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Featured Application: The amount of heat transferred by conduction is given by Fourier’s law.
For the study of these phenomena, the application of computational techniques that allow the
design of machines and devices used in engineering becomes crucial.

Abstract: In this paper, a new constitutive matrix [Mτ] for thermal conduction, for tetrahedral meshes,
in a steady state thermal regime is developed through a new algebraic methodology, using the Cell
Method as a computational method, which is included in the finite formulation. The constitutive
matrix defines the behavior of solids when they are under a thermal potential. The results are
compared with those obtained for the same problem by means of the constitutive matrix [Mλ]

developed previously, taking in both cases with a 2D axisymmetric model as reference, calculated
with the finite element method. The errors obtained with the new matrix [Mτ] are of the order of
0.0025%, much lower than those obtained with the matrix [Mλ].

Keywords: analytical method; computational technique; cell method; FEM; heat conduction; thermal
constitutive matrix

1. Introduction

Solid metals have a high thermal conductivity. The transmission of heat by conduction is attributed
to an exchange of energy between adjacent molecules and electrons in the conductive medium, without
the macroscopic transfer of matter and without a visible displacement of particles.

The amount of heat transferred by conduction is given by Fourier’s law. This law states that
the rate of heat conduction through a body per unit cross section is proportional to the temperature
gradient that exists in the body.

For the study of these phenomena, the application of analytical methods and computational
techniques that allow for the design of machines and devices used in engineering becomes
very important.

The analytical methods proposed in this article are of an algebraic type. They have been applied
to the study of heat transmission by conduction in a bimetallic tube. This case can be used for the
study of pipes, or, in our particular case, for the future studies of the stator or rotor of an electric
machine [1–4], as it can be seen in Figure 1. The most common heat sources in an electrical machine
are the electromagnetic phenomena in the cores (approximated here as metal tubes), heated by the
Joule effect in the conductors [5–7] and the mechanical friction in the moving parts [8,9].
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are the electromagnetic phenomena in the cores (approximated here as metal tubes), heated by the 
Joule effect in the conductors [5–7] and the mechanical friction in the moving parts [8–9]. 

In the present work, we propose the finite formulation (FF) [10–15], as well as the Cell Method 
(CM), [16–17] as an associated numerical method to analyze the numerical models proposed. In this 
methodology, we work with the global magnitudes associated with space-oriented elements such as 
volumes, surfaces, lines, and points of the discretized space, as well as to temporal elements, instead 
of the field magnitudes associated with independent variables with spatial and temporal coordinates 
[16–20]. 

  
(a) (b) 

Figure 1. (a) Stator of an electrical machine. (b) Rotor of an electrical machine. 

In addition, the equations of constitutive type (equations of the medium) are clearly 
differentiated from the topological type (equations of balance) [10]. In FF, the physical laws that 
govern the thermal laws of heat transfer associated with electrical devices are expressed in their 
integral form. In this way, the final system of equations is posed directly, without the need to 
discretize the equivalent differential equations [20]. 

The thermal analysis of electrical devices using this methodology greatly facilitates the 
implementation of the boundary conditions and continuity when working with global magnitudes, 
and, furthermore, directly raises the system of equations without the need to discretize the 
differential equations. 

Three methodologies have been formulated previously in order to obtain the constitutive 
thermal matrix. These methods are those by Tonti [16], Bullo [21–22], and the method proposed by 
Specogna [14], for problems of electrical conduction, which we have adapted to thermal conduction 
[10–13]. 

These three methods use the projections of edges and surfaces from dual to primal space. They 
also use local coordinate systems with subsequent transformations to global coordinates. We 
calculate the barycenters of the dual surfaces, and then obtain a weighted dual barycenter from those 
that were previously found. 

Tonti [16] discusses a new 2D numerical method for the solution of temperature field equations 
using CM. The essence of the method is to directly provide a discrete formulation of field laws. It is 
proven that, for linear interpolation, the stiffness matrix obtained coincides with the one of the finite 
element method (FEM). For quadratic interpolation, however, the present stiffness matrix differs 
from that of FEM; moreover, it is asymmetric. It is shown that by using a parabolic interpolation, a 
convergence of the fourth order is obtained. This is greater than the one obtained with FEM, using 
the same interpolation. 

Bullo [21] calculates, through CM, the 2D fields applied to a coupled computation of electric and 
thermal conduction using a linear interpolation of both the electric and temperature fields, and uses 
a quadratic interpolation for the thermal analysis approach. Bullo [22] uses CM for the solution of 
coupled problems of steady-state electric and transient thermal conductions in 3D regions. Dual 
barycentric cell complexes are used for both space and time domains, the latter inducing a Crank–
Nicolson time integration scheme.  

Figure 1. (a) Stator of an electrical machine. (b) Rotor of an electrical machine.

In the present work, we propose the finite formulation (FF) [10–15], as well as the Cell Method
(CM), [16,17] as an associated numerical method to analyze the numerical models proposed. In this
methodology, we work with the global magnitudes associated with space-oriented elements such
as volumes, surfaces, lines, and points of the discretized space, as well as to temporal elements,
instead of the field magnitudes associated with independent variables with spatial and temporal
coordinates [16–20].

