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Featured Application: The process proposed in this study could be an effective method for the
treatment of high-tech industrial wastewater to meet the new tetramethylammonium hydroxide
(TMAH) discharge limit.

Abstract: Nitrogen-containing wastewater is an important issue in optoelectronic and semiconductor
industries. Wastewater containing nitrogen compounds such as ammonium, monoethanolamine
(MEA), and tetramethylammonium hydroxide (TMAH) must be properly treated due to concerns
about health and environmental effects. MnCe-GAC (granular activated carbon) processes were
developed in this study for the treatment of TMAH-contaminated wastewater in high-tech industries.
The MnCe-GAC processes could effectively remove ammonium, MEA, and TMAH from aqueous
solutions. The removal efficiencies of ammonium and MEA by these processes were better than
observed for TMAH. Parameters affecting TMAH removal such as type of process, type of wastewater
(synthetic or real), pH, salts, and t-butanol were investigated. In general, removal efficiencies of
TMAH by various processes were in the following order: MnCe-GAC/O3/H2O2 > MnCe-GAC/O3

> MnCe-GAC/H2O2 > MnCe-GAC > GAC. The negative effect of sulfate and nitrate on pollutant
removal might be due to the salting-out effect. Based on t-butanol experiments, the main degradation
mechanisms of TMAH by the MnCe-GAC/O3/H2O2 process likely involved hydroxyl radicals.
The process proposed in this study could be an effective alternative method for the treatment of
high-tech industrial wastewater to meet the new TMAH discharge limit.

Keywords: TMAH; MEA; MnCe-GAC; high-tech; wastewater

1. Introduction

Nitrogen-containing wastewater is an important issue in high-tech industries such as optoelectronic
and semiconductor manufacturing industries. For example, in thin-film transistor liquid crystal
display (TFT-LCD) manufacturing processes, wastewater containing high concentrations of nitrogen
compounds (such as ammonium (NH4

+), monoethanolamine (MEA), or tetramethylammonium
hydroxide (TMAH)) is generated [1,2]. TMAH is a caustic developing fluid, widely used in the
manufacture of TFT-LCD and light emitting diodes (TFT-LED) and in semiconductor industries as
a developer or etchant [2–4]. For example, a TFT-LCD factory (sixth generation) could generate
30,000 cubic meter per day (CMD) of TMAH-containing wastewater [5]. In Japan, one factory could
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discharge roughly 2500 tons of TMAH per year [6]. In addition, MEA is used as a stripper in
the manufacture of TFT-LCD [7]. Exposure to TMAH may result in muscle weakness, muscular
paralysis, dyspnea, hyperglycemia, respiratory deterioration, alkaline chemical burns, and/or sudden
death [8–10]. For example, Lin et al. [10] reported on three fatal incidents in Taiwan due to TMAH
exposure. TMAH must be properly treated before discharge due to its health and environmental
effects [11]. These pollutants in wastewater discharged from TFT-LCD manufacturing factories are
already being legislatively regulated in Taiwan and Japan [9]. In addition, the TMAH effluent standard
at the Hsinchu Industrial Science Park, Taiwan, was modified from 60 to 30 mg/L in 2015 due to human
health and environmental concerns. High concentrations of TMAH solutions from factories could
be physicochemically recovered and recycled, while wastewater containing lower concentrations of
TMAH (in the order of hundreds of mg/L) can be treated in wastewater treatment facilities [9,12].

Common treatment processes for nitrogen-containing wastewater include adsorption [13–15],
biological processes [9,11], ozonation [16], chemical oxidation [17], electrodialysis [18], and
UV/persulfate [19,20]. Although wastewater containing high concentrations of TMAH can be treated
by Fenton oxidation and catalytic oxidation processes, costs of these processes can be very high [11].
The TFT-LCD industry contributed more than 100 billion dollars annually due to the growing
demand in electronic products [2]. There is a need to develop effective processes for the removal
of nitrogen-containing wastewater because meeting the new TMAH effluent standard will not be
an easy task. An alternative effective treatment process (MnCe-GAC/O3/H2O2) for the treatment of
nitrogen-containing wastewater is proposed and investigated in this study.

