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Abstract: As demonstrated in hybrid connectionist temporal classification (CTC)/Attention
architecture, joint training with a CTC objective is very effective to solve the misalignment problem
existing in the attention-based end-to-end automatic speech recognition (ASR) framework. However,
the CTC output relies only on the current input, which leads to the hard alignment issue. To address
this problem, this paper proposes the time-restricted attention CTC/Attention architecture, which
integrates an attention mechanism with the CTC branch. “Time-restricted” means that the attention
mechanism is conducted on a limited window of frames to the left and right. In this study,
we first explore time-restricted location-aware attention CTC/Attention, establishing the proper
time-restricted attention window size. Inspired by the success of self-attention in machine translation,
we further introduce the time-restricted self-attention CTC/Attention that can better model the
long-range dependencies among the frames. Experiments with wall street journal (WS]), augmented
multiparty interaction (AMI), and switchboard (SWBD) tasks demonstrate the effectiveness of
the proposed time-restricted self-attention CTC/Attention. Finally, to explore the robustness of
this method to noise and reverberation, we join a train neural beamformer frontend with the
time-restricted attention CTC/Attention ASR backend in the CHIME-4 dataset. The reduction
of word error rate (WER) and the increase of perceptual evaluation of speech quality (PESQ) approve
the effectiveness of this framework.

Keywords: automatic speech recognition; end-to-end; CTC; self-attention; hybrid CTC/attention

1. Introduction

Automatic speech recognition is an essential technology for realizing natural human-machine
interfaces. A typical ASR system is factorized into several modules including acoustic, lexicon, and
language models based on a probabilistic noisy channel model. However, the current algorithm
leans heavily on the scaffolding of complicated legacy architectures that grew up around traditional
techniques. In the last few years, an emerging trend in ASR is the study of end-to-end (E2E)
systems [1-8]. An E2E ASR system directly transduces an input sequence of acoustic features x to an
output sequence of probabilities of tokens (phonemes, characters, words, etc.) y. Three widely used
contemporary E2E approaches are: (a) CTC [9,10], (b) Attention-based Encoder—Decoder (Attention
ED) [11,12]. (c) Recurrent neural network (RNN) Transducer (RNN-T) [13,14].

Appl. Sci. 2019, 9, 4639; d0i:10.3390/app9214639 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-3055-6600
http://www.mdpi.com/2076-3417/9/21/4639?type=check_update&version=1
http://dx.doi.org/10.3390/app9214639
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 4639 20f 14

Among the three aforementioned E2E methods, CTC enjoys its training simplicity and is one of
the most popular methods. However, it has two modeling issues. First, CTC relies only on the hidden
feature vector at the current time to make predictions, causing the hard alignment problem. Second,
CTC imposes the conditional independence constraint that output predictions are independent, which
is not true for ASR [15]. In order to remove the conditional independence assumption in the CTC
model, RNN-T introduces a prediction network to learn context information, which functions as a
language model. A joint network is subsequently used to combine the acoustic representation and the
context representation to compute the posterior probability.

By contrast, the Attention ED does not require any conditional independence assumption.
In Attention ED, the decoder network uses an attention mechanism to find an alignment between
each element of the output sequence and the hidden states generated by the encoder network. At each
output position, the decoder network computes a matching score between its hidden state and the states
of the encoder network at each input time, to form a temporal alignment distribution, which is then used
to extract an average of the corresponding encoder states. The Attention ED simplifies the ASR system
and removes the conditional independence presumption. However, two issues exist in the system:
first, the length variation of the input and output sequences in ASR makes it more difficult to track the
alignment. Second, the basic temporal attention mechanism is too flexible in the scene in which it allows
extremely non-sequential alignments. In speech recognition, the feature inputs and corresponding letter
outputs generally proceed in the same order with only small within-word deviations.

