since Live Share is the official real-time collaboration plugin of VS Code, for the sake
of comparison, we also monitored the CPU utilization and memory usage of the VS Code with Live
Share in a five-minute duration (with one sample collected per second), in which the programmer
was conducting real-time collaborative programming work in a session. The experimental results

Appl. Sci. 2019, 9, 4642 20 of 25

are illustrated in Figure 12. As observed, the system’s resource consumption was also satisfactory,
although it was slightly higher than that of CoVSCode presented above.

N

o)}

N W

CPU Utilization (Percentage)
I

fa

o

0 50 100 150 200 250 300
Elapsed Time (Second)

500

» »
o w
o o

Memory Usage (MB)
w
w
o

3001

250 — y T T r - -
0 50 100 150 200 250 300

Elapsed Time (Second)
Figure 12. CPU utilization and memory usage of the VS Code with Live Share in a five-minute duration

of a real-time collaboration session.

Secondly, we monitored the CoVSCode server system’s CPU utilization and memory usage for a
five-minute duration (with one sample collected per second), in which there was an active session with
three collaborating programmers. The experimental results are illustrated in Figure 13. As observed,
the resource consumption of the server system was satisfactorily economic, and one critical enabling
factor was the design of the system architecture (see Section 4.1), which ensures the server to maintain
only lightweight data (e.g., session members) and tasks (e.g., operation relaying), whereas most
heavyweight jobs (such as local operation detection and remote operation replay) are distributed at
each client. This also implies the system’s good scalability for hosting large numbers of concurrent
real-time collaboration sessions and active collaborating programmers.

1.50

CPU Utilization (Percentage)
o
~
w

0 50 100 150 200 250 300
Elapsed Time (Second)

Figure 13. Cont.

Appl. Sci. 2019, 9, 4642 21 of 25

90

80 A

60 -

Memory Usage (MB)

50

T

0 50 100 150 200 250 300

Elapsed Time (Second)
Figure 13. CPU utilization and memory usage of the CoVSCode server in a five-minute duration of a
real-time collaboration session.

7. Discussion and Comparisons

In this study, we proposed, designed, and implemented a novel real-time collaborative
programming environment for VS Code, one of the most popular and widely-used lightweight
IDEs. It is worth pointing out that all approaches and techniques contributed in this work are generic,
which can also be applied in building real-time collaborative programming environments for other
lightweight IDEs such as Atom and Sublime Text. The generality of this work lies in several aspects.
First of all, the three high-level design objectives and rationales (Section 3) were proposed in a generic
manner, and are not specific to any concrete IDE—they could be used for guiding the design of
any real-time collaborative programming environment. Secondly, in terms of the overall system
architecture (Section 4.1), the underlying VS Code can be simply replaced by another IDE while all
other components remain unchanged, and therefore the whole architecture is generic for supporting
any real-time collaborative programming environment. Thirdly, the workflow and functional design
(Section 4.2) was proposed in a generic way that conceptually defines how a programmer interacts with
the environment, without binding to any specific IDE. Last but not least, all supporting techniques,
implementation approaches, and user interface design could be straightforwardly reused for building
any real-time collaborative programming environment. For example, the client system architecture
(Section 5.2) could be reused with any IDE simply by replacing the underlying VS Code; the design
of LOP and ROP (Section 5.2) is compatible with any IDE; the consistency maintenance techniques
(Section 5.3) and session management techniques (Section 5.4) are reusable for any similar environment;
and the UI design and collaboration awareness features (Section 6.1) are also applicable to any real-time
collaborative programming environment. The only technical requirement in implementing another
system of a similar nature is to investigate the APIs provided by the selected IDE, as well as to utilize
the APIs following the descriptions in Table 1. This is usually not a challenge for most of the popular
lightweight IDEs, as they have been designed for supporting extensions by nature, which commonly
provide rich collections of APIs.

We compare this study with related works as follows.

Firstly, compared with other real-time collaborative editing systems contributed in prior works
such as CoWord [27], CoMaya [29], Co-AutoCAD [30], CoWebDraw [32] and Codox Wave [33], this study
focuses on supporting real-time collaboration for software development with lightweight IDEs, and
has extended the application domains of the TA approach. Moreover, several technical issues involved
in this study were not existing in those prior works. For example, the CoVSCode system manages two
kinds of real-time collaboration sessions to support the simultaneous editing of several source code
files and the source code tree, whereas in prior works there was usually a single shared document that
was collaboratively edited.