In addition, the equations of constitutive type (equations of the medium) are clearly differentiated
from the topological type (equations of balance) [10]. In FF, the physical laws that govern the thermal
laws of heat transfer associated with electrical devices are expressed in their integral form. In this way,
the final system of equations is posed directly, without the need to discretize the equivalent differential
equations [20].

The thermal analysis of electrical devices using this methodology greatly facilitates the
implementation of the boundary conditions and continuity when working with global magnitudes,
and, furthermore, directly raises the system of equations without the need to discretize the
differential equations.

Three methodologies have been formulated previously in order to obtain the constitutive thermal
matrix. These methods are those by Tonti [16], Bullo [21,22], and the method proposed by Specogna [14],
for problems of electrical conduction, which we have adapted to thermal conduction [10–13].

These three methods use the projections of edges and surfaces from dual to primal space. They also
use local coordinate systems with subsequent transformations to global coordinates. We calculate the
barycenters of the dual surfaces, and then obtain a weighted dual barycenter from those that were
previously found.

Tonti [16] discusses a new 2D numerical method for the solution of temperature field equations
using CM. The essence of the method is to directly provide a discrete formulation of field laws. It is
proven that, for linear interpolation, the stiffness matrix obtained coincides with the one of the finite
element method (FEM). For quadratic interpolation, however, the present stiffness matrix differs
from that of FEM; moreover, it is asymmetric. It is shown that by using a parabolic interpolation,
a convergence of the fourth order is obtained. This is greater than the one obtained with FEM, using
the same interpolation.

Bullo [21] calculates, through CM, the 2D fields applied to a coupled computation of electric and
thermal conduction using a linear interpolation of both the electric and temperature fields, and uses a
quadratic interpolation for the thermal analysis approach. Bullo [22] uses CM for the solution of coupled
problems of steady-state electric and transient thermal conductions in 3D regions. Dual barycentric
cell complexes are used for both space and time domains, the latter inducing a Crank–Nicolson time
integration scheme.

Specogna [14], by using a CM formulation for eddy currents, presents a geometric approach to
construct approximations of the discrete magnetic and Ohm’s constitutive matrices. In the case of the
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Ohm’s matrix, he also shows how to make it symmetric. He compares the impact on the solution of
the proposed Ohm’s matrices, and an iterative technique to obtain a consistent right-hand-side term in
the final system is described.

González [12,13] developed a new constitutive matrix ([Mλ]) for thermal conduction in a transient
thermal regime using CM. He demonstrates that this matrix is equivalent to the electrical conduction
constitutive matrix in a steady state, and applies this constitutive matrix to the thermal analysis of
asynchronous electric machines in a transient regime.

Monzón-Verona [12,13] analyzed the temperature distribution in a conductor disk in a transitory
regime. The disk is in motion in a stationary magnetic field generated by a permanent magnet, and so
the electric currents induced inside it generate heat. The system acts as a magnetic brake, and is
analyzed using infrared sensor techniques. In addition, for the simulation and analysis of the magnetic
brake, a new thermal convective matrix for the 3D Cell Method (CM) is proposed.

In the present article, a new constitutive thermal conduction matrix [Mτ] is obtained with better
results than with [Mλ].

The new thermal conduction constitutive matrix [Mτ] formulated with CM in 3D has been verified
by contrasting the numerical results with those obtained by FEM. The difference between the CM
results obtained and those obtained in FEM is less than 0.0025%.

The main advantage of the method proposed in this article is its simplicity. The constitutive
matrices developed by previous methods presented complex calculations, while the new constitutive
matrix depends exclusively on the coordinates of the vertices of the tetrahedra, which constitute
the mesh.

This work has been divided into the following sections: Section 2 explains, in detail, the analytical
methodology for obtaining the new thermal conduction constitutive matrix [Mτ] in CM, formulating
the corresponding conductive term. Section 3 shows the results obtained, validating the previous
formulation through the computational simulation with [Mλ] and [Mτ]. Finally, Section 4 presents
the conclusions.

2. Calculation of the New Thermal Constitutive Matrix [Mτ]

In the present section, we obtain the analytical formulation of the matrix [Mτ] that has been
developed to improve the results obtained with [Mλ]. In a steady state, and without internal heat
sources, the equation of energy balance without mass transfer [10–13] is in the CM,

D̃(−MτGT) = Gt(MτGT) = 0. (1)

The domain is meshed by tetrahedral elements. In CM, the tetrahedron of Figure 2 will be
taken as the reference cell, with its nodes, and edges and dual surfaces oriented internally and
externally, respectively.
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In CM, the discrete gradient operator for the reference tetrahedron is defined as follows:

[G] =



−1 1
−1 0
−1 0

0 0
1 0
0 1

0 −1
0 0
0 −1

1 0
−1 1
0 1


. (2)

