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Abstract: Heavy metals, including arsenic from abandoned mines, are easily transported with
sediment and deposited in waterbodies such as reservoirs and lakes, creating critical water quality
issues when they are released. Understanding the leaching of heavy metals is necessary for developing
efficient water quality improvement plans. This study investigated how arsenic leaches from different
soil and sediment types and responds to hydrologic conditions to identify areas susceptible to
arsenic contamination. In this study, batch- and column-leaching tests and sequential extraction
procedures were used to examine arsenic leaching processes in detail. The results showed that most
arsenic-loaded sediments accumulated in the vicinity of a reservoir inlet, and arsenic in reservoir beds
have a higher leaching potential than those from agricultural land and stream beds. Arsenic deposited
at the bottom of reservoirs had higher mobility than that in the other soils and sediments, and arsenic
leaching was closely associated with the acidity of water. In addition, arsenic leaching was found to
be responsive to seasons (wet or dry) as its mobilization is controlled by organic compounds that
vary over time. The results suggested that temporal variations in the hydrochemical composition of
reservoir water should be considered when defining a management plan for reservoir water quality.
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1. Introduction

Acid mine drainage and materials left at abandoned mines can cause significant pollution
problems [1-5]. Sediments loaded with heavy metals, which have deleterious effects on human,
animal, and plant health, can be transported by runoff to downstream waterbodies such as streams,
reservoirs, aquifers, and estuaries [6-9]. In particular, rice is known as a major source of arsenic
exposure that could lead to critical human health issues, especially in south and southeast Asian
countries [10-12]. If the sediments of a small agricultural reservoir for irrigation are contaminated with
arsenic, leached arsenic from the transported sediment could cause critical water quality issues and
food security. Therefore, for efficient management of the quality of irrigation water, understanding of
how heavy metals leach from contaminated sediments and soils is required [13].

Many studies have investigated quality assessment of many ions to impact on the irrigation
water, including sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), bicarbonate (HCO3),
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chloride (Cl), and sulfate (SO4) [14-16], as well as heavy metal leaching from various media,
including sewage sludge [6,17,18], industrial waste [19], coral ash [20-22], tropical soils [23], and mine
tailings [24,25]. However, the previous research has mainly considered the waterbodies of streams
and rivers or relatively large-scale lakes and reservoirs [22,23,26], and the leaching of arsenic from
the bottom of an irrigation reservoir has not been a focus of previous studies even though it has
significant implications for agriculture. Small agricultural reservoirs have a relatively small storage
capacity, and the water level changes frequently depending on the hydrological process with rainfall
related watershed runoff and irrigation. Hence, the sediments of the reservoir are exposed to various
environmental conditions, e.g., such as air during drought periods, and become submerged in water
when high water levels are present. As arsenic leaching processes are sensitive to the physical and
chemical conditions to which they are exposed, it is important to have a detailed understanding of how
the processes respond to various environments under these water conditions. In addition, as various
studies stressed and analyzed deposition [27] and diffusive gradient [28-31] characteristics related
to the arsenic bioavailability (heavy metals and other persistent pollutants) in water and sediments,
we considered the seasonal effects (differences of the water quality between wet season and dry season,
especially soluble organic matter) on arsenic leaching characteristics.

In this study, we examined the process by which arsenic leaches from reservoir sediments
with the goal of providing data required to develop an arsenic management plan for reservoirs and
demonstrating the implications of arsenic-contaminated sediments on the quality of water in an
agricultural reservoir. In this study, we compared the characteristics of soil and sediment samples
which were taken at a paddy field and in the beds of a downstream stream and reservoir in an
agricultural watershed. Multiple tests, including tests and sequential extractions, were conducted
in a detailed investigation of the arsenic leaching process. In addition, to understand the long-term
impacts of arsenic leaching on water quality, column-leaching tests were also applied to sediments
deposited in the reservoir bed. In the column-leaching test, water quality in the wet and dry seasons
were separately considered to understand the effects of different hydrologic conditions on arsenic
leaching and contamination in the reservoir.

2. Materials and Methods

2.1. Study Area and Soil Preparation

This study focused on a watershed in the mid-western region of South Korea, where there are
several abandoned gold mines. The watershed is mainly covered by forests (82.4%) and agricultural
land (7.9%), and water moves from an upstream area of 7.4 km? to a downstream agricultural reservoir
through two main streams (Figure 1). The streams are subject to flash floods as the upstream drainage
areas are steep.