2. Materials and Methods

Samples of wastewaters discharged from four optoelectronic (Plants 1–4) and six semiconductor
(Plants 5–10) plants in Central Taiwan Science Park, Taiwan, were collected and analyzed in this
research, and their temperature, conductivity, suspended solids (SS), chemical oxygen demand (COD),
biological oxygen demand (BOD), nitrate, sulfate, ammonium, and TMAH are summarized in Table 1.
Plant 1 is a LCD glass substrate (LCD-GS) manufacturing factory, Plant 2 is a photovoltaic cell (PV)
and TFT-LCD manufacturing factory, Plants 3–4 are TFT-LCD manufacturing factories, Plant 5 is an
integrated circuit (IC) design and manufacturing factory (including flash memory (FM) and dynamic
random access memory (DRAM), Plants 6–9 are IC manufacturing factories, and Plant 10 is an IC
packaging and testing factory (IC-P&T). Plant 3 is a typical TF-LCD manufacturing plant with a
relatively high wastewater flow rate (12,381 CMD) and pollutant concentrations (SS 79.4 mg/L, COD
296.6 mg/L, BOD 169.43 mg/L, NH3-N 9.78 mg/L, TMAH 100.21 mg/L) among these plants. It was
chosen for the subsequent real wastewater test. The experimental set-up of MnCe-GAC (granular
activated carbon) processes (Figure 1) made it possible to explore ten treatment processes: GAC,
MnCe-GAC, O3, GAC/O3, MnCe-GAC/O3, H2O2, GAC/H2O2, MnCe-GAC/H2O2, GAC/O3/H2O2,
and MnCe-GAC/O3/H2O2. Since salts might be present in wastewaters, the effect of three model
salts (including sulfate, nitrate, and carbonate) on the processes was investigated. Both synthetic
(ammonium, MEA, or TMAH) and real wastewater (Plant 3) samples were treated by the above
processes. A known amount of solid (1.0 g of GAC or MnCe-GAC) was packed in a column (internal
diameter 1.1 cm, column height 3.9 cm, flow rate 100 mL/min). A vessel (500 mL) was filled with
known concentrations of a target solution (ammonium, MEA, or TMAH) with pH adjusted to the
desired values (3, 7, or 11), and the solution was circulated through the column as indicated in
Figure 1. A known amount of O3 and/or H2O2 was added into the system as the process required.
Samples were collected, filtered, and analyzed in triplicate within acceptable analytical error (±5%).
TMAH, monomethylamine (MH, CH6ClN), dimethylamine (DH, C2H8ClN), and trimethylamine (TH,
C3H10ClN) concentrations were analyzed by Dionex ICS-1100 ion chromatography system with Ion
Pac CS19A IC columns and Dionex CERSTM 300.
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Table 1. Characteristics of wastewaters discharged from high-tech industry plants (n = 3).

Plant (1) Product pH Cond. (2) SS COD BOD Nitrate Sulfate NH3-N TMAH Discharge

µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L CMD

Plant 1 LCD-GS 7.1 1351 32.7 82.2 38.44 6.84 130.46 2.12 35.03 5447
Plant 2 PV, TFT-LCD 6.8 2255 40.4 80 36.65 30.42 156.59 3.24 127.86 9892
Plant 3 TFT-LCD 6.9 3588 79.4 296.6 169.43 42.18 160.32 9.78 100.21 12,381
Plant 4 TFT-LCD 6.7 3254 82.0 205.1 70.31 15.25 309.75 1.73 64.97 8738
Plant 5 FM, DRAM 6.9 1546 16.1 28.8 14.78 8.01 281.31 6.87 39.76 5691
Plant 6 IC 6.5 7390 6.4 150.1 35.70 188.16 1876.62 12.54 91.19 3565
Plant 7 IC 6.5 7394 4.8 148.7 31.03 274.28 1850.13 9.75 84.41 3503
Plant 8 IC 6.4 10,941 6.5 137.3 37.87 96.99 3167.68 13.96 109.43 4062
Plant 9 IC 6.5 10,643 25.0 335.7 139.33 166.73 1212.35 ND (3) 84.38 17,778