It is assumed that the temperature is distributed within the tetrahedron, following the affine
function of Cartesian spatial coordinates

τi(x, y, z) = gx x + gy y + gz z + a, (3)

where a is an auxiliary constant introduced in order to later develop a square matrix. Then,
the temperatures in the primary nodes of the reference tetrahedron are as follows:

τ0 = gx x0 + gy y0 + gz z0 + a
τ1 = gx x1 + gy y1 + gz z1 + a
τ2 = gx x2 + gy y2 + gz z2 + a
τ3 = gx x3 + gy y3 + gz z3 + a

, (4)

where the Cartesian coordinates of the nodes N = {n0, n1, n2, n3} are the following
n0

n1

n2

n3

 =


x0 y0 z0

x1 y1 z1

x2 y2 z2

x3 y3 z3

. (5)

The equation system shown in Equation (4), in matrix form, is as follows:
x0

x1

x2

x3

y0

y1

y2

y3

z0

z1

z2

z3

1
1
1
1




gx

gy

gz

a

 =


τ0

τ1

τ2

τ3

, (6)

which in short form can be written as

[B]4×4[Ga]4×1 = [τ]4×1, (7)

and then,
[Ga] = [B]−1[τ]. (8)

The Cramer rule can be used to solve Equation (6). The determinant of the system is

∆ =

∣∣∣∣∣∣∣∣∣∣∣
x0

x1

x2

x3

y0

y1

y2

y3

z0

z1

z2

z3

1
1
1
1

∣∣∣∣∣∣∣∣∣∣∣. (9)
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Then,

gx =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

τ0

τ1

τ2

τ3

y0

y1

y2

y3

z0

z1

z2

z3

1
1
1
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∆ , gy =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x0

x1

x2

x3

τ0

τ1

τ2

τ3

z0

z1

z2

z3

1
1
1
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∆ , gz =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x0

x1

x2

x3

y0

y1

y2

y3

τ0

τ1

τ2

τ3

1
1
1
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∆ . (10)

We do not calculate a because ∂a/∂x = ∂a/∂y = ∂ a/∂z = 0.

2.1. Analytical Development of gx, gy, and gz

To calculate gx, we developed Equation (10) using adjuncts of the determinant

gx = τ0


y1 z1 1
y2 z2 1
y3 z3 1


∆

− τ1


y0 z0 1
y2 z2 1
y3 z3 1


∆

+ τ2


y0 z0 1
y1 z1 1
y3 z3 1


∆

− τ3


y0 z0 1
y1 z1 1
y2 z2 1


∆

, (11)

and we obtain the following expression

gx = τ0
∆ [(y2z3 − y3z2) − (y1z3 − y3z1) + (y1z2 − y2z1)]

−
τ1
∆ [(y2z3 − y3z2) − (y0z3 − y3z0) + (y0z2 − y2z0)]

+ τ2
∆ [(y1z3 − y3z1) − (y0z3 − y3z0) + (y0z1 − y1z0)]

−
τ3
∆ [(y1z2 − y2z1) − (y0z2 − y2z0) + (y0z1 − y1z0)]

. (12)

In the same way, we obtain gy and y gz

gy = −
τ0
∆ [(x2z3 − x3z2) − (x1z3 − x3z1) + (x1z2 − x2z1)]

+ τ1
∆ [(x2z3 − x3z2) − (x0z3 − x3z0) + (x0z2 − x2z0)]

−
τ2
∆ [(x1z3 − x3z1) − (x0z3 − x3z0) + (x0z1 − x1z0)]

+ τ3
∆ [(x1z2 − x2z1) − (x0z2 − x2z0) + (x0z1 − x1z0)]

, (13)

gz = τ0
∆ [(x2z3 − x3y2) − (x1y3 − x3y1) + (x1y2 − x2y1)]

−
τ1
∆ [(x2y3 − x3y2) − (x0y3 − x3y0) + (x0y2 − x2y0)]

+ τ2
∆ [(x1y3 − x3y1) − (x0y3 − x3y0) + (x0y1 − x1y0)]

−
τ3
∆ [(x1y2 − x2y1) − (x0y2 − x2y0) + (x0y1 − x1y0)]

. (14)

We know that

grad τ(x, y, z) =
∂τ
∂x

→

i +
∂τ
∂y

→

j +
∂τ
∂z

→

k . (15)

Taking into account Equation (2), then,

∂τ
∂x

= gx,
∂τ
∂y

= gy,
∂τ
∂z

= gz, (16)

and, hence,

grad τ(x, y, z) = gx
→

i + gy
→

j + gz
→

k . (17)

2.2. Building the Matrix [Aτ]

The Fourier heat transmission equation has been established, using the CM, as follows

[Qa]6×1 = [Mτ]6×6[G]6×4[τ]4×1, (18)
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where [Qa] is the heat flow transmitted and [Mτ] is the constitutive matrix of thermal transmission we
propose in this article. Suppose there is a matrix [Aτ], such that

