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Featured Application: The multilayer classification algorithm proposed in this paper can be
applied to active sonar systems in order to detect long-range targets.

Abstract: The task of detecting and classifying highly maneuverable and unidentified underwater
targets in complex environments is significant in active sonar systems. Previous studies have applied
many detection schemes to this task using signals above a preset threshold to separate targets
from clutter; this is because a high signal-to-noise ratio (SNR) target has sufficient feature vector
components to be separated out. However, in real environments, the received target return’s SNR is
not always above the threshold. Therefore, a target detection algorithm is needed for varied target
SNR conditions. When the clutter energy is too strong, false detection can occur, and the probability
of detection is reduced due to the weak target signature. Furthermore, since a long pulse repetition
interval is used for long-range detection and ambient noise tends to be high, classification processing
for each ping is needed. This paper proposes a multilayer classification algorithm applicable to all
signals in real underwater environments above the noise level without thresholding and verifies the
algorithm’s classification performance. We obtained a variety of experimental data by using a real
underwater target and a hull-mounted active sonar system operated on Korean naval ships in the
East Sea, Korea. The detection performance of the proposed algorithm was evaluated in terms of the
classification rate and false alarm rate as a function of the SNR. Since experimental environment data,
including the sea state, target maneuvering patterns, and sound speed, were available, we selected
1123 instances of ping data from the target over all experiments and randomly selected 1000 clutters
based on the distribution of clutters for each ping. A support vector machine was employed as
the classifier, and 80% of the data were selected for training, leaving the remaining data for testing.
This process was carried out 1000 times. For the performance analysis and discussions, samples of
scatter diagrams and feature characteristics are shown and classification tables and receiver operation
characteristic (ROC) curves are presented. The results show that the proposed algorithm is effective
under a variety of target strengths and ambient noise levels.
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1. Introduction

In active sonar systems, clutter degrades the performance of target detection and overwhelms
sonar operators conducting antisubmarine warfare (ASW). Clutter consists of reflected signals from
underwater surfaces, the bottom, rocks, fish, and other ships not of interest to sonar operators.
Traditionally, underwater target detection depends on the decisions of well-trained sonar operators.
This method can be highly inaccurate due to the need for continuous monitoring of the operating sonar
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console. Moreover, varying underwater environments and target moving patterns make continuous
detection and classification difficult, highlighting the need for effective detection and classification
algorithms in such an environment.

Underwater moving target detection is challenging for the following reasons:

1. Complex underwater environment: Underwater target detection is a complex pattern classification
problem involving time-varying and mixed environments. Environmental noise causes acoustic
signal waveform distortion, loss of signal information, and incomplete received acoustic signals
due to the complexity of the sound propagation medium.

2. Unknown target orientation: Normally the target’s orientation is unknown. Aspect-dependent
target strength results in a variable signal-to-noise ratio (SNR) and causes the loss of
feature information.

3. Continuous target tracking: Continuous classification and tracking of weak target echoes should
be desirable because a target can be a threat and can take action upon recognizing it has
been detected.

4. Less feature information: Active sonar for long-range target detection has low-resolution data, so
a feature vector extraction algorithm is necessary.

5. Long interval ping-to-ping: In order to detect long-range targets, a long pulse repetition interval
(PRI) is used; this means that a relatively small amount of data is acquired over time.

6. Lack of data in many cases: It is difficult to acquire sufficient and representative sea
experiment data.

Many algorithms have been applied to active sonar detection and classification. Detection using a
Markov random field [1], a contrast box detector based on statistical features of reverberation, and
morphology detection of an object [2,3] were studied for the separation of targets from reverberation.
The morphology detector distinguishes the characteristics of the target and reverberation signal and
processes them under the condition that the target signal is in an isolated area and the reverberation
signal has a distribution of several clutters. These techniques are effective for reverberation removal
but have the disadvantage of lowering the target detection rate in a single ping. Multiple ping imaging
techniques using temporal and spatial features of clutter and the target have been proposed [4,5].
The cumulative processing of multiple ping data reduces the classification rate in a single ping. It also
has the disadvantage of using multiple ping signals because signals that are not filtered out of a
single ping are used in multiple pings. There are also many approaches to mine detection using
side-scan sonar [6–8] with high-resolution data. Mine detection approaches are for a near field detection
environment that processes high-resolution image data. Therefore, it is difficult to apply in active
sonar for long-range target detection with low-resolution data. Much research has been carried out
since a mine’s sonar signature exhibits variable characteristics according to its position and the ping’s
angle of incidence at the seafloor.