Gold mines scattered within this watershed were closed approximately 50 years ago and two of
them were identified only recently (Figure 1). The mines had not been maintained appropriately and
their tailings disposals are suspected to be the source of arsenic contamination across the watershed.
Heavy metals become attached to soil particles and are transported with sediment to downstream
overland areas, streams, and reservoirs in runoff from storm events. Sediment and heavy metal loads
are then deposited on the reservoir bed. Under certain appropriate conditions, arsenic may leach out
of the sediment and cause water quality and health issues such as arsenic poisoning. To understand
the condition-dependent characteristics of arsenic leaching processes, soil samples were taken from
upland agricultural fields and the beds of the downstream reservoir and streams. Reservoir water
was sampled on 23 August 2017 (wet season) and 27 September 2017 (dry season) to track temporal
changes of arsenic loads. A total of 18 water samples were collected from multiple sampling points
(six points) and depths (three depths) in the reservoir.

This study used the following three different tests to investigate the arsenic leaching processes
and their responses to the external conditions in detail: the batch- and column-leaching tests and
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sequential extraction. For the batch-leaching test, the soil samples were collected from the reservoir
bed. To identify critical arsenic sources among the various soils, agricultural areas and stream beds
were also analyzed using the batch-leaching test. Soil samples for the column-leaching tests were
prepared by mixing samples taken from six locations on the reservoir bed and then air-dried and
sieved at 2 mm. In this study, the same method was applied to soils and sediments for measuring the
arsenic concentration.
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Figure 1. Study areas and sampling points for arsenic-laden sediment.

2.2. Batch-Leaching Test by Toxicity Characteristic Leaching Procedure (TCLP)

The toxicity characteristic leaching procedure (TCLP) has been used widely to analyze the
characteristics of arsenic leaching in solidified contaminated soils [32,33]. However, the TCLP requires
a pretest because different extraction solvents can be applied depending on the acidity levels (pH)
of the samples. To prepare a soil-water mixture, 96.5 mL of water was added to a 5 g soil sample
(particle sizes less than or equal to 1 mm) in a 500 mL beaker. The soil-water mixture was then stirred
in a watch glass dish for 5 min and its pH was measured. If the pH became less than 5.0, 5.7 mL of
glacial acetic acid (CH3CH,OOH) with a pH of 4.93 + 0.05 was added to the mixture, which was then
kept aside for 10 min so that any additional reactions could occur. If the pH became greater than 5.0,
3.5mL of 1 N HCI (hydrochloric acid) was added instead of the CH;CH,OOH. In this study, the pH of
all samples became less than 5.0 after the addition of the 1 N HCI. Once an extraction solvent had
been determined, soil samples of more than 100 g were mixed with extraction fluid (CH3CH,OOH)
in the ratio of 1:20, and the mixed samples were placed in an incubator shaker set to 30 + 2 rpm and
a temperature of 23 + 2 °C. The mixture was left shaking for 18 + 2 h and then filtered with glass
fiber filter papers (pore size: 0.6 to 0.8 um). Finally, the concentration of the leached heavy metals
was measured using inductively coupled plasma atomic emission spectroscopy. Each of the tests was
repeated nine times (repeated three times for each of three soil samples) in this study.

2.3. Sequential Extraction Procedure

A sequential extraction procedure was used in this study to determine the phase distribution
and mobility of arsenic in the sampled soils. Sequential extraction procedures have the advantage of
providing data on the specific forms of each metal and their behavior under various environmental
conditions [34]. In addition, the procedures can provide the data required to assess the mobility and
bioavailability of heavy metals in soils [7,35]. In this study, the sequential extraction method was used
to examine the arsenic leaching processes occurring in soils sampled at agricultural fields and in the
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beds of a downstream stream and reservoir. The overall procedures for the sequential extraction are
described in Table 1; more details are given in [36], where the steps used in this study were taken from.

Table 1. Sequential extraction procedure for the fractionation of arsenic (adapted from [36]).

Form Phase Extractant
1 Nonspecifically sorbed (NH4)SOy4
2 Specifically sorbed (NH4)H, POy
Amorphous and poorly crystalline hydrous
3 oxides of Fe and Al phase NH, oxalate buffer (pH 3.25)
4 Well-crystallized hydrous oxides of Fe and Al NH, oxalate buffer + ascorbic acid (pH 3.25)
5 Residual Residual (HNOj3, H,O,)

2.4. Column-Leaching Test

Reservoir water moves slowly and is often stratified vertically by density and temperature
gradients. Thus, a reservoir would not be quickly contaminated with heavy metals that leach
from sediment. Leached heavy metals can react with various other environmental processes
(e.g., temperature variations and redox conditions), and their concentrations and leaching rates
can increase over the years. A column-leaching test was carried out using samples of water from
different conditions (deionized water, water from the wet season, and water from the dry season) to
examine arsenic leaching from sediment that had been on the reservoir bed for a long time and the
responses of the leaching processes to hydrological changes in the reservoir.