Plant 10 IC-P&T 7.2 1568 33.3 40.3 13.65 78.31 337.31 ND 27.33 3586
(1) LCD-GS = LCD glass substrate; PV = photovoltaic cells; FM = flash memory; IC-P&T = IC packaging and testing;
(2) Cond. = conductivity; (3) ND = under detection limit.
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Figure 1. Experimental set-up of MnCe-GAC processes (1–oxygen cylinder, 2–ozone generator, 3–
flow meter, 4–hydrogen peroxide storage tank, 5–mixer, 6–reactor, 7–peristaltic pump, 8–activated 
carbon, 9–pH meter). 

MnCe-GAC was prepared by impregnating Mn and Ce oxides onto GAC (F400, Calgon Carbon 
Corporation) surfaces. For example, known amounts of Mn(NO3)2·4H2O and Ce(NO3)3·6H2O solids 
(molar ratio of Mn:Ce = 6:4) were dissolved in deionized water. A known amount of GAC was 
immersed in the above solution and sonicated for 30 min before being dried in an oven at 90 °C for 
12 h. The resulting mixture was heated at 200 °C for 120 min and then washed several times with 
deionized water to remove detachable Mn and Ce oxides. The resulting composite (MnCe-GAC) was 
dried at 105 °C and stored at room temperature until needed. Apparent bulk density, particle density, 
and pore volume fraction of GAC were 0.54 kg/L, 0.78 kg/L, and 0.82 kg/L, respectively. Prior to being 
used in this study, GAC was sieved so that the particle size was between 0.425 and 0.600 mm, washed 
several times with deionized water, and baked in an oven at 200 °C .The BET-pecific surface areas 
and surface morphology of MnCe-GAC and GAC were examined by ASAP 2010 accelerated surface 
area and porosimetry system (Micromeritics, Norcross, GA, USA) and field emission scanning 
electron microscope (FE-SEM) (SEM, ABT-150S, Topcon, Japan), respectively. 

The amount of Mn and Ce impregnated on MnCe-GAC was measured by extracting MnCe-GAC 
in a HNO3 (10%) solution for 3 h at 180 °C. Total Mn or Ce in the extracted solution was measured by 
inductively coupled plasma (ICP-AES, Kontron, S-35). The amount of Mn and Ce on the spent MnCe-
GAC (after treatment) was measured as well. The loss of Mn and Ce on MnCe-GAC after the 
treatment processes was determined by comparing the amount of Mn and Ce between newly 
prepared MnCe-GAC and spent MnCe-GAC. All labware were acid washed and thoroughly rinsed 
with deionized water. Chemicals used in this study were reagent grade, unless specified. Hydrogen 
peroxide (35%) was purchased from Sigma-Aldrich Chemical Co. H2O2 was added into the reactor 
by a syringe pump at a constant feed rate. Ozone was produced by the ozone generator OW-K2/O 
(Taiwan) and was introduced into the reactor via a fine bubble diffusor. A standard iodometric 
titration method was used to determine the concentration of ozone [21]. 

Figure 1. Experimental set-up of MnCe-GAC processes (1—oxygen cylinder, 2—ozone generator,
3—flow meter, 4—hydrogen peroxide storage tank, 5—mixer, 6—reactor, 7—peristaltic pump,
8—activated carbon, 9—pH meter).

