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Abstract: Exo-atmospheric infrared (IR) point target discrimination is an important research topic 
of space surveillance systems. It is difficult to describe the characteristic information of the shape 
and micro-motion states of the targets and to discriminate different targets effectively by the 
characteristic information. This paper has constructed the infrared signature model of spatial point 
targets and obtained the infrared radiation intensity sequences dataset of different types of targets. 
This paper aims to design an algorithm for the classification problem of infrared radiation intensity 
sequences of spatial point targets. Recurrent neural networks (RNNs) are widely used in time series 
classification tasks, but face several problems such as gradient vanishing and explosion, etc. In view 
of shortcomings of RNNs, this paper proposes an independent random recurrent neural network 
(IRRNN) model, which combines independent structure RNNs with randomly weighted RNNs. 
Without increasing the training complexity of network learning, our model solves the problem of 
gradient vanishing and explosion, improves the ability to process long sequences, and enhances the 
comprehensive classification performance of the algorithm effectively. Experiments show that the 
IRRNN algorithm performs well in classification tasks and is robust to noise. 
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1. Introduction 

Spatial targets recognition is a significant problem in precise guidance systems and space 
surveillance systems. Infrared imaging technology is widely used in spatial targets recognition 
systems. On account of the long distance between the target and the sensor, spatial targets are often 
shown as a single pixel on the infrared image which is a great challenge in recognition [1]. The grey 
level of the targets changes along with time called infrared signature, which contains numerous 
information and can be employed in discrimination systems. 

In the past few decades, a lot of analysis methods have been utilized. Resch [2] implemented 
exoatmosphere object recognition using the ratios of the object’s irradiance and the time-averaged 
irradiance values of each object in the FOV (field of view). A spatial target may have micro-motions 
due to maneuvering control or uneven force during exo-atmospheric flight, such as tumbling, 
spinning and precessing [3,4]. An analysis method based on mixed micro-Doppler time-frequency 
sequences has been put forward to extract micro-motion dynamic and inertial characteristics 
(including the spin rate, the precession rate, and the nutation angle, etc.) of free rigid targets in the 
space [5–7]. 
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As the important precondition for target classification, the IR radiation signature has been 
studied and achieved effective results. Constructing a model of the infrared signature of spatial 
targets helps us to understand the signature better [8]. Dynamic parameters in the model change with 
the movement of the target. The infrared signature is influenced by a range of factors, such as 
wavelength range, LOS (line of sight) orientation, shape, and temperature of targets [9,10]. 

In the field of machine learning, Artificial Neural Networks (ANNs) have superior feature 
learning and data representation capabilities [11,12]. RNNs is an improved structure of feed-forward 
ANNs which has time-recurrent structures and memory ability of previous information. Moreover, 
RNNs algorithm has a simple structure, high computational efficiency, and low computational and 
storage resources [13]. However, the RNNs algorithm only focuses on local information essentially, 
especially when using the error back-propagation method to train the network, which inevitably 
limits the RNNs’ grasp of the overall information of the sequence, hindering its ability to learn 
complex decision functions [13,14]. The widely used LSTM algorithm is capable of selectively 
remembering and forgetting data, and retaining hidden important data and features for a longer 
period of time. By using the “processor” in the LSTM algorithm to determine whether the information 
is important, the information of the target data waveform is forced to “memorize” and “forget” by 
learning the training method [15–17]. However, for both RNNs and LSTM, the ability to process long 
sequences is limited, which is not conducive to the characteristics of the periodicity of the time series 
data [18]. 

In the research of spatial targets classification, it is necessary to propose a more effective 
classification algorithm for the infrared radiation intensity sequence characteristics based on the 
actual situation [19]. Based on the recurrent structure of RNNs, this paper proposes an IRRNN model, 
which adopts an independent structure in the hidden layer, so the unsaturated activation function 
can be used to solve the problem of gradient vanishing and gradient explosion. At the same time, our 
model introduces the historical output information into the input layer in the form of random 
weighting, which is the direction that the data tends to be easy to classify [20]. 

The rest of the paper is organized as follows. An infrared signature model is constructed in 
Section 2 and simulation has been conducted. Discrimination of spatial point targets based on IRRNN 
is put forward in Section 3, followed by experiments and a discussion in Section 4. Conclusions are 
presented in the last section. 

2. Infrared Radiation Sequence Model  

2.1. Radiation Intensity Analysis 

The emitted radiation is the main part of external radiation on the surface of the targets in outer 
space. The emitted radiation is determined by temperature, infrared emissivity, projection area, 
observing angle, etc. [21]. If the target surface is assumed to have gray body radiation and diffuse 
reflection characteristics, according to Planck’s law, the infrared radiation intensity received by the 
detector focal plane in the band can be approximated as 

( ) ( ) ( )2

1

2
1 2 0 d .

λ

λ
λ λ π λ λ− = ⋅ ⋅ Δproj TI A A R M t  (1)

Suppose A0 is the entrance pupil area, MT(λ) is the radiation value at temperature of T, and Δt is 
integration time of observing. If all available parameters are attributed to κ, then Equation (1) can be 
further expressed as 

( ) ( )2
1 2 1 .λ λ κ− = ⋅ ⋅ ⋅projI A R u T  (2)
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It can be seen from the formula that the infrared radiation intensity is mainly determined by the 
target surface temperature T, the detection distance R (i.e., the linear distance between the detector 
and the target), and the geometric projection area of the target in the Line of Sight (LOS). 