Seo et al. [9] studied target separation from clutter using spectral feature information on the seabed
floor. In [9], the mathematical model of a cylindrical object proposed by Ye [10] was used to generate
target signals, and clutter signals based on the K-distribution model introduced by Abraham and
Lyons [11,12] were generated. A logistic regression model with discrete Fourier transform (DFT) features
trained with the simulated data was applied to experimental data to evaluate classification performance.
It is difficult to acquire experiment data for training in underwater environments. Therefore, the results
show that this approach could be an alternative method due to a lack of experiment data. In other target
echo analyses, many statistical models representing target backscattering have been studied, such as
Weibull; log-normal (LN) models with varying levels of physical basis, such as the Rician distribution;
and Swerling models and their extensions [13–15]. A scheme based on a time-reversal technique was
proposed to improve the detection of a cylindrical object placed proud on the seafloor [16]. However,
there is a lack of research on long-range target detection that considers the aspect angle of a moving
target and the variety of underwater environments.
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The underwater noise level is a function of the environment’s elements, such as the sea state and
surrounding sea traffic; this ultimately affects the intensity and patterns of echoes. The target’s echo
strength mainly depends on the type of target and the aspect angle of the incident-transmitted signal.
These factors affect the SNR of the target echo and echo patterns. They eventually lead to variable SNR
in a sonar’s signal processing and make it more difficult to continuously detect and classify targets.
In particular, low SNR signals do not yield enough feature information to distinguish them from clutter.
For this reason, much research has studied returns above a preset threshold to solve the classification
problem. These signals in the matched filter output data are selected for tracking, classification, and
console display by sonar operators. However, the extraction process of these signals is inaccurate
since the operators empirically adjust the threshold. If target echo SNR is under the threshold by the
operators, the target cannot be detected and classified. Thus, extracted data from the matched filter
output are very important because the data affect the operator’s manual tracking and classification
performance. In most military applications, it is important to continuously track and classify the target.
The long PRI required to detect long-range targets means that less data can be obtained over time, so it
is hard to know the changes in environmental noise and target strength soon enough to take action.
For this reason, we propose a multilayer classification algorithm, which is applicable to all signals
without presetting the threshold in one ping’s data regardless of the signal SNR.

In this paper, the approach to obtaining feature information incorporates two factors. One is that
since a target submarine has a typical type, size, material and volume, the distributed energy pattern
of its echo can be different than that from clutter. Second, the sources affecting the SNR of echoes
are the ambient noise and target strength according to the ping’s incident angle. These sources are
reflected in the signal processing output and can be extracted as feature vectors from different echo
areas. In general, the target return strength for a ping abeam (long side) of a submarine target is 15 dB
while a head-on ping off the front is known to be 5 dB [17]. This means that the SNR of the target
signal varies over at least a 10-dB difference according to the aspect angle of a submarine, and thus
may lead to classification performance degradation. Even if the energy in the edge region of the target
echo is reduced by noise or decreased by the target aspect, the feature information of the remaining
echo energy region near the center point can be retained. We focus on the surviving classifiable feature
components from variations in target echo strength by extracting the spatial feature information in the
sonar’s matched filter output.

Much research has concentrated on the separation of feature vectors by labeling target signals and
clutter signals of sufficient intensity. There have also been efforts to separate ambient reverberations.
In this paper, we consider a real target as prior target information and assume that it has characteristic
features governing the echo appearance of the matched filter output (range-bearing output) using
statistical parameters. The performance of the proposed algorithm is evaluated in terms of
classification [18,19] and the false alarm rate. A support vector machine (SVM) is utilized to separate
the feature vectors. The rest of this paper is organized as follows: In Section 2, the SVM is introduced.
Section 3 describes the multilayer classification algorithm. Section 4 shows the experiment, results,
and discussions. Finally, in Section 5, we summarize our conclusions.