MnCe-GAC was prepared by impregnating Mn and Ce oxides onto GAC (F400, Calgon Carbon
Corporation) surfaces. For example, known amounts of Mn(NO3)2·4H2O and Ce(NO3)3·6H2O solids
(molar ratio of Mn:Ce = 6:4) were dissolved in deionized water. A known amount of GAC was
immersed in the above solution and sonicated for 30 min before being dried in an oven at 90 ◦C for
12 h. The resulting mixture was heated at 200 ◦C for 120 min and then washed several times with
deionized water to remove detachable Mn and Ce oxides. The resulting composite (MnCe-GAC) was
dried at 105 ◦C and stored at room temperature until needed. Apparent bulk density, particle density,
and pore volume fraction of GAC were 0.54 kg/L, 0.78 kg/L, and 0.82 kg/L, respectively. Prior to being
used in this study, GAC was sieved so that the particle size was between 0.425 and 0.600 mm, washed
several times with deionized water, and baked in an oven at 200 ◦C. The BET-pecific surface areas and
surface morphology of MnCe-GAC and GAC were examined by ASAP 2010 accelerated surface area
and porosimetry system (Micromeritics, Norcross, GA, USA) and field emission scanning electron
microscope (FE-SEM) (SEM, ABT-150S, Topcon, Japan), respectively.

The amount of Mn and Ce impregnated on MnCe-GAC was measured by extracting MnCe-GAC
in a HNO3 (10%) solution for 3 h at 180 ◦C. Total Mn or Ce in the extracted solution was measured
by inductively coupled plasma (ICP-AES, Kontron, S-35). The amount of Mn and Ce on the spent
MnCe-GAC (after treatment) was measured as well. The loss of Mn and Ce on MnCe-GAC after
the treatment processes was determined by comparing the amount of Mn and Ce between newly
prepared MnCe-GAC and spent MnCe-GAC. All labware were acid washed and thoroughly rinsed
with deionized water. Chemicals used in this study were reagent grade, unless specified. Hydrogen
peroxide (35%) was purchased from Sigma-Aldrich Chemical Co. H2O2 was added into the reactor
by a syringe pump at a constant feed rate. Ozone was produced by the ozone generator OW-K2/O
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(Taiwan) and was introduced into the reactor via a fine bubble diffusor. A standard iodometric titration
method was used to determine the concentration of ozone [21].

3. Results and Discussion

3.1. Characteristics of Wastewater Composition from Photoelectric and Semiconductor Factories

Wastewaters from four photoelectric (Plants1–4) and six semiconductor (Plants 5–10) plants were
shown in Table 1. Most of these plants (except Plant 10) had higher TMAH concentrations than the
discharge limit (30 mg/L).

3.2. Characteristics of MnCe-GAC

The BET-specific surface areas for GAC and MnCe-GAC were approximately 811 and 590 m2/g,
respectively. The lower surface area of MnCe-GAC indicated that some of the pores of GAC might be
blocked by the impregnation of Mn and Ce on the GAC surface. Surface characteristics of GAC and
MnCe-GAC were further examined by SEM as shown in Figure 2a and b, respectively. The amount
of Mn and Ce on MnCe-GAC surfaces was approximately 65.1 mg Mn/g (SD = 1.5 mg Mn/g) and
27.0 mg Ce/g (SD = 1.1 mg Ce/g), respectively. The loss of Mn and Ce on MnCe-GAC was determined
by comparing the amount of Mn and Ce on MnCe-GAC before and after the treatment processes. In
these tests, the total loss of Mn and Ce was less than 6%. This result indicated that MnCe-GAC has the
potential to be reused.
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3.3. Removal of Ammonium, MEA, and TMAH by Various Processes (Synthetic Wastewater)