The heat transfer method in the outer space environment is mainly heat radiation, and the 
changes of T of various targets in the middle stage are only maintained in a small range [22]. In the 
situation of long-distance detection, there is often a dense point target group, and the spatial distance 
is close. The changes of R are basically the same, so these two variables are difficult to provide 
important information for the classification of ballistic targets [23,24]. In addition, Aproj depends on 
the target nutation and geometric parameters, which affects the wave structure of the data and is an 
important parameter for target recognition research. 

2.2. Attitude Motion Model 

To calculate the geometric projection area of the ballistic target in the LOS direction, it is common 
practice to split the target surface into a number of small pieces and then accumulate the projected 
area of each small piece. Assume that the target surface is divided into N small-area slices, the normal 

vector and area of each slice are respectively in


 and ai, and the vector of LOS is losn . The key to 

calculating the projection area sequence is to transform in


 and losn  into the reference coordinate 

system and determine the rotational transformation relationship of in


 over time in the reference 
coordinate system. 

Assume that the corresponding vector of in  in the reference coordinate system (X, Y, Z) is 'in , 
the conversion relationship between the two can be described by the rotation matrix Rinit determined 
by the Euler angle (φ,θ,φ) [22]. The order of Euler angles is zxy; Rinit can be mathematically expressed 
as 

cos sin 0 1 0 0 cos 0 sin
sin cos 0 0 cos sin 0 1 0 .

0 0 1 0 sin cos sin 0 cos

φ φ ϕ ϕ
φ φ θ θ

θ θ ϕ ϕ

−     
     = ⋅ − ⋅     
     −     

initR  (3)

At time t0, the azimuth and elevation angles of the target local axis z in the reference coordinate 
system are α0 and β0 respectively, as shown in Figure 1, and Rinit can be determined by the Euler angle 
(−α0, 0, 0.5π-β0), so ' = ⋅ 

i init in R n . 
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Figure 1. Geometry of IR sensor and a target with nutation, where the IR detection coordinates are 
parallel to the reference coordinates. 

The target nutation contains two rotational motions: spinning and coning, as shown in Figure 1. 
Let the azimuth and elevation angles of the nutation axis be αn and βn, and the angular velocities of 
the coning and spinning are ωn and ωs respectively. According to the Rodriguez formula [25], the 
nutation rotation matrix R(t) of the target at the time t is 

( ) ( ) ( )= ⋅coni spinR t R t R t  (4)

where 

( ) ( )
( ) ( )

2
1 1

2
2 2

ˆ ˆsin 1 cos ,  

ˆ ˆsin 1 cos .

ω ω

ω ω

= + + −

= + + −
coni n n

spin s s

R t I e t e t

R t I e t e t
 (5)

In the Equation (5), 1 2ˆ ˆ,e e  are antisymmetric matrices, which are defined as 

1

0 0 0
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ˆ sin 0 cos cos ,
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ˆ sin 0 cos cos .

sin cos cos cos 0
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− 
 = − 
 − 

− 
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 − 
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e

 (6)

Therefore, the vector 'in


 will change to 
r
in , that is, ( ) ( ) ( )' '= ⋅ = ⋅ ⋅  r

i i coni spin in R t n R t R t n
. The 

geometric projection area of the target at this time is 

( )( )
1

max cos , ,0 ,
=

= ⋅ −  N
r

proj i los i
i

A a n n  (7)

where ( )cos ,− r
los in n  is the cosine of the angle between the vector losn  and 

r
in . 



Appl. Sci. 2019, 9, 4622 5 of 20 

2.3. Infrared Radiation Sequence Simulation 

The infrared radiation model and the attitude motion model of the spatial point target are 
analyzed, and the main factor affecting the target radiation sequence (projection area) are discussed 
in Sections 2.1 and 2.2. Based on the above model, a visual simulation experiment is performed on 
the infrared radiation sequence of the spatial point target in this section. 

Our simulation is based on the elliptical ballistic theory to calculate the flight path of a spatial 
target. Assuming that the spatial target is only affected by the gravity of the Earth, according to the 
law of universal gravitation and Newton’s second law, the differential equation of the basic motion 
of the space object is 

2′′ = − rr μ
rr

, (8)

where μ = 3.986005 × 1014 m3/s2 is the gravity constant of the Earth. 

According to theoretical mechanics, the space target flight trajectory is located in the ballistic 
plane determined by its velocity vector and the Earth’s gravitational vector. According to the law of 
conservation of momentum and the law of universal gravitation, the equation of elliptical ballistic 
motion of the target can be derived as 

1 cos
=

+
Pr
e f

, (9)

where e is the eccentricity of the elliptical trajectory, and P is the half-diameter. 

We assume that the scanning frequency of the infrared sensor is 50 Hz, the aperture of the lens 
is 0.25 m, and the detection wavebands is 8–10 μm [26]. Assume that the starting point of the free 
flight segment is (135°E, 52°N, 151 km) and the highest point of the flight path is 457.3 km from the 
ground. The unit vector of LOS is set as n’ = [0.59, 0.34, 0.73].  

The simulation uses spatial point target data of four different shape types, including cone, cone-
cylinder, ball-base cone, and curved pieces. The shape, physical property, micro-motion parameters, 
and sensor property parameters of various spatial targets are shown in Table 1 [4,13,22]. 
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Table 1. Simulation parameters for four classes of spatial targets. 