To address the alignment problems of attention-based mechanisms in Attention ED, the hybrid
CTC/ Attention E2E architecture is proposed in [16,17]. During training, a CTC objective is attached to
the attention-based encoder network as a regularization. The constrained CTC alignments provide
rigorous constraints to guide the encoder—decoder training. This greatly reduces the number of
irregularly aligned utterances without any heuristic search techniques. When employing decoding,
both attention-based scores and CTC scores are combined in a rescoring/one-pass beam search
algorithm to eliminate the irregular alignments. Although the hybrid CTC/Attention method has
demonstrated the effectiveness with English, spontaneous Japanese, and Mandarin Chinese ASR tasks,
it still has some disparities with conventional systems. As mentioned above, the CTC branch is very
helpful to solve the misalignment issues existing in the ordinary Attention ED ASR. However, the
hard alignment issue of CTC still exists. This motivates us to strengthen the modeling ability of CTC
to boost the hybrid CTC/ Attention system.

To solve the CTC hard alignment problem, we first investigate the combination of location-aware
attention and CTC, establishing the proper restricted attention window size. Inspired by the success of
a transformer on neural machine translation (NMT) tasks [18], we further introduce the time-restricted
self-attention [19] CTC/Attention that can better model the long-range dependencies among the
frames. Experiments with four datasets all verify the effectiveness of this method.

This paper is organized as follows. Section 2 introduces CTC, Attention-based Encoder—Decoder,
and the hybrid CTC/Attention Encoder-Decoder models. Section 3 details the proposed methods
including the time-restricted location-aware attention CTC/ Attention and the time-restricted self-attention
CTC/ Attention. Section 4 presents the experimental setup, the experiments are conducted in WSJ [20],
AMI [21], and SWBD [22] datasets firstly. Moreover, the algorithm is verified on the multichannel
end-to-end distant speech recognition task using the CHIME-4 [23] dataset. Section 5 concludes the paper.

2. End-to-End Speech Recognition

2.1. Connectionist Temporal Classification (CTC)

A CTC network uses a recurrent neural network (RNN) and CTC error criterion to directly
optimize the prediction of a transcription sequence. To deal with the issue that output length is shorter
than input speech frames, CTC adds a blank symbol as an additional label to the label set and allows



Appl. Sci. 2019, 9, 4639 30f14

repetition of labels or blank across frames. The CTC model predicts the conditional probability of the
whole label sequence as:
Lere = —Inp(ylx) = —In =} p(wlx), @
meB~1(y)
With the conditional independence assumption, p(7t|x) can be decomposed into a product of
posteriors of each frame. Thus, Equation (1) can be written as:

T
Lere = —In Y. [ 1r(mlx). 2)
1

n:neL/,B(n'l:T):y t=

where y denotes the output label sequence. y € L and L is the label set for ASR. x = (x1,...,xT)
is the corresponding feature sequence, f is the index of frame, and T is the total number frames.
.t = (m, ..., 77) is the frame-wise CTC output symbol path from 1 to T. Each output symbol
n € L and L' = LU blank. p(m|x) is the probability of output symbol of CTC network at time ¢.
A many-to-one mapping B is defined as B : L' — L to determine the correspondence between a set of
paths and the output label sequence.

2.2. Attention-Based Encoder—Decoder

Compared with the CTC approach above, the Attention-based Encoder-Decoder model does not
make any conditional independence assumptions and directly estimates the posterior. It employs two
distinct networks: an RNN encoder network that transforms the input feature x into hidden vectors
h and an RNN decoder network that transforms h into output labels y. Using these, the posterior
probability is:

u
p(ylx) = [Ilp(]/u‘ylzu—lrcu)r 3)

where ¢, is the context vector that is a function of x at time u. U is the length of output sequence that
is allowed to differ from the input length T. The p(y4|y1:4—1, cx) is obtained as :

hy = Encoder(x), 4
ayr = Attend(sy—1, ay—1, ht), ®)
T
Cy = Z llutht, (6)
t=1
P(Yulyru—1, cu) = Decoder(yu—1,5u-1,u), )

where Encoder(-) and Decoder(-) are RNN networks. s is the hidden state of Decoder. h is the hidden
vector generated by an Encoder. a,; is an attention weight. Attend(-) computes the attention weight
ay+ using a single layer feedforward network:

eyt = Score(sy—1,ay—1,ht), ®)

exp(eut)
== )
ZtT,:l exp(e,,)

where Score(-) can either be content-based attention or location-aware attention.

Ayt

Content-based attention mechanism is represented as follows:

eut = thanh(Ksu_l + Why), (10)
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where v is a learnable vector parameter. tanh(-) is a hyperbolic tangent activation function. K and W
are learnable matrix parameters of the linear layers.