Secondly, in the domain of real-time collaborative programming, one major advantage of the
CoVSCode prototype compared with other research prototypes that have been contributed in the recent
years (such as CodePilot [14], CodeR [9] and CoRED [6]) is its full compatibility with an existing popular

Appl. Sci. 2019, 9, 4642 22 of 25

and widely-used IDE (i.e., the VS Code IDE). Given the large user community of VS Code, there exists
great potential for real-world impacts of this work, as well as opportunities for user studies with larger
scopes in the future work.

Thirdly, compared with VS Code’s official real-time collaboration plugin (Live Share), this work
establishes a significant difference, with several major advantages as follows:

1. Live Share supports programmers to collaborate in the host-participator pattern only, with several
problems and limitations (as presented in Section 2.3), whereas CoVSCode supports unconstrained
and flexible real-time collaboration patterns—programmers may work in the host-participator
pattern (e.g., in pair programming sessions), and they may also work with precisely equal
roles (i.e., everyone is the host) for meeting diverse collaboration needs (e.g., in agile software
development processes, in collaborative learning, and in collaborative troubleshooting). For any
software project maintained in the CoVSCode environment, each collaborating programmer
(with permission on the project) can flexibly work on the project at any preferred time. Whenever
a programmer starts to work in a day, the latest source code copy can be fetched, regardless of
other collaborators’ statuses.

2. With Live Share, only the host has the complete source code, and a source code file will be
transmitted from the host to a participator only when the participator opens that file, the design
of which affects the user experience (i.e., whenever the participator opens a file, it takes a while to
show). Since every site has the complete source code with CoVSCode, whenever a programmer
opens a file, it is immediately displayed and ready for editing, the same exact experience as in
traditional single-user programming.

3. With Live Share, the host must be online at all times, and whenever the host loses the network
connection for any reason, the whole session will be terminated, with all ongoing works at the
participators’ sites lost. With CoVSCode, every site has the complete source code, and each editing
operation is saved at the server before further propagation. Therefore, there is no single point of
failure in the session—whenever a client temporarily loses its connection with the server, no other
collaborator is affected.

4. With Live Share, a participator cannot use IDE features that rely on cross-file code analysis (such as
the “go to definition” feature) since they are restricted by the incomplete and memory-residing
source code files, and no independent compilation, testing or debugging can be conducted.
In contrast, with CoVSCode, each programmer has the complete source code copy on the local
disk (which is exactly the same as in single-user programming), and thus enjoys all existing IDE
functionalities and features such as language support, compilation and debugging.

5. The Live Share environment relies on Internet-based services hosted by Microsoft, which may
not be suitable for teams with high security concerns. In contrast, the CoVSCode server can be
simply hosted in a private cloud or inside an organization without Internet access, which is more
suitable for meeting security requirements.

8. Conclusions

Software development requires effective collaboration among programmers with diverse skills
and experience. In contrast to the conventional non-real-time collaborative programming which is
supported by version control systems, real-time collaborative programming is an emerging approach
that enables a team of programmers to view and edit shared source code documents at the same
time. During a real-time collaboration session, each programmer’s changes on the source code are
instantly visible and integrated at other collaborating sites. Because of its wide range of application
scenarios and benefits, this emerging technique has attracted increasing interests from both academia
and industry. Lightweight integrated development environments (lightweight IDEs), such as Visual
Studio Code and Sublime Text, have rapidly grown in popularity in the recent years due to their
excellent customizability and extensibility. However, there are serious problems and limitations with

Appl. Sci. 2019, 9, 4642 23 of 25

existing real-time collaboration support for lightweight IDEs. For example, the two official real-time
collaboration plugins (i.e., Visual Studio Live Share and Teletype for Atom) are the most sophisticated
so far, but they only support the host-participator collaboration pattern with several limitations, and
cannot meet diverse collaboration needs.

Motivated by the above observations, we have proposed, designed and implemented a novel
real-time collaborative programming environment named CoVSCode that supports unconstrained and
flexible real-time collaboration based on Visual Studio Code, one of the most popular and widely-used
lightweight IDEs. We proposed three design objectives for the proposed environment, and then
designed the overall workflow and system functions from collaborating programmers’ perspectives.
We also discussed major technical issues and solutions involved in system building and prototype
implementation. Based on the proposed approaches and devised techniques, we implemented the
CoVSCode prototype, and conducted a set of experimental evaluations that demonstrated the technical
feasibility and satisfactory performance of the system in several aspects. In addition to the concrete
CoVSCode prototype, all approaches, techniques and solutions contributed in this study are generic,
which can also be re-applied to building real-time collaborative programming environments for other
lightweight IDEs.