Parameters Type1 Type2 Type3 Type4 

3Dmodels 

    

Size parameters 
r = 0.3 ± 0.05 m 

h = 1.0 ± 0.25 m 

r = 0.3 ± 0.05 m 

h1 = 0.4 ± 0.15 m 

h2 = 0.6 ± 0.10 m 

r = 0.3 ± 0.05 m 

h = 1.0 ± 0.25 m 

r = 0.30 ± 0.10 m 

h = 0.5 ± 0.20 m 

φ = 0.6 ± 0.1π 

Micro-motion 
Spinning and 

coning 
Spinning and 

coning Tumbling Tumbling 

Micro-motion 
parameters 

θ = 0.2π 

ωs = 5.0π rad/s 

αc = 0.0π 

βc = 0.35π 

ωc = 1.0π rad/s 

θ = 0.2π 

ωs = 5.0π rad/s 

αc = 0.0π 

βc = 0.35π 

ωc = 1.0π rad/s 

θ = 0.3π 

αt = 0.0π 

βt = 0.3π 

ωt = 1.0π rad/s 

θ = 0.3π 

αt = 0.0π 

βt = 0.2π 

ωt = 1.0π rad/s 

Coating material 
αV/ε IR 

0.85/0.7 0.25/0.50 0.25/0.50 0.52/0.20 

Target weight (g) 200 120 85 45 

Initial 
temperature (K) 

320 320 320 680 

Radiation 
Intensity 
Sequence 

    

Considering the thermal noise, non-uniformity of the infrared sensor, etc., Gaussian additive 
white noise is used to describe the data deviation caused by these factors in the infrared radiation 
simulation to improve the authenticity of the data [22]. The gray scale sequences generated by these 
target shapes are shown in Figure 2. 
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Figure 2. Infrared radiation intensity sequence of four shapes of spatial targets. 

3. Classification of IR Radiation Intensity Sequence Based on IRRNN 

Aiming at the spatial point target shape classification problem studied in this paper, and 
according to the characteristics of the target infrared radiation intensity time series samples, this 
paper proposes an Independent Random RNN algorithm structure. The main idea is to use the 
independent neuron structure to extend the length of the RNN neural network and introduce a 
Random RNN (RRNN) algorithm to add all historical network output values before the current time, 
together with the random weight matrix, to the input part of the network. 

3.1. Structure of IndRNN 

In this section, we will introduce the structure of IndRNN. The main difference with RNNs is 
the way the hidden layer is connected. According to the calculation formula of the traditional RNNs, 
we describe the IndRNN using the following formula: 

( )1 .−= +h W x w h + BHI H
t t tf  (10)

The weight w is a vector, consisting of all diagonal elements of WHH in the Equation (8), and the 
dimension is H. Symbol  indicates the Hadamard product, which is the corresponding elements of 
the two matrices multiplied. It can be seen from Equation (8) that each neuron in the hidden layer is 
independent of other neurons in the layer. So for the jth neuron, the state of its hidden layer hj,t can 
be expressed as: 

( ), , 1 ,−= +W x +HI H
j t j t j j t jh f w h B  (11)

where WHI
j  and wj are the jth row and the jth element of the weight matrix and the weight vector, 

respectively. Each hidden layer neuron only receives the information from the input and its own state 
at a previous moment. So each hidden layer neuron in the IndRNN processes a spatial-temporal 
pattern independently. 

3.1.1. Analysis of IndRNN Structure 

This section mainly explains the gradient back propagation of IndRNN and how it solves the 
problem of gradient vanishing and explosion. For gradient back propagation of each layer, the 
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gradient of the IndRNN can be calculated independently for each neuron because there is no 
interaction between the neurons in one hidden layer [19]. 

The output of the jth neuron is calculated without ignoring the deviation, 

( ), , 1−= +W xHI
j t j t j j th f w h . Assuming that the objective function to be minimized at time t’ is Vj, when 

the gradient is propagated back to time step t, we have: 

' 1
, ' ,k 1

, , ' , , ' ,k

' 1 ' 1
' ' '
, 1 , 1

, ' , '
       ,

−
+

=

− −
−

+ +
= =

∂ ∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂

∂ ∂
= =

∂ ∂

∏

∏ ∏

t
j j j t j j

k tj t j t j t j t j

t t
j j t t

j k j j j k
k t k tj t j t

V V h V h
h h h h h

V V
f w w f

h h

 (12)

where '
, 1+j kf  is the derivative of the element activation function. It can be seen that the gradient only 

relates to exponential terms of the scalar value wj that can be easily adjusted, as well as the gradient 
of the activation function, which is usually defined over a certain range. However, the gradient of the 

RNN ( )( )' 1 '
1

'

−
+=

∂
∂ ∏ Wt T

kk t
t

V diag f h
h

, where ( )( )'
1+kdiag f h  is the Jacobian matrix of the element 

activation function. Compared with RNNs, the gradient of IndRNN depends directly on the recurrent 
weight, which only changes a small amplitude according to the learning rate. RNNs depends on the 
matrix product, which is mainly determined by the eigenvalue, and the change is very intense even 
if only each matrix element has small changes [14]. Therefore, the training of IndRNN is better than 
traditional RNNs. In order to solve the gradient explosion and vanishing problem over time, we only 

need to adjust the exponential term 
' 1

' '
, 1

−
−

+
=

∏
t

t t
j j k

k t
w f  to the appropriate range. 