Corresponding to the content-based attention, location-aware attention encodes both content
factor s,—1 and location information a,_1. Thus, Score(-) is computed as follows:

et = vl tanh(Ks,_1 + Q(F % a,_1) + Why). (11)

where attention parameters W, v have the same meaning as above. The operation * denotes
convolution. Meanwhile, F and Q are the convolution and linear layer parameters, respectively.

2.3. Hybrid CTC/Attention Encoder—Decoder

To address the irregular alignments problem in attention mechanism, the authors in [17] propose
the hybrid CTC/ Attention architecture. Unlike the attention encoder—-decoder model, it utilizes a
CTC objective function as an auxiliary task to train the encoder network within a multitask learning
(MTL) framework. During training, the forward-backward algorithm of CTC can enforce monotonic
alignment between speech and label sequences. The objective to be maximized is a logarithmic linear
combination of the CTC and attention objectives:

Lyt = Mogpetc(y)x) + Alogpar (y|x) (12)
with a tunable parameter A : 0 < A <1.

3. Time-Restricted Attention CTC/Attention Encoder-Decoder

As mentioned above, the CTC branch in hybrid CTC/Attention is effective to solve the irregular
alignments problem. Inspired by this, the modeling ability of CTC is strengthened to boost the hybrid
CTC/ Attention system. In the theory of CTC, the conditional independence assumption is adopted to
decompose the posterior probability of the frame sequences. Since CTC relies on the hidden feature
vector at the current time to make predictions, it does not directly attend to feature vectors of the
neighboring frames. This is the hard alignment problem that makes CTC’s output independent
assumption worse.

In this section, we propose the time-restricted attention CTC/Attention Encoder-Decoder shown
in Figure 1. An additional attention layer is placed before the final projection layer in the CTC branch.
The attention layer generates new hidden features that carry attention weighted context information.
Moreover, inspired by the temporally selective mechanism in speech perception, we employ a
time-restricted window in the attention layer. Finally, two representative attention CTC mechanismes,
location-aware attention CTC and self-attention CTC, are investigated. In this study, the proposed
attention CTC model is different from the existed CTC or attention modeling approaches since we
use attention mechanism to improve the hidden layer representations with more context information
without changing the CTC objective function and the training process. Our primary motivation
is to address the hard alignment problem of CTC by modeling attention directly within the CTC
branch in the hybrid CTC/ Attention architecture. The location-aware attention CTC/ Attention (LA
CTC/ Attention) is introduced in Section 3.1 firstly. Then, we improve our modeling ability further by
proposing self-attention CTC/ Attention (SA CTC/ Attention) in Section 3.2.
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Figure 1. The time-restricted attention CTC/Attention architecture.

3.1. LA CTC/Attention

In the hybrid CTC/ Attention architecture, the CTC objective function is utilized as an auxiliary
task with an Attention ED cost function in a multitask learning framework. Denoting h as the output
sequence of the encoder network, a projection layer employs it as input and transforms it to a particular
dim representing the number of CTC output labels. Then, the projected output is optimized with the
CTC criterion discussed in Section 2.1:

ph = W,0ih+b, (13)
Lere = —Inp(ylph) = —In ) p(m|ph), (14)
meB~1(y)

where Wp,,; and b are the weight matrix and bias of the CTC projection layer. y denotes the output
label sequence. ph represents the output of the CTC projection layer. The many-to-one mapping B is
defined in Section 2.1.

In order to address the conditional independence assumption in CTC, an attention layer is placed
before the CTC projection layer. Then, the attention layer output that carries context information is
served as the input of CTC projection layer at the current time u:

ayr = Attend(phy—1, ay—1,ht), (15)
T

Cy = Z aythy, (16)
t=1

Phu = Wprojcu + b, 17)

where ph,, is the output of CTC projection layer at time u. a,; is the attention weight. c, is the weighted
hidden features. Attend(-) computes the attention weight a,+ using a single layer feedforward network:

eyt = vl tanh(Kphy_1 + Q(F * ay_1) + Why), (18)
exp(eut)
ayt = —————"——, (19)
! ZtT,:l exp(eut,)