Removal results for ammonium, MEA, and TMAH by the processes examined in this study (GAC,
MnCe-GAC, O3, H2O2, GAC/O3, GAC/H2O2, MnCe-GAC/O3, MnCe-GAC/H2O2, GAC/O3/H2O2, and
MnCe-GAC/O3/H2O2) are shown in Figure 3 (pH 11, Co = 100 mg/L, V = 0.5 L, solid 1g, 0.25 mmol
O3/min, 0.125 mmol H2O2/min, 30 min). In general, the removal efficiencies of ammonium and MEA
by these processes were better than that of TMAH. For example, the removal efficiencies of ammonium,
MEA, and TMAH by MnCe-GAC/O3/H2O2 were 92.3, 71.6, and 42.0%, respectively. This result is
in agreement with Lei et al. [11]. They reported that the degradation rate of MEA was significantly
higher than that of TMAH. In addition, the ozone processes (O3, GAC/O3, and MnCe-GAC/O3) had
slightly better removal efficiencies (40, 50, and 64% for ammonium removal, respectively) than the
H2O2 processes (H2O2, GAC/H2O2, and MnCe-GAC/H2O2; 28, 38, and 61% ammonium removal,
respectively) (Figure 3). The removal of ammonium and MEA by the MnCe-GAC/O3/H2O2 process
was slightly better than that observed for the GAC/O3/H2O2 process. However, the removal of
TMAH by the MnCe-GAC/O3/H2O2 process (42%) was significantly greater than that observed for
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the GAC/O3/H2O2 process (29%) (Figure 3). The addition of H2O2 could improve the removal of
pollutants in wastewater in ozonation processes and it might be due to the formation of •OH radicals
by the conjugated base of H2O2 with ozone [16,22–25]. In addition, an overdose of H2O2 might act as a
scavenger and react with •OH instead of ozone. Therefore, the overall removal efficiency might be
hindered by the overdose of H2O2. Therefore, the ratio of H2O2/O3 applied in the process is important.
The stoichiometric molar ratio of H2O2/O3 being 1/2 [16] was applied in the study to ensure high
efficiency of the treatment processes. As shown in Figure 3, MnCe-GAC/O3/H2O2 had the highest
removal efficiencies among these processes for ammonium, MEA, and TMAH removal. This result
indicated that the removal mechanism of the process is a combination of adsorption and degradation
via catalysis/oxidation. The addition of H2O2 could improve the removal of pollutants in wastewater
in ozonation processes. Therefore, this process was used in the subsequent experiments.
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Figure 3. Removal of (a) Ammonium, (b) Monoethanolamine (MEA), and (c) Tetramethylammonium
hydroxide (TMAH) by various processes (pH 11, Co = 100 mg/L, V = 0.5 L, solid 1g, 0.25 mmol O3/min,
0.125 mmol H2O2/min, 30 min).

The solution pH played a significant role in these processes. A higher solution pH (pH 11) had
a better ammonium removal than those of pH 3 and pH 7 (Figure 4). For example, the removal of
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ammonium at pH 3, 7, and 11 by the MnCe-GAC/O3/H2O2 process were 34, 61, and 92%, respectively
(Co = 100 mg/L, V = 0.5 L, solid 1g, 0.25 mmol O3/min, 0.125 mmol H2O2/min, 30 min). Similar
results were obtained for the removal of TMAH by these processes (Figure 5). The solution pH had a
significant impact on the removal of TMAH. In general, the order of removal efficiencies of TMAH is
as follows: pH 11 > pH 7 > pH 3. At high pH values, ozone decomposes into nonselective hydroxyl
radicals which oxidize organic pollutants. Similar pH effect was observed in the findings reported
by Lu et al. [26] and the authors investigated using activated carbon/silver catalytic combined with
ozone and hydrogen peroxide for the removal of TMAH. On the other hand, under acidic or neutral
conditions, the direct attack on organic pollutants by molecular ozone occurs. In general, hydroxyl
radicals could destroy organic compounds more effectively than ozone [16,27].
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Since significant amounts of salts might be present in the wastewater, the effect of these salts on
the processes has to be investigated in order to be able to apply the processes effectively in practice.
Three types of salts such as sulfates, nitrates, and carbonates were chosen in this study as model
compounds. As shown in Figure 6, these salts had a negative effect (Figure 6) on the removal of these
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pollutants at the tested pH values (3, 7, and 11). For example, ammonium removal decreased from
61 to 33, 45, and 36% due to the presence of sulfates (100 mg/L), nitrates (500 mg/L), and carbonates
(500 mg/L) in solution, respectively (Figure 6). TMAH removal decreased from 80 to 46, 41, and 46%
in aqueous solutions containing sulfates (100 mg/L), nitrates (250 mg/L), and carbonates (250 mg/L),
respectively (Figure 7). Salts can affect the ozone oxidation process in several ways. For example, the
presence of a salt generally lowers the solubility of a gas (salting out). A change in ozone solubility
can be observed in the salt-containing solutions [28,29]. Rischbieter et al. [28] reported that sulfates
and nitrates could reduce the solubility of ozone significantly with Henry constants about 15.3 and
12.1 kPa m3 mol−1, respectively (salt concentration 0.5 kmol m−3). Salts can also influence the size
distribution of gas bubbles in a bubble column. They might inhibit bubble coalescence, resulting in
a lower average bubble diameter. As a result, mass transfer rates might increase [30,31]. Carbonate
ions are well-known species for scavenging the radicals involved in ozone decomposition [28,29,32].
On the other hand, sulfate, phosphate, nitrate, and chloride ions are extremely slow in reacting with
•OH. Their scavenging effect can generally be neglected [33]. Therefore, the negative effect of sulfates
and nitrates on pollutants removal might due to the salting-out effect.
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This study proposed that MnCe-GAC could enhance the formation of free radicals (such as hydroxyl
radicals) in the MnCe-GAC/O3/H2O2 process and subsequent oxidation of adsorbed pollutants [34,35].
This assumption was tested by the addition of t-butanol. t-Butanol has a high rate constant with •OH
as shown in Equation (1) [36].