In order to maintain long-term memory in the network, the current state (time step t) can still 
effectively influence the future state (time step t′) after a large time interval, so the gradient at time t’ 
should also be effectively propagated to the time step t. By assuming a minimum effective gradient ϵ, a range of recurrent weights of IndRNN neurons can be obtained to maintain long-term memory. 
Specifically, in order to maintain the memory of the t’-t time step, it can be obtained according to 
Equation (10). 

' ' 1 '
, 1

, .− −
+=

 
 ∈ +∞
 
 ∏
t tj t

j kk t

w
f
  (13)

In order to avoid the vanishing of the gradient of the neurons, the above constraints should be 
satisfied. To avoid gradient explosion problems, the scope needs to be further constrained to 

' '' 1 ' 1' '
, 1 , 1

, ,γ
− −− −

+ += =

 
 ∈
 
 ∏ ∏
t t t tj t t

j k j kk t k t

w
f f
  (14)

where γ is the maximum gradient value without explosion. For commonly used activation functions, 
such as ReLU and tanh, their derivatives are not greater than 1, i.e., Especially for ReLU, the gradient 
is 0 or 1. Considering that short-term memory is important for network performance, the constraints 
on recurrent weight ranges using the ReLU activation function can be relaxed to '0, γ− ∈  

t t
jw . 

When the recurrent weight is 0, the neuron uses only information from the current input without 
retaining any memory information in the past. In this way, different neurons can learn to keep 
memories of different lengths. 

3.1.2. Experiments to Process Long Sequences 
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Task Description: Enter two sequences, the first sequence is a string of evenly sampled between 
(0,1), the second sequence is a string of equal length, of which only two numbers are 1, and the rest 
of the numbers are 0. It is required that the output is the sum of the two numbers in the first sequence 
corresponding to the two digits 1 in the second sequence. This experiment was used to test whether 
the model has long-term memory capacity [15]. The experimental sequence lengths were 100, 1000, 
2000, and 5000, respectively, using MSE as the objective function. 

LSTM is currently used with a wide range as an improved RNN structures and for comparison. 
The hidden layer structure in the LSTM and IndRNN network models in the experiment is a layer 
containing 128 neurons. LSTM uses tahn as the activation function, the initial learning rate is set to 2 
× 10−3; IndRNN uses ReLU as the activation function, and the initial learning rate is set to 2 × 10−4. The 
experiment uses mean square error (MSE) as the objective function, and uses Adam optimization 
method to update the network parameters in the training process. Both training data and testing data 
were randomly generated throughout the experiment. 

The results are shown in Figure 3a–d. First, for short sequences (T = 100), both models perform 
well and converge to very small errors. When the sequence length is increased to 1000, the LSTM is 
no longer able to minimize the error. However, the IndRNN model can still converge very quickly. 

  

(a) Sequence length L = 100 (b) Sequence length L = 1000 

  

(c) Sequence length L = 2000 (d) Sequence length L = 2000 

Figure 3. MSE of LSTM and IndRNN with different sequence lengths. 

We also performed a sequence of 2000 and 5000 sequences on the IndRNN model. The results 
are shown in Figure 3c,d, and the IndRNN still converges well. This illustrates that IndRNN can use 
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the ReLU activation function to effectively solve the gradient explosion and vanishing problem over 
time, making training efficient and maintaining long-term memory. 

3.2. Structure of RRNN 

The RRNN algorithm adds the historical information before current state in the input space 
through the random weight matrix, as shown in Figure 4. The input layer in the figure consists of two 
parts, one is the data input at time step t, and the other is the weighted mapping of all output data 
information before time t. The rest of the network structure is consistent with the traditional RNN 
model. 

i
t-2
y i

t-1
y i

t
y

 

Figure 4. The structure of RRNN unfolded by time. 

In the input layer of RRNN, the historical output information is transmitted as a storage unit 
together with the input data at time step t to the hidden layer, and the storage memory of the 
historical information is enhanced. Then the input of the hidden layer at time step t is as follows: 

t 1

t t i i
i 1

,σ β
−

=

 ′ = + 
 

x x W y  (15)

where β is the weight that determines the proportion of historical information in the input space. The 
larger the value is, the larger the weight of the historical information is and the smaller the proportion 
of input information at the current time is, and β can be determined empirically. σ(·) is a saturated 
nonlinear function used by traditional RNNs to avoid degradation of the model into a simple linear 
model and to define the range of values of xt′. Input I 1

t
×′ ∈x  , and ×∈W  I Oi  is the weight matrix 

of historical information yi mapped to the input layer. 

The historical output information yi, i = 1, 2,... t is analyzed. Since the output of the network is 
not very reliable at the first few states and the noise is high, it may cause deviations after mapping to 
the input space. Therefore, it is considered whether to use a randomly generated weight matrix Wi to 
cancel the noise, that is, each column element of Wi is subject to a random distribution of N (0, 1). 

The advantage of using the random weight matrix Wi is that in the high-dimensional space, the 
historical information yi can make the input information xt at time step t tend to different directions 
in space by random weighting, so that the combined xt′ data is more separable. According to the 
pseudo-orthogonal property of the high-dimensional space [27], when the number of rows of the 
random weight matrix Wi is large, the column vectors of Wi are approximately orthogonal. In this 
paper, the length of the input sequence satisfies the requirement of higher dimension, and the column 
vectors of Wi can be regarded as orthogonal. The network output yi in this paper is the classification 
result, and the orthogonal column vector of the random weight matrix Wi will weight the 
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corresponding yi, which will make the combined xt′ tend to different directions, thereby facilitating 
the subsequent classification processing. 