2. Introduction to the Support Vector Machine

The SVM enables linear separation by transforming an input space with nonlinear characteristics
into a feature space of more dimensions by using a kernel function that can provide an optimal solution.
It has attracted a great deal of attention due to the novelty of the concepts that it brings to pattern
recognition, its strong mathematical foundation, and its excellent results in practical problems [20,21].

We assume that data samples are as follows:

S = (Xi, di)
N
i=1, di = −1, 1., (1)

where X and N are input samples and the number of samples, respectively.
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We find a hyper-plane y = W · X + b with the smallest norm of the coefficient ‖W‖2 having
the largest margin (2/‖W‖), where W and b are weight vector and bias, respectively. To find
an optimal hyper-plane, we use the minimized function Φ(W) = 1

2‖W‖
2 under the constraint

di[(Xi ·W) + b] ≥ 1, i = 1, 2, . . . , N, where the operation is an inner product. The solution to this
optimization is given by the saddle point of the Lagrangian as:

L(W, b,α) =
1
2
‖W‖2 −

N∑
i=1

αi
{
yi[WT

·Xi + b ] − 1

., (2)

where αi is the Lagrange multiplier.
A multi-layer perceptron neural network (MLP NN) and support vector machine (SVM) were

used to analyze the classification performance and SVM showed better results for sonar signals [20].
In [20], MLP NN had been shown to be easily affected by learning algorithms, input samples, and
initial variables. In contrast, it showed that SVM has a relatively robust classification capability.
The performance analysis of four classifier algorithms, multivariate Gaussian, evidential K-nearest
neighbor (K-NN), probabilistic neural network (PNN), and SVM, were conducted from data for
near-field detection [22]. The result showed that the SVM had better performance for high dimensional
features and the kernel function was an important factor. In [22], the results showed that SVM was more
robust for an unbalanced number of training samples, that is, the number of the target sample is small
and the clutter is huge. In addition, SVM was less affected by the scattered and mixed characteristics
of the underwater environment. A study on sonar data classification according to the kernel function
of SVM [23] was performed. In [23], the results showed that the radial basis function (RBF) kernel had
better performance than polynomial kernel. For these reasons, we use a SVM classifier and a Gaussian
function type RBF kernel, which has already been widely used for sonar classification.

3. Multilayer Detection Algorithm (Feature Extraction)

In this paper, we extract feature vectors by segmenting layers in the matched filter output of the
sonar system. The statistical parameters in each layer and between layers are used as feature vectors.
Figure 1 shows the block diagram of the proposed multilayer processing scheme. The multilayer
classification algorithm is performed as a classification-before-detection concept with the matched filter
output (bearing and range). The results of multilayer classification are used as tracking measurements
and are displayed on the sonar console for each ping. These results are very important for automatic
tracking and detection by the sonar operator.
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3.1. Beamforming and Signal Processing

Sensor data from cylindrical hull-mounted arrays were beamformed using a Hanning window
and match filtered. Delay-and-sum beamforming and polyphase filtration with an interpolation rate
of 32 were performed in the time domain. In order to reduce the effect of ship movement in the
beamforming stage, compensation for sensor position change was performed. The spatial position
of the sensor array was recalculated from ownship pitch and roll data. Then, beamforming was
performed with the new position of the sensor as beam stabilization. The sound speed value was also
used for beamforming in real time.