CH3C(CH3) 2OH +•OH→ CH2C(CH3) 2OH + H2O (k= 6.0*108 M−1s−1) (1)

t-Butanol could be used as a hydroxyl radical scavenger [37] and served as an •OH-scavenger
in this study. If the removal of pollutants were significantly hindered by the addition of t-butanol,
it indicated that the hydroxyl radical reaction might play an important role in the removal processes.
The effect of t-butanol on the removal of ammonium and TMAH by the MnCe-GAC/O3/H2O2 process
is shown in Figure 8a,b, respectively. As indicated in the figure, the removal of ammonium as well
as TMAH was significantly reduced due to the presence of t-butanol. For examples, the removal
of ammonium decreased from 92 to 46% and the removal of TMAH decreased from 80 to 51%.
The removal efficiencies of ammonium and TMAH were reduced to 46 and 29%, respectively, due
to the presence of t-butanol. In agreement with the findings of Wang et al. [38], this result indicated
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that the hydroxyl radical reaction might play an important role in the removal processes. Kim and
Choi [39] reported that •OH could initiate the degradation of TMAH by either abstracting H-atoms or
adding hydrocarbon molecules. Chen et al. [40] reported that metal oxide catalysts (such as Mn-Ce-O
composites) were efficient catalysts and they possessed many oxidation states to facilitate electron
transfer processes in the radical-producing step of wet oxidation.
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3.4. Real Wastewater

The intermediate products produced during TMAH degradation [12] by the MnCe-GAC/O3/H2O2

process, including NH4
+, MH, DH, and TH are presented in Figure 9. More than 80 and 73% of TMAH

were removed in synthetic and real wastewaters, respectively. For example, in real wastewater, the
concentrations of NH4

+, MH, DH, TH, and TMAH were under detection limit (ND), 3.38, 1.17, ND,
and 26.89 mg/L, respectively (120 min). Both NH4

+ and TH were not observed in the aqueous solution.
A small amount of MH and DH (less than 3.5 mg/L) was observed in the process. This result indicated
that the MnCe-GAC/O3/H2O2 process could remove TMAH efficiently to meet the discharge limit of
the Science Park (30 mg/L) for both synthetic and real wastewaters.
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3.5. Reaction Kinetics

Experimental results indicated that the MnCe-GAC processes could effectively remove ammonium,
MEA, and TMAH from aqueous solutions. In general, the removal of ammonium and MEA by these
processes were better than that of TMAH as shown in Figure 10. Since the MnCe-GAC/O3/H2O2

process had the highest removal efficiency among these processes, reaction kinetics of the process
was investigated. A suitable model could help in future design and implementation of the process.
Many sophisticated models such as pore diffusion, homogeneous surface diffusion, and heterogeneous
diffusion models have been developed to describe various kinetics processes. However, these
models might not be convenient for practical use due to the mathematical complexity of these
models [41,42]. Therefore, four simplified models (pseudo-first-order equation or generalized first
order equation [41–43], pseudo-second-order equation [2], intra-particle diffusion model [2,38,43–46],
and liquid film diffusion [46]) were applied in this research.
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Pseudo-first-order equation:
dqt

dt
= K1(qe − qt), (2)

1
qt

=

(
K1

qe

)(1
t

)
+

1
qe

. (3)

In the above equations, qt is the amount of adsorbate adsorbed (mg g−1) at time t (min), qe is the
maximum adsorption capacity (mg g−1), and K1 is the pseudo-first-order rate constant (min−1) for
the process.