Since the RRNN structure only improves the input layer based on the traditional RNN’s 
structure, the network structure of other layers remains unchanged. Therefore, the calculation model 
of the RRNN network becomes: 

( )1
1

HI HH H
1

OH O

;

;   
( );

;   
( ),

σ β −

=

−

′ = +

′= ⋅ + ⋅ +
=

= ⋅ +
=

x x W y

a W x W h B
h a
b W h B
y b

t
t t i ii

t t t

t h t

t t

t o t

f

f

 (16)

where, I, H, and O are the number of nodes of the input layer, the hidden layer, and the output layer 
respectively; at and ht respectively represent the input and output of the hidden layer at time step t; 
and bt and yt represent the input and output of the output layer at time step t, respectively. WHI，

WHH，and WOH are the weight matrix between the network layers respectively; BH and BO are the 
offset parameters of the hidden layer and the output layer; Wi is the random weight matrix; and 

( )⋅hf  and ( )⋅of  are the activation function of the hidden layer and the output layer, respectively. 
Since the network structure is similar to the traditional RNNs algorithm, the RRNN training uses the 
gradient descent with momentum optimization method.  

We choose the random weighted matrix to process the historical output information. The basis 
and advantages are: 

(1) Make full use of the historical output information y1, y2, ···, yt−1 before time step t, and the 
random weighted history information 1

1
−
= W yt

i ii
 is approximately irrelevant to the input data xt at 

time t analysis. 
(2) The parameters in the randomly generated weight matrix W can reduce the over-fitting effect, 

which is similar to the increase of random noise for the input data to improve the generalization of 
the classification network [28]. 

(3) The randomly generated weight matrix W does not need to be obtained through learning, 
omitting the complicated steps of calculating the gradient of W and back-passing. Compared with 
the traditional RNNs, the training difficulty is not increased, and the classification performance is 
improved. 

3.3. Classification Algorithm Based on IRRNN 

3.3.1. IRRNN Overall Structure and Algorithm 

Aiming at the sample dataset characteristics and classification requirements of the targets, this 
paper proposes an IRRNN model. On the one hand, to ensure that the periodic features of the sample 
sequence are preserved and not destroyed by truncation, we use the IndRNN structure, which has 
the ability to process longer sequences than the traditional RNNs structure. On the other hand, in 
order to improve the classification performance of the RNNs model, we use the RRNN model to map 
historical output information to the input layer through a random weight matrix. 

The spatial point targets generally have micro-motion forms such as precession or tumbling in 
the exo-atmosphere, so that the infrared radiation intensity sequences have periodic characteristics, 
and different shapes and micro-motion features will be fully embodied in the sequences, which 
makes the traditional feature extraction methods hard to extract. Therefore, the RNNs model is 
suitable for the classification of target infrared radiation intensity sequences. The length of each input 
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sequence determines whether the feature information can be completely input to the neural network. 
IndRNN makes the training simpler and more efficient because of its independent structure. At the 
same time, it solves the problem of gradient explosion and vanishing and can input longer sequences. 
Therefore, we use the IndRNN structure to make the periodic characteristic information of the 
sequence not lost and can be used for subsequent classification. 

The infrared radiation intensity sequence of the spatial point target has high correlation in time, 
and the information before time step t has important reference value for the classification of current 
time. Therefore, we combine the historical output information before time step t by random 
weighting with the input data at time t and input it to the hidden layer for further processing.  

The structure of the IRRNN is as shown in the following Figure 5. First, the historical output 
information is weighted by the random weight matrix W and combined with the input data of the 
current time together, and then becomes the new input data and enters the hidden layer. Then the 
neurons of the hidden layer are independent of each other, and the training is more efficient and 
stable and can effectively converge when the input sequence is long. 

i
t-2
y i

t-1
y i

t
y

 

Figure 5. Structure of IRRNN model unfolded by time. 

To reflect the structure of the IndRNN, the connection of the hidden layer is represented by the 
symbol of the Hadamard product  , and ReLU is used as the activation function. 

Since the network structure of IRRNN improves the structure of the input layer and the 
connection mode of the hidden layer only on the basis of the traditional RNNs, the other network 
structures remain unchanged, so according to the Equations (8) and (14), the IRRNN network can be 
obtained. The calculation model is 

( )1
1

HI H
1

OH O

;

;   
( );

;   
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σ β −
=

−

′ = +

′= ⋅ + +
=

= ⋅ +
=

x x W y

a W x w h B
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b W h B
y b



t
t t i ii

t t t

t h t

t t

t o t

f

f

 (17)

where   indicates the Hadamard product, and other parameters are the same as Equation (14). In 
the formula, ( )⋅hf  and ( )⋅of  are the activation function of the hidden layer and the output layer 
respectively. Because of the structure of IndRNN, ( )⋅hf  can be a unsaturated nonlinear function, so 
we choose ReLU as the activation function. And ( )⋅of  still chooses Softmax as the activation 
function. 
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Through the above analysis of the IRRNN network structure, we use cross entropy as the loss 
function for the classification problem of the infrared radiation intensity time series of the spatial 
point target and use the gradient descent with momentum optimization method to update the 
network parameters during the training process. The specific training process of the IRRNN 
algorithm is shown in Algorithm 1. It is shown as follows: 

Algorithm 1 Training process of time series classification algorithm based on IRRNN 
1. Determine network parameters: 

• Number of neurons in the input layer of the IRRNN model network I, number of neurons in 
the hidden layer and backward transmission hidden layer H; 

• Determine the error threshold for stopping training ε > 0; 
• The total number of target time series in the sample set N. 