where v is a learnable vector parameter. tanh(-) is a hyperbolic tangent activation function. K and W
are learnable matrix parameters of the linear layers. The operation * denotes convolution. Meanwhile,
F and Q are the convolution and linear layer parameters, respectively.
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In practice, our attention model considers a small subsequence of h rather than the entire sequence.
This subsequence, (hy—=, - -, hy, - - -, hy4), is referred to as the attentionwindow. It is centered around
the current time u. Let T represent the length of the attentionwindow on either side of u. Thus, the
resulting vector ¢, in Equation (16) is replaced by:

u+t

Cy = Z ﬂutht- (20)

t=u—t
3.2. SA CTC/Attention

In this section, we investigate another attention-based paradigm known as self-attention.
In self-attention, the weights are computed from the hidden features only. It does not use any past
output predictions, which is more parallelizable than location-aware attention.

First, the hidden features are converted into input embeddings using the embedding matrix
Wembd as:

bt = Wembdht/t =Uu—-T1,-- S UFT. (21)

Second, use linear projections of the embedding vector b; to compute three kinds of vectors, keys,
values and query, in the self-attention block:

q: = Qb t = u,
kt = Kbt,t =Uu—-T,:- -, U+7T, (22)
v = Vb, t = u—71,- -, Uu+T,

where Q, K, V are the query, key and value matrices, respectively.
Third, the attention weight a, and attention result c, are derived by:

Cut = qz;kt,
e
Aup = _explew) , (23)
ZtT,:l exp(eut/)
U+t
Cy = Z autht.
t=u—71

Finally, the weighted hidden feature ¢, is projected by the CTC projection layer as described in
Equation (17). Then, the projected information is optimized by Equation (14).

Asnoted above, a self-attention layer connects all positions with a constant number of sequentially
executed operations, whereas the location-aware attention requires O(n) sequential operations.
Learning long-range dependencies is a key challenge in many sequence transduction tasks. One key
factor affecting the ability to learn such dependencies is the length of the paths forward and backward
signals have to traverse in the network. The shorter these paths between any combination of positions
in the input and output sequences, the easier it is to learn long-range dependencies. Therefore,
self-attention can better model the long-range dependencies than the location-aware attention.

4. Experiments

4.1. Experimental Setup

We demonstrate the effectiveness of proposed hybrid attention CTC/ Attention framework firstly
in three different ASR datasets, WSJ [20], AMI [21], and SWBD [22]. All experiments are implemented
by ESPnet [17] with the default configurations. In particular, for AMI, ESPnet only provides the
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individual headset microphone (IHM) data training scripts. To ensure fairness, we just exhibit the
AMI-IHM results. Moreover, for SWBD, ESPnet only shows the decoding results without CTC and
language model. However, we decode SWBD with both CTC constraint and recurrent neural network
language model (RNNLM). In addition, we also experiment decoding without language model for all
the above datasets. The detail experimental configuration is exhibited in Table 1.

Since the above-mentioned experimental datasets mainly focus on ASR in clean environments,
we intend to explore whether the proposed method is robust to noise and reverberation. In particular,
CHIME-4 [23], an ASR task for public noisy environments, consists of speech recorded using a tablet
device with 6-channel microphones in four environments: cafe (CAF), street junction (STR), public
transportation (BUS), and pedestrian area (PED). Therefore, we conduct the multichannel distant
ASR experiments in CHIME-4. In addition, et05simu and dt05simu are the simulated evaluate and
development datasets. Meanwhile, etO5real and dt05real represent the real recorded evaluate and
development datasets, respectively.

In this paper, we follow the unified architecture proposed in [24], which jointly optimizes
the multichannel enhancement and the ASR components. The experiment details are exhibited
in Section 4.3. “blstmp” means that encoder is the projected bidirectional long short-term memory
neural network. “Vggblstmp” means that an encoder is composed of vaccination guidelines group
(VGQG) [25] layer and blstmp layer.

Table 1. Experimental configuration.