[Mτ]6×6 =
[
S̃
]
6×3

[Aτ]3×6, (19)

where
[
S̃
]

is the dual faces matrix of the cell

[
S̃
]
=



S0x

S1x
S2x

S3x

S4x
S5x

S0y

S1y
S2y

S3y

S4y
S5y

S0z

S1z
S2z

S3z

S4z
S5z


. (20)

The heat flow transmitted [q] is

[q]3×1 = [Aτ]3×6[G]6×4[τ]4×1. (21)

We define an unknown vector [X], such as

[X]6×1 = [G]6×4[τ]4×1. (22)

The density heat vector
[
→
q
]

is

[
→
q
]
3×1

= −λ


gx

gy

gz

 = −λ [grad(τ)]3×1, (23)

where λ is the thermal conductivity coefficient, and, hence, the heat flow
[
Qb

]
is[

Qb
]
6×1

=
[
S̃
]
6×3

[
→
q
]
3×1

. (24)

Then, what is written in Equation (23) is equal to Equation (18), and therefore
[
Qb

]
= [Qa]

− λ
[
S̃
]
6×3

[grad(τ)]3×1 = [Mτ]6×6[G]6×4[τ]4×1. (25)

Replacing Equation (18) and Equation (21) in the second member of Equation (25), we obtain

− λ
[
S̃
]
6×3

[grad(τ)]3×1 =
[
S̃
]
6×3

[Aτ]3×6[X]6×1. (26)

Simplifying the dual faces matrix
[
S̃
]

− λ [grad(τ)]3×1 = [Aτ]3×6[X]6×1. (27)

Replacing [X] with the values of [G] and [τ], we obtain

[X]6×1 = [G]6×4[τ]4×1 =



−1 1
−1 0
−1 0

0 0
1 0
0 1

0 −1
0 0
0 −1

1 0
−1 1

0 1


6×4


τ0

τ1

τ2

τ3


4×1

=



−τ0 + τ1

−τ0 + τ2

−τ0 + τ3

−τ1 + τ2

−τ2 + τ3

−τ1 + τ3


6×1

(28)
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and, therefore, 

x0

x1

x2

x3

x4

x5


6×1

=



−τ0 + τ1

−τ0 + τ2

−τ0 + τ3

−τ1 + τ2

−τ2 + τ3

−τ1 + τ3


6×1

. (29)

Then, observing Equation (27), replacing the value of [grad(τ)]3×1, then,

− λ


gx

gy

gz


3×1

= [Aτ]3×6



x0

x1

x2

x3

x4

x5


6×1

, (30)

that is to say

−λ


gx

gy

gz


3×1

=


A00

A10

A20

A01

A11

A21

A02

A12

A22

A03

A13

A23

A04

A14

A24

A05

A15

A25


3×6



x0

x1

x2

x3

x4

x5


6×1

, (31)

and, therefore, developing Equation (31), we obtain the following expression

−λ


gx

gy

gz

 =


A00 x0 + A01 x1 + A02 x2 + A03 x3 + A04 x4 + A05 x5

A10 x0 + A11 x1 + A12 x2 + A13 x3 + A14 x4 + A15 x5

A20 x0 + A21 x1 + A22 x2 + A23 x3 + A24 x4 + A25 x5

. (32)

The value of gx is included in the following equation

− λ gx = A00 x0 + A01 x1 + A02 x2 + A03 x3 + A04 x4 + A05 x5. (33)

Replacing the values xi developed in Equation (29), we obtain

−λ gx = A00 (−τ0 + τ1) + A01 (−τ0 + τ2) + A02 (−τ0 + τ3)+

+A03 (−τ1 + τ2) + A04 (−τ2 + τ3) + A05 (−τ1 + τ3).
(34)

If we group the terms affected by the same temperature value, then

−λ gx = τ0(−A00 −A01 −A02)+

+τ1(A00 −A03 −A05)+

+τ2(A01 + A03 −A04)+

+τ3(A02 + A04 + A05) ,

(35)
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and replacing the value of gx calculated in Equation (12), then, by matching what was obtained in
Equation (35), we get

−
λτ0
∆ [(y2z3 − y3z2) − (y1z3 − y3z1) + (y1z2 − y2z1)]

+λτ1
∆ [(y2z3 − y3z2) − (y0z3 − y3z0) + (y0z2 − y2z0)]

−
λτ2
∆ [(y1z3 − y3z1) − (y0z3 − y3z0) + (y0z1 − y1z0)]

+λτ3
∆ [(y1z2 − y2z1) − (y0z2 − y2z0) + (y0z1 − y1z0)] =

τ0(−A00 −A01 −A02)

+τ1(A00 −A03 −A05)

+τ2(A01 + A03 −A04)

+τ3(A02 + A04 + A05)

. (36)

Then, matching the terms that affect to τ0 in (36) in both sides, we obtain the following expression

−
λτ0

∆
[(y2z3 − y3z2) − (y1z3 − y3z1) + (y1z2 − y2z1)] = τ0(−A00 −A01 −A02). (37)

Comparing the terms in Equation (37)