Sediment collected from the bed of the study reservoir was completely mixed and poured into
a series of columns (diameter = 10 cm; height = 44 cm). The columns were fitted with an up-flow
system to simulate the movement of groundwater toward the reservoir bed in the hyporheic zone.
The sediment from the reservoir bed was sampled every day for 15 days. A homogenized sediment
sample was prepared by mixing 30 kg of sediment for 24 h (using a V-mixer). The column-leaching
test was performed under three conditions using the deionized water (control group), the wet season
water (wet season group), and the dry season water (dry season group), respectively. The details of the
column test are provided in Figure 2 and Table 2.

Sampling (daily)

Column effluent

Water conditions e Storage tank Mixed soil sample
1. Deionized water

2. Sampling wet season water
3. Sampling dry season water

Figure 2. Schematic diagram of the column-leaching test (adapted from [37]).

The physicochemical properties of the soil samples used in the column-leaching test are shown in
Table 3. The pH of the soil samples was slightly acidic (6.1) and the cation exchange capacity (CEC)
was less than those found in other studies [6,36,38,39]. The soil test showed that the soil is loamy sand;
its arsenic concentration was 56.34 mg/kg.
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Table 2. Details of the column-leaching test.

Category

Details

Column specifications ~ Diameter = 10 cm, height = 44 cm;, filled with mixed soil (grain size <2 mm) up to a height

and settings

of 20 cm (total height = 44 cm); flow rate = 0.91 mL/min and 2 pore volumes (PVs) daily.

Sampling

Duration of experiment = 15 days; sampling effluent rate = daily.

Soil and water usage  Soil = 2438.4 g/column; amount of water used = 0.658 L/PV x 2 PV/day x 15 days = 19.74 L.

Table 3. Physicochemical properties of soil samples used in column-leaching test.

Total Total

H Organic C(?:Oar;ilixc(}éabf‘Cg; Nitrogen Phosphorus Pﬁ:),:lll?:iis As Texture
P Matter (%) chmy/k ) (TN) (TP) (m;k ) (mg/kg)
& (mg/kg)  (mg/kg) &
6.1 2.68 6.19 1120 374.2 219 56.34 Loamy sand

The physicochemical properties of water samples taken in the wet and dry seasons and studied
using the column-leaching test are shown in Figure 3. The total phosphorus (TP) and total organic
carbon (TOC) concentrations of wet season water were lower than those of the dry season water,
but the total nitrogen (TN) of water sampled in the wet season was higher than that of the dry season.
The arsenic concentrations in the wet season were slightly higher when dry season water was tested.
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Figure 3. Physicochemical properties of reservoir water in wet and dry seasons. (a: TP, b: TN, c¢: TOC,

d: As)

In the test, the total (accumulated) amount of arsenic leached was calculated using the
following relationship:

Total amount leached (mg) = Arsenic concentration (mg/L) x 0.658 L/PV x 2 PV/day @

where L is liters and PV denotes pore volume.
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3. Results

3.1. Batch-Leaching Test Results

The arsenic concentrations of soils and sediments sampled at three different locations were
analyzed using the TCLP test (Figure 4). The highest average arsenic concentration was found
in effluent from the reservoir sediment (0.026 mg/L); the average concentrations coming from the
agricultural land soil (0.018 mg/L) and the stream sediment (0.019 mg/L) were similar to each other,
but the concentrations of the soil samples from agricultural land show considerably greater variability
(Figure 4). This means that the arsenic concentrations in each agricultural land of this study area varied,
and were not considered to be highly contaminated; however certain agricultural lands which were
readjusted using soil highly contaminated with mine tailings when the arable lands were altered show
a high level of arsenic contamination.
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Figure 4. Comparison of arsenic concentrations derived from the batch-leaching test: (a) the reservoir
sediment; (b) the agricultural land soil; (c) the stream sediment.

The contamination potential of soils and sediments is explained by the mobility of pollutants
including arsenic. Arsenate (AsO437) and arsenite (AsO33~), anionic arsenic compounds, form chelates
and precipitate in combination with multiple cationic metals. When arsenic adheres to soil and
sediment particles with metallic substances (e.g., steel and aluminum), the iron/arsenic (Fe/As) ratios
increase and the mobility of arsenate may decrease. In this study, we investigated the Fe/As ratios
of the soil and sediment samples as an indicator of their arsenic mobility. The average Fe/As ratio of
the reservoir sediment (368) was lower than those from the other soils and sediments (1819 for the
agricultural land soil and 1914 for the stream sediment), indicating that As in the reservoir sediment
was more mobile and had a higher leaching potential than that in other soil and sediment.