In the signal processing stage, relative Doppler compensation, pulse replica correlation, max
Doppler picking, and two-dimensional normalization were performed. In order to remove the
transmitting and receiving Doppler effect, ownship’s Doppler nullification in the received beam output
was processed with the course and speed data of ownship by considering the maximum speed of
the target candidate. The correlation of the transmitted pulse replica was performed for continuous
wave (CW) and linearly frequency-modulated (LFM) signals. The CW signal is a continuous wave
signal, with the pulse length based on the center frequency. The LFM signal has a bandwidth of
several hundred Hz with respect to the center frequency, and linearly modulates it by the pulse length.
The CW signal is useful for deriving Doppler information from a target and the LFM signal has good
range resolution. From Doppler data in 1-kt steps, bearing and range data with max Doppler were
extracted. Then, the split two pass mean (S2PM) algorithm [24], which has a good performance with
simple calculations, was used for noise normalization in two dimensions. The gap and window size of
S2PM were selected by considering the ambiguity function of the transmitted pulse, the echo energy
areas, and the resolution of the bearing and range in the matched filter output. Echo energy area was
considered to be the area from the peak to the local minimum. For each ping, the beam and range
for the peak echo were acquired by using target position data. Only one echo datum for each ping
was acquired as the target because, in this experiment, there is only one target. The other echoes,
including target multipath echoes, were used as clutters because a geographically multipath echo is
not an accurate target locator. In order to investigate the classification performance of the proposed
algorithm, we acquired all echoes higher than the noise level without a threshold for each ping.

3.2. Multilayer Processing (Feature Extraction)

We introduced in-layer and cross-layer feature extractions as multilayer processing for extracting
feature vectors. Considering the complexity of underwater environments and the variation of target
return strength, it is necessary to extract enough features to cover and enrich the feature components
in the echo area. In some previous studies, researchers have found that when the number of features is
larger, the robustness of the recognition classifier is reduced [25]. The schematic of feature extraction is
shown in Figure 2.
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First, for the in-layer feature extraction, the dispersed energy areas of echoes are segmented into
several layers, like contours, from the center peak point to the edge area (normally the noise level).
In Figure 2a, the SNR of the peak point is A and the layers are defined as B, C, and D; Figure 2b shows
the top view of the echo shape. The number of layers is determined by having energy distributions of
at least 3 dB per layer by considering the dynamic range of the target echo strength; this will depend on
the underwater objects present, the range of the ambient noise level according to the sea state, the sea
area, and the transmitting frequency [17]. In this paper, five layers are selected in consideration of the
sonar system specifications. For each layer, three feature vectors are selected. We selected the median
feature to have robust performance for impulsive noise signal and representative average value of
echo SNR. Variance (second moment) feature vectors based on these median values are selected to
represent energy distribution pattern variation. In addition to these features, we selected skewness
feature vectors for the directional tendency of energy distribution in the bearing-range domain. Thus,
12 features for a single echo are extracted as in-layer feature vectors. Figure 3 shows examples of
different target and clutter echo 3-D shapes. Figure 3a,b and d display the multiple peaks of the targets.
In this case, only one peak point should be extracted for precise automatic target tracking and for sonar
operator display so as not to obscure manual detection. Figure 3e shows a similar pattern as target-like
clutter and Figure 3g displays multi peaks that should be classified as clutter. Figure 3c,h display
target and clutter having low SNR respectively with less feature information. To avoid unfavorable
situations, such as multiple peak patterns and missing target echoes, cross-layer feature extraction is
applied to the system.

In the second tier of processing, cross-layer feature vectors are developed from in-layer feature
vectors between two adjacent in-layers, for example, the B and C areas in Figure 2. The ratio of adjacent
in-layer median values is calculated, and these features show up-slope or down-slope patterns of
physical characteristics. The second moment values on a log scale are calculated in the same procedure.
In order for the weak target signal to be well classified, the relationship between the center peak point
of the echo region and its surroundings should be well extracted by the feature vectors. When the SNR
of the echo signal goes lower, the energy in the edge region disappears and the energy surrounding the
center point remains. This means that the loss of signal feature components may occur, and less feature
information may be extracted. Eight cross-layer feature vectors are considered; finally, the 12 in-layer
features plus the 8 cross-layer features for a total of 20 feature vectors in the in-layer and cross-layer
are applied. The dimension of feature vectors is not high, so the proposed algorithm can be computed
in real time for an active sonar system.
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Figure 4 shows 2-D display samples of target and clutter echoes acquired from the sea experiment
and the segmented layers used to calculate the feature information. The highest peak value is in the
center rectangular area and the segmented layers are marked B, C, D, and E. The calculated in-layer
and cross-layer feature values are listed in Table 1.
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Table 1. Feature data in target and clutter according to Figure 4.