−
λ
∆ (y2z3 − y3z2) = −A00
λ
∆ (y1z3 − y3z1) = −A01

−
λ
∆ (y1z2 − y2z1) = −A02

, (38)

we get
A00 = λ

∆ (y2z3 − y3z2)

A01 = λ
∆ (y3z1 − y1z3)

A02 = λ
∆ (y1z2 − y2z1)

. (39)

Matching the terms that affect to τ1 in Equation (36)

λτ1

∆
[(y2z3 − y3z2) − (y0z3 − y3z0) + (y0z2 − y2z0)] = τ1(A00 −A03 −A05), (40)

we obtain
A00 = λ

∆ (y2z3 − y3z2)

A03 = λ
∆ (y0z3 − y3z0)

A05 = λ
∆ (y2z0 − y0z2)

. (41)

Matching the terms that affect to τ2 in Equation (36), then,

−
λτ2

∆
[(y1z3 − y3z1) − (y0z3 − y3z0) + (y0z1 − y1z0)] = +τ2(A01 + A03 −A04), (42)

and, therefore, we get
A01 = λ

∆ (y3z1 − y1z3)

A03 = λ
∆ (y0z3 − y3z0)

A04 = λ
∆ (y0z1 − y1z0)

. (43)

In the same way, matching the terms that affect to τ3 in Equation (36), then,

λτ3

∆
[(y1z2 − y2z1) − (y0z2 − y2z0) + (y0z1 − y1z0)] = τ3(A02 + A04 + A05), (44)

and, hence, we get
A02 = λ

∆ (y1z2 − y2z1)

A05 = λ
∆ (y2z0 − y0z2)

A04 = λ
∆ (y0z1 − y1z0)

. (45)



Appl. Sci. 2019, 9, 4521 9 of 19

Following the same procedure, we obtain the terms of gy

A10 = λ
∆ (x3z2 − x2z3)

A11 = λ
∆ (x1z3 − x3z1)

A12 = λ
∆ (x2z1 − x1z2)

A13 = λ
∆ (x3z0 − x0z3)

A14 = λ
∆ (x1z0 − x0z1)

A15 = λ
∆ (x0z2 − x2z0)

, (46)

and of gz
A20 = λ

∆ (x2z3 − x3y2)

A21 = λ
∆ (x3y1 − x1y3)

A22 = λ
∆ (x1y2 − x2y1)

A23 = λ
∆ (x0y3 − x3y0)

A24 = λ
∆ (x0y1 − x1y0)

A25 = λ
∆ (x2y0 − x0y2)

. (47)

2.3. New [Mτ] Matrix

In the previous section, the terms for Aij have been obtained. Now we can build the matrix [Aτ],

[Aτ] = λ
∆


(y3z2 − y2z3) (y1z3 − y3z1) (y2z1 − y1z2) (y3z0 − y0z3) (y1z0 − y0z1) (y0z2 − y2z0)

(x2z3 − x3z2) (x3z1 − x1z3) (x1z2 − x2z1) (x0z3 − x3z0) (x0z1 − x1z0) (x2z0 − x0z2)

(x3y2 − x2y3) (x1y3 − x3y1) (x2y1 − x1y2) (x3y0 − x0y3) (x1y0 − x0y1) (x0y2 − x2y0)

. (48)

Therefore, the new thermal conductivity constitutive matrix is

[Mτ]6×6 =
[
S̃
]
6×3

[Aτ]3×6. (49)

3. Results and Validation

Verification consists of checking that the procedure implemented is conceptually correct,
and validation consists of checking that the data obtained from the numerical simulations coincide
with an objective reality [23,24]. The verification was carried out in Section 2. To check the validation
of the new matrix, three types of numerical simulations were designed and executed, which will be
explained below. On the one hand, a highly accurate numerical simulation was carried out using
FEM, and then two numerical simulations were carried out to evaluate the accuracy of [Mλ] and [Mτ],
using CM.

3.1. Validation of FEM

Our reference to validate the results obtained in Sections 3.2 and 3.3 was FEM. Specifically,
we used the FEMM program (Finite Element Method Magnetics program) [25], and then we applied
the statistics to verify FEMM´s validity.

We added this section to verify FEMM through the analytical solution of a simple problem for a
single thermal conductivity. Then, FEMM was applied as a reference tool to verify a more complex
problem of two thermal conductivities, and we compared the FEM with the results obtained by means
of the two thermal conductivity matrices, [Mλ] and [Mτ], analyzed with the CM.

The problem consists of analyzing the distribution of temperatures in a tube with a single thermal
conductivity and axial symmetry. In Figure 3, a section of the tube with dimensions 0.5 × 2.0 m can
be observed, associated to a cylinder 2 m high and 2 m in diameter. The cylinder wall had a thermal
conduction coefficient of 1 Wm−1K−1.
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This problem has the following analytical solution

τx = (τ2 − τ1)
ln rx

r1

ln r2
r1

+ τ1 (50)

with r1 and r2 being the internal and external radius of the tube, respectively; rx the radius of an
intermediate point between r1 and r2; and τ the temperature at the point considered.