We are continuously working in the research domain of real-time collaborative programming
environments, and several potential issues have been identified for future work. Firstly, we plan to
propose and contribute more innovative features for assisting programmers in conflict prevention
and collaboration awareness during real-time collaboration sessions. Secondly, we plan to design and
implement a real-time collaborative programming environment for another lightweight IDE (such as
Sublime Text or Atom) which will further test the generality of the approaches and techniques derived in
this study. Thirdly, the CoVSCode prototype will be continuously developed and improved, with more
in-depth real-world user evaluations.

Author Contributions: Conceptualization, H.F, B.D. and Y.S.; methodology, H.F. and Y.S,; software, K.L. and X.L.;
validation, K.L., T.S. and W.Z.; data curation, K.L., T.S. and W.Z.; writing—original draft preparation, H.F. and
B.D.; writing—review and editing, H.F.,, B.D. and Y.S.; visualization, H.F,, B.D. and K.L.; funding acquisition, H.F.
and Y.S.

Funding: This research was funded by the National Natural Science Foundation of China (No. 61702374,
No. 61772371, and No. 61672128), the Shanghai Sailing Program (No. 17YF1420500), the National Key Research
and Development Program of China (No. 2016YFB1000805, No. 2018 YFB0505000, and No. 2018YFC0830406),
the National Critical Science and Technology Infrastructure Program (National Seafloor Scientific Observatory,
Tongji University), and the Fundamental Research Funds for the Central Universities. The APC was funded by
the National Natural Science Foundation of China and the Shanghai Sailing Program.

Acknowledgments: The authors wish to thank Dongyi He, Zheng Zhao, and Yifei Bai from the School of Software
Engineering, Tongji University, for their effort and support in prototype implementation.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Fan, H,; Sun, C.; Shen, H. ATCoPE: Any-time collaborative programming environment for seamless
integration of real-time and non-real-time teamwork in software development. In Proceedings of the
17th ACM International Conference on Supporting Group Work—Group’12, Sanibel Island, FL, USA,
27-31 October 2012; pp. 107-116.

2. Git. Available online: https://git-scm.com (accessed on 28 October 2019).

3. Fan, H.; Sun, C. Achieving integrated consistency maintenance and awareness in real-time collaborative
programming environments: The CoEclipse approach. In Proceedings of the 2012 IEEE 16th International
Conference on Computer Supported Cooperative Work in Design (CSCWD), Wuhan, China, 23-25 May 2012;
pp- 94-101.

https://git-scm.com

Appl. Sci. 2019, 9, 4642 24 of 25

10.

11.

12.

13.

14.

15.

16.
17.
18.
19.

20.

21.

22.

23.

24.

25.

Goldman, M.; Little, G.; Miller, R.C. Collabode: Collaborative coding in the browser. In Proceedings of
the 4th International Workshop on Cooperative and Human Aspects of Software Engineering—CHASE'11,
Waikiki, HI, USA, 21 May 2011; pp. 65-68.

Goldman, M; Little, G.; Miller, R.C. Real-time collaborative coding in a web IDE. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software and Technology—UIST’11, Santa Barbara, CA, USA,
16-19 October 2011; pp. 155-164.

Lautamaéki, J.; Nieminen, A.; Koskinen, J.; Aho, T.; Mikkonen, T.; Englund, M. CoRED: Browser-based
Collaborative Real-time Editor for Java web applications. In Proceedings of the ACM 2012 Conference on
Computer Supported Cooperative Work—CSCW’12, Seattle, WA, USA, 11-15 February 2012; pp. 1307-1316.
Feldman, M.S. CodeSync: A Collaborative Coding Environment for Novice Web Developers; Wellesley College:
Wellesley, MA, USA, 2014.

Guo, PJ.; White, J.; Zanelatto, R. Codechella: Multi-user program visualizations for real-time tutoring and
collaborative learning. In Proceedings of the 2015 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), Atlanta, GA, USA, 18-22 October 2015; pp. 79-87.

Kurniawan, A.; Kurniawan, A.; Soesanto, C.; Wijaya,].E.C. CodeR: Real-time Code Editor Application for
Collaborative Programming. Procedia Comput. Sci. 2015, 59, 510-519. [CrossRef]

Rantala, M.R.J. Real-Time Collaborative Coding-Technical and Group Work Challenges. Master’s Thesis,
Tampere University, Tampere, Finland, 2015.

Chen, Y.; Lee, SW.; Xie, Y.; Yang, Y.; Lasecki, W.S.; Oney, S. Codeon: On-Demand Software Development
Assistance. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems—CHI'17,
Denver, CO, USA, 6-11 May 2017; pp. 6220-6231.