Model WSJ AMI SWBD
Encoder type Vggblstmp blstmp blstmp
Encoder layers 6 8 6
Subsampling 4 4 4
Attention Location-aware Location-aware Location-aware
CTCWeight train 0.5 0.5 0.5
CTCWeight decode 0.3 0.3 0.3
RNNLM-unit Word Word Word

4.2. WSJ, AMI, and SWBD

4.2.1. Baseline Results

The baseline results of the above three sets are listed in Table 2. It is worth noting that all the
character error rate (CER) and WER results are derived with the official scripts in ESPnet. Anyone can
easily repeat the baseline results by following the ESPnet [17] scripts. However, one of the issues of
ESPnet results is that their performances do not reach those of the state-of-the-art hybrid HMM/DNN
systems. According to the explanation of ESPnet, applying this technique to these English datasets will
encounter the issue of long sequence lengths, which requires a large computational cost and makes
it difficult to train a decoder network. Furthermore, end-to-end speech recognition usually requires
more data than the traditional model to achieve the best performance.

For a fair comparison, we will try our best to list the comparable systems referred to in the
literature. Thus, for WS]J, consistent with the discussion in [17], the comparable end-to-end method
is described in [2]. This method utilizes the CTC as the training criterion and decodes based on the
weighted finite-state transducers (WFSTs). It achieves 7.3% WER in the eval set, while the ESPnet
reaches 5.4% WER in this data set.

For AMI-IHM, we haven’t found clear results of end-to-end method in the references. Therefore,
we employ the result in Kaldi [26]. The best method uses the TDNN-LSTM acoustic model, lattice-free
version of the maximum mutual information criterion [27] and the per-frame dropout techniques.
Finally, it reaches 19.8% WER in dev set and 19.2% WER in eval set.
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For SWBD, the state-of-the-art ASR system is proposed in [28], which utilizes a blstmp acoustic
model, spatial smoothing, and speaker adaptive modeling techniques. It achieves 12.0% WER in the
eval set, training with 300h SWBD data. In the meantime, paying attention to the end-to-end methods,
the best system [29] acquires 15.5% WER in the eval set with the Attention ED framework. When
applying spectrogram augmentation methods, it reaches 10.6% WER, surpassing the performance of
hybrid HMM/DNN systems.

For CHIME-4, a traditional HMM /DNN method [30] reaches 5.42% WER in etO5real and 3.9%
WER in et05simu. However, in consideration of the end-to-end method, the authors in [31] acquire
22.7% CER in etO5real and 22.5% CER in et05simu. Although the ESPnet results fall behind the
HMM/DNN system, it reaches comparable results to the other end-to-end methods.

In this paper, although the performances do not reach those of the start-of-the-art, we believe it
has no relation with our key improvements. We pay more attention to the relative decrease of WER
compared with the original hybrid CTC/Attention system.

4.2.2. LA CTC/Attention

Before applying location-aware attention CTC/ Attention, the attentionwindow length C should
be determined first. In this section, considering the size of three data sets, we choose the smaller sets,
WSJ and AMLI, to find the proper C. The results are listed in Table 2.

Table 2. The performances of the LA CTC/Attention for WSJ, AMI, and SWBD with different
attentionwindow lengths. Additionally, the baseline is the results of ESPnet.

WSJ LM Weight =1 LM Weight =0
CER WER CER WER
Model dev test dev test dev test dev test
Baseline 3.9 24 8.6 5.4 7.5 57 222 177
C=3 3.8 24 8.4 5.3 7.8 59 228 179
CcC=5 39 24 8.6 5.1 7.5 5.5 22 16.7
cC=7 3.9 2.6 8.6 5.6 73 54 215 16.7
CcC=9 39 2.5 8.6 5.5 7.7 6.0 22.6 18.2
AMI LM Weight =1 LM Weight =0
CER WER CER WER
Model dev test dev test dev test dev test
Baseline 223 232 351 374 234 247 39.6 422
C=3 223 236 353 381 235 251 401 431
C=5 243 23.0 392 363 242 258 415 445
c=7 261 243 416 388 254 275 437 471
C=9 249 262 393 420 276 259 472 443
SWBD LM Weight=1 LM Weight=0
CER WER CER WER
Model eval rt03 eval «rt03 eval rt03 eval rt03
Baseline 302 319 478 50.6 308 325 51.0 540
CcC=5 294 315 473 503 301 324 50.5 53.8