The profile of the temperatures of a parametric section made in the FEMM model has been
compared with the values obtained from complete analytical Equation (50), as can be seen in Figure 3.
In this parametric section, the temperatures were measured for two concrete meshes, one with
2517 nodes and the other with 1,013,144 nodes.

The boundary conditions were the following. The highest temperature was on the outer surface of
the cylinder (80 ◦C), and the lowest was on the inner face of the cylinder (30 ◦C). The top and bottom
cylinder covers were considered perfect insulators. There was no heat source inside the cylinder.
The initial and final conditions were the same, because it is a stationary process.

Figure 4 shows the results obtained for the two meshes analyzed with FEMM and the analytical
solution for the parametric cut shown in Figure 3. We observed that the three curves were coincident,
which allowed us to conclude that the solution with 2517 nodes was already a very good solution.
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Table 1 shows the temperature values at a characteristic point located 0.75 m from the cylinder
axis, and compares the temperature obtained by the exact analytical equation with the result obtained
by FEMM for 2517 and 1,013,144 nodes. As it can be seen, the error converged for 2517, and was almost
coincident with the analytical value, with a 0.0223% difference percentage.

Table 1. Temperatures for the validation of FEMM.

Mesh [Nodes] 2517 1013144

Temperature (◦C) a 0.75 m
(Analytical ref: 72.7422 ◦C) 72.7585 72.7585

Difference of temperatures (◦C) 0.0162 0.0162
Percentage difference (%) 0.0223 0.0223

Table 2 shows the metrics used to validate the proposed mathematical models. Metrics are statistics
used to assess the errors between the standard and proposed model. As stated above, our standard
model is the FEMM. We compared the results obtained with the proposed models, and, from the
contrast of both results (the FEMM and studied model), we obtained the proposed metrics. R2 is the
coefficient of determination. RMSPE is the root mean square percentage error. MAEP is the mean
absolute percentage error. PBIAS is the percentage bias. The metrics indicate the validity of FEMM as
a reference standard, because the values obtained are very close to the optimum.

Table 2. Metrics for the validation of FEMM vs. analytical solution. from the contrast of both
results (the FEMM and studied model), we obtained the proposed metrics. R2—coefficient of
determination; RMSPE—root mean square percentage error; MAEP—mean absolute percentage error;
PBIAS—percentage bias.

Mesh [Nodes] 2517 1013144 References

R2 [0, +1]. Optimum: +1 1 1 [26]
RMSPE [−1, +1]. Optimum: 0 0.0001 0.0001 [27]
MAEP [−1, +1]. Optimum: 0 0.0001 0.0001 [27]
PBIAS [−1, +1]. Optimum: 0 0.0001 0.0001 [28]
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The temperatures obtained were close enough to the analytical solution to consider the FEMM
a good benchmark. In the distribution of errors (Figure 5), there is a bias respect to the zero error.
This indicates a certain systemic error in the FEMM, which we assumed (0%, 0.03%; see Figure 5).
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The simulations carried out were developed on a PC type Dell, Intel®Core (TM) i7-3820, 3.6 GHz,
32 GB RAM. The software, freely used, was Gmsh [29], as a CAD tool, mesher, and post-processing in
3D; FEMM as a CAD tool, meshing, processing, and post-processing using 2D FEM; and Dev C ++ [30]
to develop the calculations in CM.

All of the numerical simulations that were carried out followed the same methodology [31],
which is the following: formulation of the problem; geometric modelling and definition of the thermal
domain; establishment of the boundary conditions and the initial conditions; generation of the mesh;
simulation with processing of the results; and, finally, analysis of the results.

3.2. Numerical Simulation with [Mλ]

The model proposed for the validation consisted of a tube that is similar to the stator or the rotor
of an electric machine, especially that of an asynchronous electric machine. It consisted of a tube of
2.00 m in height and 2.00 m in diameter. The wall has a thickness of 0.50 m. This wall is composed of
two concentric tubes, with a thickness of 0.25 m for each one. The thermal conductivities of the inner
and outer tubes were λ1 = 50.0 Wm−1K−1 and λ2 = 193.0 Wm−1K−1, respectively.

The wall domain, Ωw, is defined as the volume between the outer surface and the inner surface
of the tube. The enveloping domain, Ωe, is defined as the external volume that surrounds the tube.
The boundary conditions were the following: Ωw is a thermal conductor, Ωe is a thermal insulator,
and there are no internal heat sources.

The boundary conditions were the following: the external temperature, T0_ext = 30 ◦C and the
internal temperature, T0_int = 80 ◦C. It was considered that the heat advanced in a radial direction,
that the upper and lower covers of the tube were perfect insulators and that there were no heat sources
inside the tube. In addition, it was considered a pure heat transmission without convection or radiation.
Therefore, it is a three-dimensional problem with axial symmetry.

To measure the temperatures, both in the 2D and 3D distributions, a parametric cut was made on
a segment, in a radial direction, and there, the temperatures were measured, as can be seen in Figure 6.
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Figure 6. Parametric cut of temperatures in a 3D model with the Cell Method (CM).