Deng, X. Group Collaboration with App Inventor. Master’s Thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA, 2017.

Fan, H.; Gao, J.; Zhu, H.; Liu, Q.; Shi, Y,; Sun, C. Balancing Conflict Prevention and Concurrent Work
in Real-Time Collaborative Programming. In Proceedings of the 12th Chinese Conference on Computer
Supported Cooperative Work and Social Computing—ChineseCSCW’17, Chongging, China, 22-23 September
2017; pp. 217-220.

Warner, J.; Guo, PJ. CodePilot: Scaffolding End-to-End Collaborative Software Development for Novice
Programmers. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems-CHI'17,
Denver, CO, USA, 6-11 May 2017; pp. 1136-1141.

Zhang,]J. An Investigation of Technology Design Features for Supporting Real-Time Collaborative
Programming in an Educational Environment. Master’s Thesis, Pennsylvania State University, State College,
PA, USA, 2018.

Sublime Text. Available online: https://www.sublimetext.com (accessed on 28 October 2019).

Atom. Available online: https://atom.io (accessed on 28 October 2019).

Visual Studio Code. Available online: https://code.visualstudio.com (accessed on 28 October 2019).

Stack Overflow Developer Survey Results 2019. Available online: https://insights.stackoverflow.com/survey/
2019 (accessed on 22 August 2019).

Sun, C; Ellis, C. Operational transformation in real-time group editors: Issues, algorithms, and achievements.
In Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work—CSCW’98, Seattle,
WA, USA, 14-18 November 1998; pp. 59-68.

Sun, C;; Jia, X.; Zhang, Y.; Yang, Y.; Chen, D. Achieving convergence, causality preservation, and intention
preservation in real-time cooperative editing systems. ACM Trans. Comput. Hum. Interact. 1998, 5, 63—-108.
[CrossRef]

Sun, C.; Xia, S.; Sun, D.; Chen, D.; Shen, H.; Cai, W. Transparent adaptation of single-user applications for
multi-user real-time collaboration. ACM Trans. Comput. Hum. Interact. 2006, 13, 531-582. [CrossRef]

Sun, D.; Sun, C. Context-Based Operational Transformation in Distributed Collaborative Editing Systems.
IEEE Trans. Parallel Distrib. Syst. 2009, 20, 1454-1470. [CrossRef]

Xu, Y.; Sun, C.; Li, M. Achieving Convergence in Operational Transformation: Conditions, Mechanisms and
Systems. In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work Social
Computing—CSCW’14, Baltimore, MD, USA, 15-19 February 2014; pp. 505-518.

Sun, C. OT FAQ: Operational Transformation Frequently Asked Questions and Answers. Available online:
https://www.ntu.edu.sg/home/czsun/projects/otfag/ (accessed on 22 August 2019).

http://dx.doi.org/10.1016/j.procs.2015.07.531
https://www.sublimetext.com
https://atom.io
https://code.visualstudio.com
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
http://dx.doi.org/10.1145/274444.274447
http://dx.doi.org/10.1145/1188816.1188821
http://dx.doi.org/10.1109/TPDS.2008.240
https://www.ntu.edu.sg/home/czsun/projects/otfaq/

Appl. Sci. 2019, 9, 4642 25 of 25

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.
36.

37.

38.

39.

40.

41.

Sun, C. Reflections on cOllaborative Editing Research: From Academic Curiosity to Real-World Application.
In Proceedings of the 2017 IEEE 21st International Conference on Computer Supported Cooperative Work in
Design (CSCWD), Wellington, New Zealand, 26-28 April 2017; pp. 10-17.

Xia, S.; Sun, D.; Sun, C.; Chen, D.; Shen, H. Leveraging Single-User Applications for Multi-User Collaboration:
The Coword Approach. In Proceedings of the 2004 ACM Conference on Computer Supported Cooperative
Work—CSCW’04, Chicago, IL, USA, 6-10 November 2004; pp. 162-171.

Shen, H.; Sun, C.; Zhou, S. Leveraging Single-user OpenOffice Writer for Collaboration by Transparent
Adaptation. In Proceedings of the Eighth ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007), Qingdao, China, 30 July-1
August 2007; pp. 15-20.

Agustina, A.; Liu, F; Xia, S.; Shen, H.; Sun, C. CoMaya: Incorporating Advanced Collaboration Capabilities
Into 3d Digital Media Design Tools. In Proceedings of the ACM 2008 Conference on Computer Supported
Cooperative Work—CSCW’08, San Diego, CA, USA, 8-12 November 2008; pp. 5-8.