Pseudo-second-order equation:
dqt

dt
= K2(qe − qt)

2, (4)

t
qt

=
1

K1q2
e
+

t
qe

. (5)

In the above equations, K2 is the pseudo-second-order rate constant (g mg−1 min−1).
Intra-particle diffusion model (or Weber and Morris’ method):

qt = Kp × t1/2 + Cp. (6)

In the above equation, Cp is the intercept (mg g−1) and Kp is the intra-particle diffusion rate
constant (mg min−0.5 g−1).

Liquid film diffusion model:

ln
(
1−

qt

qe

)
= −KLt. (7)

In the above equation, KL is the liquid film diffusion rate constant (min−1) for the adsorption process.
Experimental and simulation results are presented in Figure 11 and Table 2. To evaluate these

models, root mean square error (RMSE) was calculated as follows:

RMSE =

√∑(
qexp − qpre

)2

N
. (8)
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Table 2. Simulation results with various kinetic models.

Adsorbate

Models Ammonium MEA TMAH

Pseudo-first-order model K1 0.161 0.101 0.056
RMSE 1.31 0.43 2.61

Pseudo-second-order model K2 0.00383 0.00196 0.00117
RMSE 12.81 8.89 8.15

Intra-particle diffusion model Kp 4.54 4.60 3.68
Cp 10.51 5.91 0.70

RMSE 60.25 22.28 0.38

Liquid film model KL 0.0698 0.0437 0.0247
RMSE 1.31 0.43 2.58

In the above equation, qexp and qpre are model experimental and predicted values, respectively,
and N is the number of data points.
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In general, a model with a smaller RMSE value is a better fit model. According to RMSE results
(Table 2), both pseudo-first-order equation and liquid film diffusion models seem to fit the removal
process of ammonium and MEA well with smaller RMSE values (1.31 and 0.43 for ammonium and
MEA, respectively). This result is similar to the findings reported by Wang et al. [38], who reported that
liquid film diffusion was probably the rate limiting step in an MnCe-AC/O3 process for the removal of
humic acid in solution. On the other hand, the intra-particle diffusion model can better describe the
removal process of TMAH (with lower RMSE = 0.38). The pseudo-second order model was unable to
fit these systems as indicated by a larger RMSE value. Based on the above simulations, liquid film
diffusion is probably the rate limiting step for the removal of ammonium and MEA. Both ammonium
and MEA probably transported from the bulk of the solution into the solid phase through the liquid
film. For the removal of TMAH, it seemed that intra-particle diffusion played an important role in
the process. TMAH was first adsorbed onto the MnCe-GAC surface, and then oxidized via catalytic
reactions. This result is similar to the results presented by Fan et al. (2006), who reported that the
intra-particle diffusion model was the best fitted model for GAC/H2O2 and FeGAC/H2O2 processes for
the removal of acid black 24.

4. Conclusions

An MnCe-GAC process combining O3 and H2O2 was evaluated in this research for the removal of
nitrogen-containing wastewater, typical of high-tech industries. Experimental results indicated that the
MnCe-GAC/O3/H2O2 process could effectively lower ammonium, MEA, and TMAH concentrations
to the desired levels. The presence of salts (carbonates, nitrates, or sulfates) interfered with the
removal of these pollutants. Model simulation results indicated that the rate limiting step for the
removal of ammonium and MEA is liquid film diffusion. On the other hand, intra-particle diffusion
is probably the rate limiting step for the removal of TMAH by the MnCe-GAC/O3/H2O2 process.
The process proposed in this study could be an effective alternative method for the treatment of
high-tech industrial wastewater.
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