The inner tube had a thermal conductivity of 50.0 Wm−1K−1, typical of steels, with a value between
46.6 and 51.9 Wm−1K−1. The outer tube had a thermal conductivity of 193.0 Wm−1K−1, typical of
aluminum alloys, with a value between 95.3 and 222.0 Wm−1K−1.

In Figure 7, we analyzed a two-dimensional temperature distribution, which corresponds to the
generatrix rectangle of revolution of the tube wall. This temperature distribution has been generated
with FEMM using FEM. The temperature that was used as a reference for the validation of the results
was that obtained by a horizontal parametric cut at half the height of the bi-dimensional distribution.
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Then, in this section, we calculated, through [Mλ], the heat conduction in the tube of Figure 6.
The matrix [Mλ] was proposed as an alternative to the matrices used in [18,19]. These results will be
compared with those obtained with the new matrix [Mτ] in the Section 3.2.
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On the one hand, a 2D FEMM calculation of 11,042 nodes was carried out, and on the other
hand, five calculations were made with CM for an increasing number of nodes, ranging from 108 to
13,136 nodes, using [Mλ]. From 4461 nodes, the results were practically coincident between CM 3D
and FEMM 2D, which we considered to be the solution to the problem, because being axisymmetric,
its 3D equivalent mesh had many more nodes. The results obtained are shown in Figure 8.
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The distribution of errors when comparing CM with the temperatures obtained in FEM is shown in
Figure 9. There is a bias between the actual distribution of errors (bar chart in blue) and the theoretical
distribution (Gauss bell type, red color chart). This bias is approximately 0.1%.
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The errors, as expected, decreased with the increase in mesh density, as shown in Table 3.
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Table 3. Temperature at a point of the tube with two conductivities using [Mλ].

Mesh [Nodes] 108 182 4461 9679 13,136

Temperature (◦C) at 0.75 m
(FEMM ref: 64.0653 ◦C) 67.8991 61.7719 64.0343 63.6987 63.6975

Difference of temperatures (◦C) 3.8338 −2.2934 −0.0310 −0.3666 −0.3678
Percentage difference (%) 5.9842 −3.5798 −0.0484 −0.5722 −0.5741

The temperatures in Table 3 were taken at one point placed radially at 0.75 m from the center of
the tube, and axially at half its height (1.00 m; see Figure 6).

Applying the following metrics, the determination coefficient (R2), the root mean square perceptual
error (RMSPE), the mean absolute percentage error (MAEP), and percentage bias (PBIAS), the values
obtained can be seen in Table 4.

Table 4. Metrics for thermal simulation using [Mλ].

Mesh [nodes] 108 182 4461 9679 13,136 References

R2 [0, +1]. Optimum: +1 0.9929 0.9982 1.0000 1.0000 1.0000 [26]
RMSPE [−1, +1]. Optimum: 0 0.0518 0.0122 0.0029 0.0013 0.0012 [27]
MAEP [−1, +1]. Optimum: 0 0.0471 0.0086 0.0025 0.0011 0.0011 [27]
PBIAS [−1, +1]. Optimum: 0 0.0450 −0.0051 0.0025 0.0011 0.0009 [28]

The R2 values indicate a good adjustment of data in all of the comparatives. The RMSPE, MAEP,
and PBIAS are beside the optimum. Even so, all of the indicators are in the optimal range. Looking
at Table 2, we can assure that the biggest error committed is the RMSPE, whose value is 0.0518%.
This error decreases as the node density increases. It is a more than acceptable value.

We compared a 3D CM model, with low density and tetrahedral meshes, with an axial symmetry
model in 2D, solved by FEM, with a dense triangular mesh. The errors were not significant.
The calculation process was greatly simplified. Remember that the number of the nodes indicates the
number of equations and unknowns that solve the global matrix. This allows for us to see that there is
no significant improvement when increasing the number of nodes, with denser meshes, as the results
obtained with meshes of 9679 and 13,136 nodes were very similar, as far as errors are concerned.

3.3. Numerical Simulation with [Mτ]

In the geometric model, the boundary conditions were the same as in the previous case. Therefore,
the numerical simulation has been carried out with the tube indicated in Figure 6, and the FEMM
model used is shown in Figure 7. Similarly, the three-dimensional parametric section can be seen in
Figure 6. However, in this case, the thermal conductivity matrix was [Mτ].

The objective was to check the validity of the new thermal conductivity matrix [Mτ], and that it
obtains better results than [Mλ].

On the one hand, a calculation with a 2D FEMM of 11,042 nodes has been made, and, on the other
hand, five calculations was made with CM for an increasing number of nodes ranging from 102 to
13,136 nodes, using [Mτ]. From 6428 nodes, the results are practically coincident between 3D CM and
2D FEMM, which we consider as a solution to the problem. The results obtained are shown in the
graph Figure 10.
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The distribution of errors when comparing CM with the temperatures obtained in FEM is shown
in Figure 11. As can be seen, the bias has decreased to 0.05%. Hence, operating with a new thermal
conduction constitutive matrix [Mτ] produces a smaller error than operating with [Mλ].
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As we expected, the errors decrease as the mesh density increases, as can be seen in Table 5.