2. Sample data preprocessing and parameter settings: 

  The training set, validation set, and testing set are divided according to 2:1:1, and generate random 
weighted matrix W1, W2,…, WT-1. 

3. Initialize network weights and offset parameters: 
  Determine the initial value of WHI, w, WHO, BH, BO, etc. 

4. Training process: 

  Assume that currently all N sequences in the training sample set for the kth pass, take sequence 
X(n) = [x1, x2, ···, xT] as example 

    (1) For training sample xt at time step t，calculate the value of the network output value and 
loss function lt, etc. 

       

( )
( )

( )

t 1
t t i i1

HI H
t t t 1 t h t

OH O
t t t o t

t t t

,

, f ,

, f ,
ln .

−

−

′ = σ + β

′= ⋅ + + =

= ⋅ + =
= − ⋅

x x W y

a W x w h B h a

b W h B y b
d y
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    (2) Calculate the loss function for all time steps from 1 to T 

       
T

train tt 1E == 
 

    (3) Calculate the gradient of loss function Etrain to parameters HI
ji∇W , ji∇w , OH

ji∇W ,etc.  

    (4) Update the network parameters by gradient descent with momentum optimization 
method, and obtain ( )HI

ji k 1+W , ( )ji k 1+w , ( )OH
ji k 1+W ,etc. 

       

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

HI HI HI HI HI
ji ji ji ji ji

ji ji ji ji ji

OH OH OH OH OH
ji ji ji ji ji

k 1 k m k k 1

k 1 k m k k 1

k 1 k m k k 1

+ = + − − − λ∇

+ = + − − − λ∇

+ = + − − − λ∇

W W W W W

w w w w w

W W W W W

 

where m is momentum parameters, m [0, 1]; and λ is the learning rate, α ∈  [0, 1]. 

(5) Enter the next sequence X(n’) in the training sample set and repeat the training process in 
steps (1) to (4) until all N sample sequences are processed through the network and proceed to 
the next step. 

5. Stop the training, when the training error reaches the threshold. 

6. Save the trained network parameters. 

3.3.2. Bi-Direction Extension Structure of IRRNN 
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When the infrared radiation intensity time series of the spatial point target is processed 
according to the IRRNN structure of the previous section, only the data information before time step 
step t is used for the classification of decision processing at the current time, and the data information 
after time step t cannot be utilized. In fact, for the time series classification task of the spatial point 
target of this paper, due to the periodicity and continuity of the target motion, the sample data 
information before and after the current time step t is very important for the classification decision of 
the current time. Therefore, this paper proposes a Bi-direction IRRNN model, which makes the 
sample information change from the original forward-only transmission to a bidirectional network 
structure that can be forward and reverse. The sample information before and after time step t can be 
applied in the decision of the current state. 

The network structure of the bidirectional IRRNN (B-IRRNN) is shown in Figure 6. As shown, 
there are two hidden layers that are independent of each other, and the input data is processed 
simultaneously in forward and backward manners. Then the output obtained is the weighted sum of 
results in two directions. It can be seen as a combination of two unidirectional RNNs networks, in 
particular, the hidden layer transmission of the two networks is reversed, and the output is 
determined by the results of the two networks together. 

t+1h
←

t-1h
←

th
←

t-1h
→

t+1h
→

th
→

i
t-1
y i

t
yi

t-2
y

 
Figure 6. Structure of B-IRRNN model unfolded by time. 

As shown in Figure 6, in the forward transmission layer, the hidden layer state h


 is recursively 
calculated from t = 1 to T, and the corresponding output is y


. In the backward transmission layer, 

the hidden layer state h


 is inversely recursively calculated from t = T to 1, and the corresponding 
output is y


. The final output is the weighted sum of the two output values. Therefore, the calculation 

formula of the B-IRRNN model is: 

( ) ( )
( ) ( )

( ) ( )

1 1
1 1

HI H HI H
1 1

OH O OH O

                 ,
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                    ,
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t t
t tt i t ii ii i

t t t th t h t

t to ot t

f f

f f

1 2 ,α α= +                                     y y y
 

t t t

 (18)

where α1 and α2 are the weighting coefficients of the output, and α1 + α2 = 1 is required. Considering 
that the information before and after the current time is equally important in the time series of the 
infrared radiation intensity of the target, the equal weight addition is used here, so α1 = α2 = 0.5. In 
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the training process of B-IRRNN, the training parameters of the forward parameters 
HI H OH O

, , , ,W w B W B
     and the backward parameters HI H OH O

, , , ,W w B W B
     are respectively 

optimized, and the memory required is about twice the unidirectional IRRNN network. 

4. Experiments and Discussion 

The purpose of this section is to discuss the performance of the proposed IRRNN algorithm by 
conducting multiple sets of experiments. Firstly, the classification performance of the IRRNN 
algorithm for the UCR data set is tested. Then, the classification performance of the IRRNN algorithm 
model and its extended form B-IRRNN for the infrared radiation intensity time series of the spatial 
target are discussed. 