Target Clutter

In-layer feature

A 24.1 23.0
B 20.5/49.5/−0.87 19.9/5.7/−0.48
C 10.5/70.3/−0.02 15.4/10.6/−0.78
D 2.75/59.7/0.14 10.3/31.4/−0.19
E 1.10/19.9/0.06 3.11/70.4/0.26

Cross-layer feature

A, B 1.18/4.86 1.16/40.3
B, C 1.95/−1.52 1.29/−2.69
C, D 3.82/0.70 1.49/−4.71
D, E 2.50/4.77 3.31/−3.50

4. Experimental Results and Discussion

In this section, the proposed approach is verified with real sea trial data. As mentioned, the
experiments were conducted with naval ships in the East Sea of Korea for several years. In order
to acquire representative data from the sea area, we collected data over various sea areas, seasons,
target moving patterns, water depths, sea states (from 0 to 2), and other environmental influences. We
followed and checked all of the target routes for accurate analysis. Finally, we acquired data from
1123 pings spread across all experiments. Only a single target echo from each ping was used, and other
echoes were regarded as clutter. We illustrate the characteristics of the proposed algorithm in scatter
diagrams of several feature vectors and quantitatively summarize the performance in classification
tables of all data.

4.1. The Experiments in the Sea

In this paper, we consider the use of an active hull-mounted sonar system to detect a moving
underwater target. Two schematics of several experiment situations considered are described in
Figure 5. In conventional algorithms, the target detection and classification are done by comparing the
matched filter signal to a preset threshold. In this case, target and clutter signals with SNRs above
the threshold are labeled. In long-range detection, several classification schemes are applied with
appropriately high SNR signals that have enough feature information to separate target and clutter
components. These schemes can increase the false alarm rate when the clutter signals are stronger than
the target signals and also decrease the classification rate for weak target signals. It is essential to detect
targets with continuing false alarms because any target can be a threat. Thus, it is very important to
constantly attempt target detection even if the probability of false alarm sometimes goes up.
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The experimental data were obtained in the East Sea of South Korea in 2006, 2008, 2009, 2011, and
2012 with hull-mounted active sonar systems (DSQS21BZ and SQS-240K) operating on Korean Navy
ships. The experiments were designed to cover a variety of underwater environments and general
target maneuvers. We included both summer and winter data with their opposing sonic propagation
characteristics and data from the beam to the bow direction to obtain a variety of target echo strengths
as a function of the incident angle. The feature component analysis experiments were continuously
conducted until the target signal was lower than the ambient noise. The target size was less than 100 m
long; the East Sea of Korea is approximately 500 to 3000 m deep. The range to the target from ownship
was about 4 to 15 kyds (approximately 3.6 to 13.7 km). The active sonar was operated with LFM and
CW signals having a center frequency 5 to 10 kHz and a pulse length under 500 ms. Figure 5 shows
examples of the experimental ownship and target movement paths.

Matched filter outputs were acquired from the signal processing unit of the experimental active
sonar system. First, we extracted all echoes having a peak signal above the noise level. Typically, most
extracted patches are clutter because the real target is a single return, and it is especially difficult to
separate low SNR target signals from clutter. Echo characteristics are determined by the target size,
target shape, ping incident angle, multipath effect, and elongation effect. In this paper, we focus on an
adaptive approach for continuous detection. Normally, if the reflected signal level is low, it is harder to
separate the target from clutter because sufficient feature vectors cannot be extracted, decreasing the
classification rate. In order to process low SNR target echoes, we continuously checked and acquire
data in situations where the target echo is both lower and higher than the noise level. The orientation
of the target, the active sonar PRI, and the GPS position and orientation of ownship are used to confirm
the target echo. Figure 6 shows one example from several experiments of a normalized matched filter
output in the bearing-range domain. In Figure 6, the red circle indicates the target position; we can see
that the SNR of many clutters is higher than that of the target. In this case, if a preset threshold higher
than the target SNR is applied, the target echo may not be detected. For this reason, a weak target echo
should be classified regardless of the threshold.
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4.2. Experiment Data

In the experiments, ownship with active sonar, a single target, and a few surface ships in the
vicinity were employed. The frequency range of the active system was 5–10 kHz and the pulse length
was under 500 ms for CW and LFM transmissions. In order to test the performance, shuffle and split
cross-validation was used. In total, 80% of the total data set were randomly selected for training and
the remaining data were used for testing. This cross-validation was carried out 1000 times to evaluate
the average detection performance.