3.2. Sequential Extraction Procedure

The As in the reservoir sediment was predominantly associated with amorphous and poorly
crystalline Fe and Al hydrous oxides (average percentage = 38.86%), but there was a relatively low
average concentration of As found in soil from the agricultural land and the stream bed samples (19.42%
for the agricultural land and 13.41% for the stream bed; Figure 5). The main extraction percentages
of As in soil from the agricultural land and stream bed were 36.34% and 45.21%, respectively,
within well-crystallized Fe and Al hydrous oxides. There was a relatively lower percentage of As in the
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residual fraction in the reservoir sediment than in samples from the agricultural land and stream bed
sediment. This result suggests that As found in the reservoir bed sediment was more easily mobilized
than that found in the other locations.

100 |
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Figure 5. Distribution ratio of arsenic in soil as determined by continuous extraction (“F” means form
in Table 2).

3.3. Column-Leaching Test Results

The concentration of leached As of the control group increased substantially (from 0.13 to
0.56 mg/L) in the first seven days, but then stabilized (between 0.57 and 0.6 mg/L) for the remainder
of the 15-day test period (Figure 6). In the case of the wet and dry groups, the As concentrations
also increased considerably during the initial stage of the tests, as was observed in the control group.
However, unlike that group, they started decreasing during the middle of the test and reached similar
values that were much lower than the control by the end of the test (Figure 6).

Such a result could be explained by the difference between the acidity and temporal variations of
the three groups (Figures 6 and 7). As mobility and concentration tend to increase with increases in
pH [39]. As mobility is very sensitive to acidity under both oxidizing and reducing conditions [39,40].
In the column-leaching test, pH values were used as an indicator of acidity (Figure 7). The pH values
of the effluent ranged from 7.8 to 8.3 for the control group. Water samples taken in the wet and dry
seasons had similar pH values, although they were a bit lower than the control, ranging from 7.5 to 8.0.
The pH of the effluent increased gradually for all groups by the fifth day of the test. From the fifth
to the tenth day, the pH of the control group continued to increase but the acidity of the other two
groups (wet season and dry season water samples) remained in the neutral range. After the tenth day,
the acidity of the all groups decreased gradually. Overall, the acidity levels were highly correlated
to As concentration, and the test showed that the control group was relatively more alkaline than
the others.

Another important point of the result in Figures 6 and 7 was that the samples of the wet and dry
season group showed a similar temporal variation in the pH pattern, but those of As concentrations
started diverging on the fifth day (Figure 6). The result can be explained by the water quality used
in the experiments. The wet season water had higher TN concentrations, but lower TP and TOC
concentrations than the dry season water (Figure 3). Since soluble organic compounds can act as
chelators [39], the wet season water had higher arsenic leaching concentrations after the fifth day
because of the reduced chelation of arsenic occurring with this water.
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Figure 6. Temporal variations of arsenic concentration in the reservoir.
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Figure 7. Temporal variations of pH in the reservoir.

At the end of the test period, the final cumulative amounts of arsenic leached were 7.52 mg for the
control group, 5.62 mg for the wet group, and 4.58 mg for the dry group (Figure 8). The control and
dry season water showed the largest and smallest cumulative quantities of leached As, respectively.
The difference between the quantities of As leached in the wet and dry season water samples was
about 20%, suggesting that reservoir water should be more carefully investigated during a wet season.
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Figure 8. Comparison of the cumulative amount of arsenic leached from the three samples.
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4. Conclusions

In this study, we found that As attached to sediment deposited on a reservoir bed had a relatively
high leaching potential compared to that found in agricultural land and stream beds. Such a result
was attributed to the fact that the reservoir sediment had high nonspecifically and specifically sorbed
As fractions, and a corresponding low residual fraction. The As concentrations vary with the pH
and redox conditions of the ambient water. Although the water samples showed a similar temporal
variation pattern in their acidity over time in the column-leaching test, water sampled in the wet season
was found to have higher As concentrations than the other samples, and to have leached a higher
cumulative amount of the same to the ambient water due to differences in the amounts of organic
compounds the samples contained. This suggested that seasonal variations in geochemical processes
should be considered in planning for water quality management. It was also found that more As was
leached out of sediment when the concentrations of organic compounds in reservoir water are low
and when the water has a low acidity (i.e., a high alkaline pH), implying that it is necessary to closely
monitor the physicochemical state and variations of As concentrations in reservoir water to ensure
acceptable quality of this source of irrigation water.

Finally, to help farming activity and supply irrigation water safe from arsenic contamination,
the local government and irrigation water management agency need to regularly monitor water
quality changes of the reservoir and stream. For effective reservoir water quality management
practices, the local government should include a plan for the removal of As-contaminated sediment
from reservoir beds of interest and consider ways to screen As transported with sediment into
reservoirs. Another important point is that because there was a large variability in the arsenic leaching
concentrations of the samples from agricultural land, the local government and farmers need to survey
the contamination level of most agricultural lands and restore the contaminated soil immediately.
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