Table 5. Temperature at a point of the tube with two conductivities using [Mτ].

Mesh [nodes] 102 108 2328 6428 12,895

1 68.4981 67.7963 63.7282 63.7047 63.6975
Difference of temperatures [◦C] 4.8022 4.1004 0.0323 0.0088 0.0016

Percentage difference [%] 7.5393 6.4375 0.0507 0.0138 0.0025

The temperatures in Table 3 have been taken at one point placed radially at 0.75 m from the center
of the tube, and axially at half its height (1.00 m).

Applying the metrics R2, RMSPE, MAEP, and PBIAS, the following values were obtained (see
Table 6).
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Table 6. Metrics for thermal simulation using [Mτ].

Mesh [nodes] 102 108 2328 6428 12,895 References

R2 [0, +1]. Optimum: +1 0.9910 0.9932 1.0000 1.0000 1.0000 [26]
RMSPE [−1, +1]. Optimum: 0 0.0576 0.0508 0.0026 0.0027 0.0008 [27]
MAEP [−1, +1]. Optimum: 0 0.0522 0.0462 0.0023 0.0024 0.0007 [27]
PBIAS [−1, +1]. Optimum: 0 0.0496 0.0442 0.0014 0.0022 0.0004 [28]

Observing Table 6, we conclude that the errors are lower when the mesh density is increased,
and also that errors are very small for meshes with low densities. In any case, the errors quickly
converge towards the optimum of the metrics.

Observing Table 7, it is verified that the thermal constitutive matrix [Mτ] that we provide in this
article behaves much better than with [Mλ].

Table 7. Temperature errors using [Mλ] and [Mτ].

FEMM ref: ◦C Obtained temp. ºC Error %

[Mλ] 13,136 nodes 64.0653 63.6975 −0.5741
[Mτ] 12,895 nodes 63.6959 63.6975 0.0025

Similarly, comparing the distribution of the error when we are using [Mλ] (Figure 9) with the
distribution of the error when we use [Mτ] (Figure 11), it can be seen that in the case of [Mτ], there is
less bias, and it is closer to zero error when we are using [Mλ].

The proposal of the new thermal constitutive matrix [Mτ] fundamentally differs in not using
averaged values, but exact values such as the Cartesian coordinates of the tetrahedron nodes and
the vectors of the dual surfacesm as it can be seen in Equations (47) and (48). This implies greater
precision, as its calculation base is strictly geometric and not approximate, as it can be seen in the error
histograms in Figures 9 and 11, or if the values shown in Tables 3–6 are compared. The matrix [Mτ]

converges more evenly towards the solution than the matrix [Mλ] does.

4. Conclusions

In this paper, a new constitutive matrix [Mτ] for thermal conduction for tetrahedral meshes, in a
steady state thermal regime, has been developed through a new algebraic methodology, using the Cell
Method. The results have been compared with those obtained for the same problem by means of the
constitutive matrix [Mλ], developed previously in other works. Taking a 2D axisymmetric model as
reference, calculated with the finite element method, the errors obtained with the new matrix [Mτ]

are of the order of 0.0025%, much lower than those obtained with [Mλ]. On the other hand, the finite
formulation and its associated numerical method, the Cell Method, allows for great flexibility when
mathematically modelling a physical phenomenon such as conduction heat transfer.

The main advantage of the method proposed in this article is its simplicity. The constitutive
matrices developed by previous methods presented complex calculations, while the new constitutive
matrix, proposed in this work, depends exclusively on the coordinates of the vertices of the tetrahedra,
which constitutes the mesh.

In addition, the errors are much smaller with the new matrix, and this allows for meshes of smaller
number of elements, obtaining the same precision with a lower temporal cost.

As it has been underlined before, the simplicity of the method and its greater precision mean that
the new methodology can be applied to more complex problems, such as the calculation of the thermal
heating of the rotor and the stator of an electrical machine of much more complex geometry, and with
more complex physical properties and boundary conditions, even convective types. This is critical in
the problems in transitory regime.
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Nomenclature

Symbol Name Unit

a Auxiliary constant K
[Aτ] Auxiliary matrix Wm−2K−1

grad() Gradient K/m
[Qa],

[
Qb

]
, [q] Heat flow W

→
q Heat flow density W/m2

D̃ Incidence matrix face–volume of dual mesh -
G, Gt Incidence matrix edges–nodes of primal mesh -

t Time s
→

i ,
→

j ,
→

k Unitary vectors -

S̃i i Surface vector of dual mesh m2

[Mτ] New thermal conductivity constitutive matrix W/K
[Mλ] Thermal conductivity constitutive matrix W/K
λ Thermal conductivity Wm−1 K−1

T, τ Temperature K
∆ Determinant m3
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