For each ping, clutter was extracted for all peak data above the noise level. We did not categorize
clutters into similar groups; we simply focused on separating targets from clutters. In order to extract
all peak candidates, we scanned each ping’s matched filter output data in two dimensions. Since we
knew the target position and moving route from the ship’s log file, we labeled and extracted target
echo areas manually from the 1123 ping data sets for an exact target position search. Because multipath
echoes show target-like patterns in terms of shape and geographical position, we categorized the
multipath echoes as clutters according to their time delay and the known target position. In addition,
for an evaluation of weak target classification, we divided all extracted data into two groups as weak
or strong. The weak signal group was defined as the lower half of an SNR-ordered list of the signals
extracted, and the strong signal group was defined as the upper half. In Figure 7, scatter diagrams
show that in-layer and cross-layer feature vectors can separate targets from clutter efficiently.
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a weak target. Thus, we followed the history of the real target echo SNR, and when the SNR came 
down, we analyzed the effect of the feature vectors. In Figure 8, in-layer feature #1 is the feature value 
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Figure 7. Scatter diagrams with in-layer and cross-layer features. (a) Scatter diagram of in-layer feature
(variance in B area) and cross-layer feature (ratio of median value between B and C area); (b) scatter
diagram of in-layer feature (variance in D area) and cross-layer feature (ratio of median value between
C and D area); (c) scatter diagram of in-layer feature (skewness in C area) and cross-layer feature (ratio
of variance value between B and C area); (d) scatter diagram of in-layer feature (skewness in D area)
and cross-layer feature (ratio of variance value between C and D area).

As mentioned, one of the purposes of this study was to investigate whether it is possible to detect
a weak target. Thus, we followed the history of the real target echo SNR, and when the SNR came
down, we analyzed the effect of the feature vectors. In Figure 8, in-layer feature #1 is the feature value
of the B layer near the peak of the echo. In-layer feature #2 is the feature value of the E layer region
(edge area) furthest from the peak. Figure 8 shows that the energy of the edge region is already low,
similar to the noise level, so there is little change in the target echo’s SNR. Thus, in-layer feature #1 for
the region where the echo energy is distributed is proportional to the SNR of target. Figure 8 shows
that in-layer features have fewer components to separate for a weak target. In contrast, the figure
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shows that the peak area feature of cross-layer feature vectors does not change much when the SNR of
the target goes down to the noise level. This means that the remaining portion of the energy still has
some feature components to classify a target in the cross-layer features. Thus, cross-layer features can
detect a weak target efficiently and constantly, making the target continuously detectable.
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4.3. Results and Discussions

We evaluated the average classification performance with 1000 simulations using weak, strong,
and all data. For weak target detection analysis, 512 weak data were selected from the lower half of
all data based on SNR and 611 remaining data were used for strong data. In total, 1000 clutters in
each ping were randomly selected from the experimental data because the number of clutters greater
than the noise level was huge. Weak and strong clutters were selected by the same algorithm used for
target echoes. Table 2 shows the classification performance over all experimental data, and Table 3
shows the classification for weak and strong signals. In Table 2, the proposed algorithm is effective
in terms of both the classification percentage and false alarm percentage. In Table 3, feature vectors
trained in Table 2 are tested for weak and strong signals, and the results are comparable to the results
in Table 2. The classification ratio is almost the same, especially for weak target signals. This means
that the proposed algorithm has outstanding performance even for weak target signals and can be an
effective scheme for active sonar system long-range detection applications.

Table 2. Classification table of the proposed algorithm with the test data for 1000 simulations with
all data.

Predicted Class

Target Clutter

True Class
Target 95.8% 4.2%
Clutter 0.15% 99.85%
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Table 3. Classification table of the proposed algorithm with the test data for 1000 simulations with
all data.