4.1. URC Data Set Classification Experiment 

Since the UCR public data set is widely used in time series processing problems, including time 
series data sets taken from different fields, some of the data sets are selected to test the performance 
of the proposed time series classification model based on IRRNN. 

The experiment selected seven sequence data sets in the UCR for classification experiments. Four 
algorithms were used for comparison experiments, including the most basic feedforward neural 
networks (FNNs), traditional RNNs model, LSTM, and IRRNN proposed in this paper. The 
experiment uses the cross-validation method to determine the optimal network parameter values to 
prevent over-fitting phenomena that may occur during training. In addition, we performed 50 Monte 
Carlo simulations for each sample set, taking the average of all results as the final result. The accuracy 
of the classification for each data set by the four algorithms is shown in Table 2, and the algorithm 
with the highest classification accuracy for each data set is in bold. 

Table 2. Classification accuracy of four algorithms in UCR data set. 

Name Sequence 
Length 

Accuracy 

FNNs RNNs LSTM IRRNN 

ECG200 96 0.8189 0.8433 0.8650 0.8974 
ArrowHead 251 0.7495 0.8012 0.8166 0.8285 

SyntheticControl 60 0.7230 0.7432 0.7843 0.7812 
OSULeaf 427 0.5823 0.6059 0.6337 0.6828 
FaceAll 131 0.5541 0.5722 0.5870 0.6931 

SwedishLeaf 128 0.7419 0.7692 0.7705 0.8131 
FiftyWords 270 0.3932 0.4239 0.5152 0.6549 

As show in Table 2, it can be seen that the IRRNN model obtains the highest classification 
accuracy on the six data sets and is slightly lower than the LSTM model only on the “SytheticControl” 
data set. In general, the model classification performance based on RNNs is better than the basic 
feedforward neural network model, indicating that the recurrent structure of the neural network in 
time is very beneficial to the classification task of sequences. In the UCR data set classification task, 
the classification performance of LSTM is better than the RNNs model. However, the proposed 
IRRNN is more advantageous than the LSTM in the classification task. The independent structure 
solves the problem of gradient vanishing and explosion and can quickly converge to the optimal 
solution. The addition of random weighted history information makes the data tend to be easy to 
classify, and the network can be generalized. The validity and robustness of the IRRNN algorithm is 
teted by experiments. 

4.2. Classification Experiment of Radiation Intensity Sequences 
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The experiment in this section mainly tests the proposed IRRNN classification model to classify 
the infrared radiation intensity sequences of spatial point targets and distinguishes them according 
to the different shapes of the target. According to the modeling analysis in Section 2, the specific 
parameters of the four types of targets are shown in Algorithm 1. In addition, in order to increase the 
difficulty of classification, we normalize all generated simulation sequences so that they are 
distributed between [0, 1]. This can enhance the diversity of the training sample set and also improve 
the robustness of the classification network to the target size parameters in retraining. 

4.2.1. Classification Experiment 

The infrared radiation intensity time series sample set of the spatial point target used in the 
experiment is obtained by modeling the real ballistic scene in Section 2, and the data length can be 
adjusted and changed. The classification performance of IRRNN algorithm can be tested at different 
moments in the case of data dynamic input. Considering that the observation of the target in the 
space infrared sensor may be obscured, and the data may be missing, we set the target sample 
sequence to be randomly acquired from 120 s to 300 s, and the sequence of the interception time is 30 
s. The classification performance of algorithms are observed at times of 8 s, 16 s, 24 s from the start 
point of each sequence. The experiment was divided into three groups, and the performance of the 
classification algorithm with the beginning time tbeg of 150, 200, and 250 s was tested. Set the 
acquired sample data to a signal-to-noise ratio (SNR) level of 20 dB. The simulated infrared radiation 
intensity sequence sample data of the targets is 2000 sets, and the four types of targets each have 500 
sets. Samples are randomly assigned to the training set, validation set and testing set according to the 
ratio of 2:1:1. So the number of samples for the training set is 1000, and the number of samples for the 
validation set and testing set is 500. 

In this experiment, a separate IndRNN structure(2 layers) and RRNN structure were added to 
compare with the IRRNN structure and its bi-directional extended structure B-IRRNN. The purpose 
is to compare the effects of these two structures on classification performance. Traditional RNNs were 
used as a reference. 

According to the classification algorithm performance in three groups of experiments as shown 
in Tables 3–5, the following conclusions can be obtained: 

(1) The classification accuracy of traditional RNNs algorithm improves with the increase of the 
sequence length. Because the RNN’s network can store the state information of the previous states 
and accumulate the historical history as the sequence length increases and the accuracy of 
classification of time series is also improved. However, although traditional RNNs have the ability of 
time-delay memory, the problem of degradation in parameter learning still exists. Only the sequence 
information in local time can be learned, and the long-term dependence of the sequence cannot be 
learned. 

(2) IndRNN and RRNN have more advanced structures than traditional RNNs, and the 
classification performance is greatly improved compared with RNNs. The independent structure of 
IndRNN solves the problem of gradient vanishing and explosion, and can learn the long-term 
dependencies of sequences. For the RRNN structure, the historical output information uses the form 
of random weighting to make the new input data tend to the direction that is easy to classify. 

(3) The classification performance of the IRRNN algorithm proposed in this paper is more 
prominent than the independent IndRNN algorithm and RRNN algorithm. Combining the 
advantages of both of them, the performance of the classification algorithm is significantly enhanced. 