For WSJ, LA CTC/ Attention obtains overall the best CER and WER performances in both dev
and test sets when attentionwindow size equals 5. For AMI-IHM, the LA CTC/ Attention performs
worse than baseline results. However, focusing only on the results of LA CTC/ Attention, the best
results are achieved in the case that attentionwindow size is 3. Moreover, with attentionwindow length
increasing, the performances degrade rapidly and fall far behind the original hybrid CTC/Attention
framework. We suppose the reason is that the speech duration of AMI is too short. Revisiting the
AMI-IHM and WSJ data, we figure out that the average frames of WS] and AMI training data are 782



Appl. Sci. 2019, 9, 4639 90f 14

and 257, respectively. Moreover, the encoder network subsamples four times. Thus, the phenomenon
that proper attentionwindow size in AMI is shorter than that in WS] is reasonable.

For SWBD, since the average speech duration is 432 frames, which is twice that in AMI, we choose
5 as the SWBD attentionwindow size. Compared with the baseline, LA CTC/ Attention obtains 2.6%
and 1.3% relative CER reduction and 1.0% and 0.6% relative WER reduction for eval and rt03 with
RNNLM. When decoding without RNNLM, it also achieves 2.3% and 0.3% relative CER decrease and
1.0% and 0.4% relative WER decrease.

4.2.3. SA CTC/Attention

In this section, the SA CTC/Attention architecture is conducted on the above three datasets. Based
on the experiments and analyses in Section 4.2.2, we choose 5 as the attentionwindow size. In addition,
the self-attention key, query, and value dimensions are all set 1024. To reduce computing complexity,
we only experiment with single attention and fix the self-attention head quantity as 1. The results are
shown in Table 3.

Table 3. The performances of the SA CTC/ Attention for WSJ], AMI, and SWBD compared with the LA
CTC/ Attention and baseline architectures.

WSJ LM Weight=1 LM Weight =0
CER WER CER WER
Model dev test dev test dev test dev test
Baseline 3.9 24 86 54 7.5 57 222 177

LA CTC/ Attention 3.9 24 8.6 51 7.5 55 220 16.7
SA CTC/Attention 3.7 2.2 8.1 4.9 7.4 55 21.5 1638

AMI LM Weight =1 LM Weight =0
CER WER CER WER
Model dev test dev test dev test dev test
Baseline 223 232 351 374 234 247 396 422

LA CTC/Attention 223 236 353 381 235 251 401 431
SA CTC/Attention 21.0 221 334 358 221 23.7 377 408

SWBD LM Weight =1 LM Weight =0
CER WER CER WER
Model eval rt03 eval rt03 eval «rt03 eval rt03
Baseline 302 319 478 506 308 325 510 54.0

LA CTC/Attention 294 315 473 503 301 324 505 538
SA CTC/Attention 269 29.0 43.7 47.0 278 30.0 46.7 50.2

For WSJ, although applying locate-aware attention with CTC contributes to improving the
performance, the WER or CER remain constant in some cases. For example, in Table 3, the CER and
WER of dev set have not been improved when decoding with RNNLM. However, the WER and CER
of SA CTC/ Attention achieve a consistent decline in all cases. In particular, it obtains 5.8% and 9.3%
relative WER reduction for dev and test, when decoding with RNNLM.

For AMI-IHM, LA CTC/ Attention performs worse than the baseline as described in the previous
section. However, compared with the baseline, the SA CTC/Attention achieves more than 3%
performance improvement in all sets whether decoding with or without RNNLM. Particularly, it
achieves 4.8% and 4.3% relative WER reduction for dev and eval with RNNLM. At the same time, it
also acquires 4.8% and 3.3% relative WER reduction without RNNLM.

For SWBD, the LA CTC/ Attention already achieves overall performance improvement in all situations.
Nevertheless, the SA CTC/Attention gets further improvement than the LA CTC/Attention. While
decoding with RNNLM, the SA CTC/ Attention acquires 8.6% and 7.1% relative WER reduction compared
with the baseline. Furthermore, it achieves 8.4% and 7.0% relative WER decrease without RNNLM.
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Apart from the CER and WER improvement, self-attention is very helpful in accelerating
the convergence during training. Figure 2 shows the train and valid losses of the baseline,
LA CTC/Attention and SA CTC/Attention architectures for SWBD. It can be observed that the
SA CTC/ Attention converges most quickly and has the lowest loss curves among the three systems.