Predicted Class

Target Clutter

True Class
Weak

Target 95.7% 4.3%
Clutter 0.3% 99.7%

Strong Target 99.2% 0.8%
Clutter 1.2% 99.8%

In order to analyze the influence of strong clutters, only strong clutters were selected and trained.
Thereafter, the process was the same as in the case where all data was analyzed. In Table 4, the target
classification rate is about 8% lower than the results of Table 1, and the false alarm ratio is similar
to the results of Table 2. This result indicates that clutters for training should be selected according
to clutter distributions of the experimental area for weak target classification; otherwise, the target
classification performance can be degraded. Thus, even if there is no target in the sea, data acquisition
with active sonar in the underwater environment is needed to accumulate clutter distributions. Table 4
shows the average results of the classification performance when only the strong clutters are trained.
In Table 5, the weak and strong target classification percentages are 74.3% and 85.3%, respectively. This
shows that the trained clutters affect target classification, so all of the clutters should be trained for
classification performance improvement as mentioned above.

Table 4. Classification table of the proposed algorithm with the test data for 1000 simulations (trained
for only strong clutters).

Predicted Class

Target Clutter

True Class
Target 87.7% 12.3%
Clutter 0.47% 99.53%

Table 5. Classification table of the proposed algorithm with the test data (weak and strong data) for
1000 simulations (training for only strong clutters).

Predicted Class

Target Clutter

True Class
Weak

Target 74.3% 25.7%
Clutter 0.2% 99.8%

Strong Target 85.3% 14.7%
Clutter 0.5% 99.5%

Figure 9 shows a ping history (50 pings of accumulated data) display comparing the proposed and
conventional algorithms. The conventional algorithm is employed by presetting a threshold at 3 dB
and extracting all signals that show the shape of the energy distribution up to the local minimum, the
form of the largest peak center, and the gradually decreasing shape around the peak. This conventional
algorithm is currently being applied to sonar systems and may not be the existing state of the art. We
consider, however, that it is effective to compare the performance of the proposed algorithm. The
situation is that the target comes toward the ownship and turns to the left during the last 10 pings.
In the proposed algorithm result, target echoes are well classified and displayed. In addition, the
number of clutters is greatly reduced compared with the conventional algorithm. This result shows
that the proposed algorithm has a better performance in terms of the classification rate and false alarms.
It can also help sonar operators greatly when detecting a target manually.
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For the 1123 data set, the receiver operating characteristic (ROC) curves of Tables 2 and 4 are
displayed in Figure 10. The results show that case 1 has a much better performance than case 2.
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5. Conclusions

In this paper, we investigated whether targets and clutters can be distinguished with a multilayer
algorithm in various environments. The proposed algorithm was applied to all data above the
noise level without a preset threshold and the performance was analyzed and presented according
to weak, strong, and all data. The evaluation results confirmed that a target can be detected and
separated from clutters by the proposed algorithm in real underwater environments, even for low
SNRs. Thus, the proposed algorithm is very useful and effective for underwater target classification at
long ranges. Furthermore, this conclusion is based on experimental data acquired over several years
via the application of a real active sonar system. Note that the experimental data may not represent
all the characteristics of underwater environments, but we think that the data are sufficient to verify
the possibility of applying our proposed algorithm to sonar systems; this is because the data were
collected under a wide variety of field conditions, including different seasons, varied target motion,
and wide sea areas.

This study shows that the spatial characteristics in multilayered areas can be used as feature
vectors that lead to a high classification rate with a low false alarm rate. Ping history results also
indicated that the proposed approach is better than the conventional one. The ability to classify targets
without the use of thresholds is a huge advantage in anti-submarine operations. Note that the proposed
algorithm can be applied to all the signals without a threshold so that it attempts detection for signals
that would be ignored by a conventional threshold exclusion process. Thus, the proposed algorithm
can greatly improve the performance of classification and tracking, and a sonar operator’s detection
capability. In addition, we believe the algorithm is practical because it is the result of using real data
from an active sonar operating on a naval ship in real underwater environments. For further study,
the cepstrum may be a good candidate for the feature vector component due to its scale invariance
property, and the fusion of different approaches may also be a useful approach for active sonar systems.
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