(4) The B-IRRNN model obtained the best classification performance at all observation times, 
and its classification accuracy was higher than that of the unidirectional IRRNN model. Because the 
B-IRRNN classification model has two hidden layers of forward propagation and backward 
propagation, it can simultaneously use past and future sequence information to help the classification 
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decision at current time. It has more advantages than the unidirectional IRRNN model in time series 
classification. 

Table 3. Classification accuracy of four algorithms when tbeg = 150 s. 

Observing Time (s) 
Accuracy 

RNNs IndRNN RRNN IRRNN B-IRRNN 

8 0.6375 0.8081 0.7729 0.8856 0.9124 

16 0.7449 0.8424 0.8302 0.8987 0.9176 

24 0.7892 0.8840 0.8743 0.9101 0.9315 

Table 4. Classification accuracy of four algorithms when tbeg = 200 s. 

Observing Time (s) 
Accuracy 

RNNs IndRNN RRNN IRRNN B-IRRNN 

8 0.6503 0.7985 0.7946 0.8822 0.9048 

16 0.7455 0.8393 0.8420 0.8995 0.9109 

24 0.7917 0.8867 0.8851 0.9098 0.9272 

Table 5. Classification accuracy of four algorithms when tbeg = 250 s. 

Observing Time (s) 
Accuracy 

RNNs IndRNN RRNN IRRNN B-IRRNN 

8 0.6416 0.7953 0.7864 0.8751 0.8939 

16 0.7568 0.8413 0.8395 0.8903 0.9120 

24 0.8059 0.8725 0.8874 0.9026 0.9234 

4.2.2. Effect of Noise and Sequence Length 

The experiment mainly tests the classification performance of four algorithms including RNNs, 
LSTM, IRRNN, and B-IRRNN under the situation of different noise levels and different sequence 
lengths. In the training process, all the algorithms are trained with the same signal-to-noise ratio that 
is SNR = 20 dB and the same sequence length L = 400. Classification performance of infrared radiation 
intensity time series of spatial point targets by different algorithms are tested under different signal-
to-noise ratio levels (5 dB, 10 dB, 15 dB, 20 dB, 25 dB, and 30 dB) and different input sequence lengths 
(200, 400, 600, 800, and 1000). Ten independent Monte Carlo simulation experiments were carried out, 
and the mean of the classification accuracy of each algorithm was taken as the final result. As shown 
in Figure 7, we can get the following conclusions: 

(1) With the increase of SNR, the classification accuracy of each algorithm is obviously improved, 
indicating that noise is an important factor affecting the classification task of spatial point target based 
on radiation intensity sequence. Therefore, the selected classification algorithm must be robust to 
noise. Compared with traditional RNNs and LSTM, the proposed IRRNN algorithm and B-IRRNN 
algorithm have obvious advantages, and even in the case of high noise level, they have more stable 
classification ability and verify the robustness to noise. 
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(2) Comparing Figure 7a,b, it can be seen that the classification accuracy of four algorithms 
increases steadily with the increase of the sequence length, because the longer the sequence, the more 
periodic information of the target motion included and the more favorable to the classification of the 
sequence. It can be clearly seen from Figure 7c that when the sequence reaches a certain length, 
traditional RNNs and the LSTM cannot achieve effective classification of the sequence. This is 
because the problems of gradient vanishing and gradient explosion still exist, and their structure and 
activation function decided that a long sequence could not be processed. At this time, the advantage 
of the IRRNN algorithm and B-IRRNN algorithm are reflected. Their ability to process long sequences 
is strong, and the classification accuracy does not fluctuate greatly with the length of the sequence, 
remains at a relatively stable high level, and improves with the sequence length increases. 

 

(a) Sequence lengths L = 100 (b) Sequence lengths L = 400 
 

 

 

(c) Sequence lengths L = 800 

Figure 7. Classification performance of four algorithms under the situations of different SNR 
sequence lengths. 

In summary, the IRRNN algorithm can process long sequences due to the independent structure 
of its hidden layer, which is beneficial to capturing the long-term periodic features of spatial point 
targets. The historical information is introduced into the input through random weighting 
simultaneously, which effectively improves the comprehensive classification performance of the 
algorithm and enhances the generalization capabilities of the network. In addition, the independent 
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structure of the IRRNN algorithm simplifies the network parameters and calculations, and the 
random weighting of historical information does not increase the learning complexity of the network. 
Therefore, the IRRNN algorithm can accomplish the classification easily and efficiently. For the 
infrared radiation intensity time series classification task of the spatial point target studied in this 
paper, IRRNN can process long time sequences, achieve stable classification accuracy, be robust to 
noise, and output classification results in real time, which is in accordance with classification task 
requirements. 

5. Conclusions 

This paper proposes a time series classification model based on IRRNN. The infrared signature 
model of spatial point targets has been constructed as the premise, and samples of infrared radiation 
intensity sequences are achieved. Our model improves the abilities of avoiding gradient vanishing 
and explosion, processing long-length sequences, and classifying effectively. In addition, the 
bidirectional extension structure of IRRNN was carried out to obtain a better classification 
performance. Experiments show that our algorithm achieves higher classification accuracy under 
various sequence lengths and noise levels compared with RNNs and LSTM. The proposed IRRNN 
model can effectively solve the problem of infrared radiation intensity time series classification of 
spatial point targets. 
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