Train Loss

—4— baseline main loss

—— LA CTC/Attention main loss
—¢— SA CTCAttention main loss
—4— baseline ctc loss

200 [ —@— LA CTC/Attention ctc loss 4
—g— SA CTCIAttention ctc loss
—4— baseline attention loss

—e— LA CTC/Attention attention loss
— SA CTC/Attention attention loss

150 |

Loss

Epoch

Vaild Loss

250 . . .

—— baseline main loss
—o— LA CTC/Attention main loss
—4— SA CTC/Attention main loss
—4— baseline ctc loss

200 | —@— LA CTC/Attention ctc loss 4
—g— SA CTC/Attention ctc loss
—— baseline attention loss

—e— LA CTC/Attention attention loss
—g— SA CTClAttention attention loss

150 |

Loss

100 |

Epoch

Figure 2. The train and valid losses of the baseline, LA CTC/Attention, and SA CTC/Attention
architectures for SWBD.

4.3. CHIME-4

In this subsection, we evaluate the proposed LA CTC/Attention and SA CTC/Attention for
multichannel end-to-end speech recognition task on the CHIME-4 dataset. The multichannel ASR
algorithm allows the mask-based neural beamformer and ASR components to be jointly optimized
to improve the end-to-end ASR objective and leads to an end-to-end framework that works well in
the presence of strong background noise. The overall Multichannel Hybrid Attention CTC/ Attention
ASR framework is shown in Figure 3. A unified architecture [24] was proposed to jointly optimize
the neural beamformer and the ASR components. The neural beamformer consists of two parts: ideal
ratio mask (IRM) estimator and the Minimum Variance Distortionless Response (MVDR) beamformer.
Joint training means that the gradients derived from the ASR loss will back-propagate through all
the way from the acoustic model to the complex-valued beamforming and the mask estimation
network. Therefore, the improvement of acoustic modeling ability will strengthen the capability of
a neural beamforming network. In this paper, we reproduce the multichannel ASR architecture as
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described in ESPnet firstly. Then, we apply the time-restricted LA CTC/ Attention and time-restricted
SA CTC/ Attention separately to improve the back-end acoustic modeling ability.

C1C
e mmmmmmmmmmm e : f ,
| | Decoder with
| Neural Beamformer | Attention Attention
[ ' y'y A
I IRM Speech :
| Probability
| ! Fbank Feat —
ank Feature o
| Vs Not MVDR —Ib Extractor - Encoder
Multichannel | IRM Noise |
Signal | Probability |
| |
L e e o _

Figure 3. The multichannel time-restricted attention CTC/Attention architecture.

According to the experiments and analyses before, we set the attentionwindow, self-attention dim,

and self-attention head quantity just as the corresponding parameters in Section 4.2. The detailed

results are shown in Table 4.

Table 4.
CTC/ Attention and baseline architectures.

The performances of the SA CTC/Attention for CHIME-4 compared with the LA

CHIME-4 LM Weight =0
CER WER
Model et05simu  etO5real dt05simu  dtO5real et05simu etO5real dt05simu  dtO5real
Baseline 12.2 14.5 8.7 8.6 29.5 33.1 21.5 21.7
LA CTC/Attention 12.7 15.1 9.5 9.2 30.4 34.2 23.4 229
SA CTC/ Attention 11.9 14.0 8.8 8.5 28.4 32.2 21.7 21.7
CHIME-4 LM Weight =1
CER WER
Model et05simu  etO5real dt05simu  dtO5real et05simu etO5real dt05simu  dtO5real
Baseline 6.9 9.2 41 4.5 13.4 16.9 8.0 9.2
LA CTC/Attention 6.9 8.9 45 4.6 13.0 16.2 8.8 9.1
SA CTC/ Attention 6.2 8.3 41 4.1 11.9 15.6 8.0 8.2

Firstly, we show the decoding results without RNNLM. Compared with the baseline, LA
CTC/ Attention generally performs worse than the baseline system. However, the SA CTC/ Attention
achieves 2.5% and 3.4% relative CER reduction for et05simu and etO5real. Moreover, it also achieves
3.7% and 2.7% relative WER reduction for et05simu and etO5real. Meanwhile, the CER and WER of SA
CTC/ Attention in development datasets generally remain steady.