Gao, L.,; Lu, T. Achieving Transparent and Real-time Collaboration in Co-AutoCAD Application. JUCS-].
Univers. Comput. Sci. 2011, 17, 1887-1912.

Cho, B.; Ng, A.; Sun, C. CoVim: Incorporating Real-Time Collaboration Capabilities Into Comprehensive Text
Editors. In Proceedings of the 2017 IEEE 21st International Conference on Computer Supported Cooperative
Work in Design (CSCWD), Wellington, New Zealand, 26-28 April 2017; pp. 192-197.

Gao, L.; Gao, D.; Xiong, N.; Lee, C. CoWebDraw: A real-time collaborative graphical editing system
supporting multi-clients based on HTML5. Multimed Tools Appl. 2018, 77, 5067-5082. [CrossRef]

Codox Wave. Available online: https://www.codox.io (accessed on 28 October 2019).

Visual Studio Live Share. Available online: https://marketplace.visualstudio.com/items?itemName=MS-
vsliveshare.vsliveshare (accessed on 28 October 2019).

Teletype for Atom. Available online: https://teletype.atom.io (accessed on 28 October 2019).

Visual Studio Code: Programming Languages. Available online: https://code.visualstudio.com/docs/
languages/overview (accessed on 28 October 2019).

Visual Studio Code Extension API. Available online: https://code.visualstudio.com/api (accessed on 18 August
2019).

VS Code APIL Available online: https://code.visualstudio.com/api/references/vscode-api (accessed on
28 October 2019).

Agustina, A.; Sun, C.; Xu, D. Operational Transformation for Dependency Conflict Resolution in Real-Time
Collaborative 3D Design Systems. In Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work—CSCW’12, Seattle, WA, USA, 11-15 February 2012; pp. 1401-1410.

Sun, C.; Wen, H.; Fan, H. Operational Transformation for Orthogonal Conflict Resolution in Real-Time
Collaborative 2d Editing Systems. In Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work—CSCW’12, Seattle, WA, USA, 11-15 February 2012; pp. 1391-1400.

Ng, A,; Sun, C. Operational Transformation for Real-time Synchronization of Shared Workspace in Cloud
Storage. In Proceedings of the 19th International Conference on Supporting Group Work-GROUP'16,
Sanibel Island, FL, USA, 13-16 November 2016; pp. 61-70.

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11042-017-5242-4
https://www.codox.io
https://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.vsliveshare
https://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.vsliveshare
https://teletype.atom.io
https://code.visualstudio.com/docs/languages/overview
https://code.visualstudio.com/docs/languages/overview
https://code.visualstudio.com/api
https://code.visualstudio.com/api/references/vscode-api
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Real-Time Collaborative Editing
	Building Real-Time Collaborative Applications by Transparent Adaptation
	Problems and Limitations of Existing Real-Time Collaboration Support for Lightweight IDEs

	Design Objectives and Rationales
	Design Objective A: Preserving Full Compatibility with the Existing Lightweight IDE
	Design Objective B: Supporting Real-Time Collaborative Programming with Intuitive Awareness
	Design Objective C: Achieving Unconstrained and Flexible Real-Time Collaboration for Programmers with Equal Roles

	System Architecture, Workflow, and Functional Design
	System Architecture
	Workflow and Functional Design
	Preparation of Real-Time Collaboration: User Accounts, Teams, and Projects
	Initializing a Real-Time Collaboration Session
	Joining a Real-Time Collaboration Session
	Working in a Real-Time Collaboration Session
	Leaving and Terminating a Real-Time Collaboration Session

	Major Technical Issues and Solutions
	Utilizing Programming Interfaces (APIs) of the Underlying IDE
	Client System Architecture and Major Components
	Consistency Maintenance of Replicated Source Code Copies
	Consistency Maintenance in File-Level Sessions
	Consistency Maintenance in Project-Level Sessions

	Smooth Transition in Real-Time Collaboration Sessions

	Prototype Implementation and Evaluations
	Major User Interfaces of CoVSCode Prototype System
	Login and Initialization: Preparation of Real-Time Collaboration
	Real-Time Collaborative Programming
	Collaboration Awareness and Notification

	Preliminary User Evaluations
	Experimental Evaluations
	Performance of Local and Remote Editing Operation Processing
	Performance of Project Creation and Session Joining
	CPU Utilization and Memory Usage

	Discussion and Comparisons
	Conclusions
	References