In order to improve the overall performances, RNNLM is employed during decoding.
With RNNLM, the LA CTC/ Attention acquires 3.0% and 4.1% relative WER reduction for et05simu and
et05real. However, it performs poorly in the simulate development dataset. For SA CTC/ Attention,
however, it acquires consistent WER and CER degradation for all evaluation and development sets.
In particular, it achieves 11.2% and 7.7% relative WER reduction for et05simu and etO5real. At the same
time, it also achieves 10.1% and 9.8% CER reduction for etO5simu and etO5real. For the development
sets, although the WER keeps constant for dt05simu, it obtains 8.9% relative CER reduction and 11.0%
relative WER decrease for dt05real.

As the neural beamformer and ASR components are jointly optimized, enhancing the acoustic
modeling ability contributes to the capability of neural beamforming network. To evaluate the
modeling ability of the neural beamforming, we compute the objective measure PESQ (Perceptual
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Evaluation of Speech Quality) of the enhanced speech. Table 5 shows the PESQ results of the three
systems. It can be observed that the SA CTC/Attention behaves almost the best in all conditions.
This indicates that, while improving the performance of ASR components, the SA CTC/ Attention is
also conducive to the optimization of the neural beamformer.

In order to further make a comparison between the LA CTC/Attention and SA CTC/ Attention,
we analyze the losses during training. Figure 4 shows that the SA CTC/ Attention framework arrives
at the lowest main loss, CTC loss, and attention loss among the three systems. These results indicate
that our proposed SA CTC/ Attention algorithm works efficiently and improves ASR performance.

Table 5. The PESQ of the SA CTC/Attention for CHIME-4 compared with the LA CTC/Attention and
baseline architectures.

CHIME-4 et05simu dt05simu
Model PED CAF STR BUS MEAN PED CAF STR BUS MEAN
Baseline 2667 2598 2681 2864 2702 2736 2504 2667 2827 2683
LA CTC/Attention 2653 2598 2682 2860 2698 2740 2518 2667 2826  2.687
SA CTC/Attention 2.667 2.603 2679 2865 2703 2743 2524 2.672 2831  2.692

Train Loss

140

Vaild Loss
T

—e— LA CTC/Attention attention loss

—g— SA CTC/Attention attention loss.

Loss

!

Epoch Epoch

Figure 4. The train and valid loss of the baseline, LA CTC/Attention and SA CTC/Attention

architectures for CHIME-4.

5. Conclusions

In order to improve the performance of hybrid CTC/Attention end-to-end ASR, this paper
proposes integrating attention mechanism with the CTC branch to address CTC’s output independent
assumption. Firstly, we explore time-restricted location-aware attention CTC/ Attention, establishing
the proper time-restricted attention window size. “Time-restricted” indicates that the attention
mechanism is conducted on a limited window of frames to the left and right. Inspired by the
success of self-attention in machine translation, we further introduce the time-restricted self-attention
CTC/Attention that can better model the long-range dependencies among the frames. For a fair
comparison, our experiments are carried out on three clean datasets, WSJ, AMI-IHM, and SWBD.
For WSJ, the SA CTC/ Attention obtains 5.8% and 9.3% relative WER reduction in dev and test with
RNNLM. For AMI-IHM, it achieves 4.8% and 4.3% relative WER decrease in dev and eval with
RNNLM. For SWBD, it reaches 8.6% and 7.1% relative WER reduction in eval and rt03 with RNNLM.
With the exception of WER and CER evaluation criteria, we also exhibit the details of the training
process and present the loss curves. The lowest loss curves of SA CTC/ Attention also verify the
effectiveness of the algorithm. To explore the robustness of this method to noise and reverberation,
we also experiment with the SA CTC/ Attention framework in CHIME-4. The results indicate that it
achieves 11.2% and 7.7% relative WER reduction in etO5simu and etO5real.
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As the recurrence based encoder—decoder architecture is very time-consuming during training
and decoding, one future research direction is to investigate utilizing the non-recursive framework.
In the meantime, incorporating the attention modeling with CTC in non-recursive framework could be
explored. Another future work is to improve the performances of the baseline system.
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