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Abstract: We show that by treating the weak probe field as a perturbation to the strong coupling
fields in the atomic system and using the perturbative method in a master equation, the features of
linear response of phenomena of electromagnetically induced transparency (EIT) can be uniformly
demonstrated, regardless of the details of atomic energy level configuration. We compare our
estimation with both typical and atypical EIT-observed configurations and find that our model
indeed provides a description of the sharp transmission window in central area of typical EIT curve.
It can also be inferred hereby that for various systems other than atomic gas, as long as the description
of the system’s dynamics comes down to the simplified form of master equation, the corresponding
EIT analogs and EIT-like phenomena can also be explained in this way.
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1. Introduction

First demonstrated on Λ-type atomic configuration [1], electromagnetically induced transparency
(EIT) is a phenomenon observed in multilevel atomic systems [2–10] where a weak probe field, in
the presence of strong coupling fields, experiences suppression of resonant absorption and sees a steep
dispersion. Making an initially opaque medium transparent to a probe laser beam, EIT has been explained
in terms of the destructive quantum interference effect between different excitation pathways [11], or
a dark superposition state [12–14] in the multistate system. Due to the fact that EIT provides the
possibility of wide applications in light velocity control [15–17], quantum information [18–20] and
nonlinear optics [21], there have been many works carried out on this subject. Traditionally in the
study of EIT, the analytical expression of the atomic medium optical susceptibility is calculated based
on the specific atomic configuration [2–10], although the general features of the EIT phenomena are
basically the same regardless of the configuration details. On the other hand, EIT-like phenomena can
be found in many different systems, such as interacting classical harmonic oscillators [22], coupled
microcavities [23–25], waveguide resonators [26–30], and so on. Noticing the wide existence of EIT
and EIT-like phenomena, we feel this could be a hint for us to find a more general viewpoint for the
description of EIT.

In this paper, we present a perturbative view from master equation for EIT, by treating the
applied fields—strong coupling fields as first order and weak probe field as second order perturbation
to the atomic system, and by using the perturbative approach of master equation, we find that
the analytical expression of the probe response susceptibility could explain the shape of the sharp
transmission window of EIT, without involving the details of the atomic energy level configuration.
The perturbative approach of density matrix we use here is some kind of standard treatment in many
fields, say, nonlinear optics [31], and we adopt it here to bring on the new view of demonstration of
EIT, which to the best of our knowledge, has not been done before. We are hoping this work would
help deepening our understanding of the wide existence of EIT analogs and EIT-related phenomena.
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2. The Model

Imagine we have an initial atomic system, and by applying the strong coupling fields to the
system, the state population is modified. We then add the weak probe field, and the state population
will be slightly modified again. Thus we see, the difference made by the adding-on of the probe field
is the optical response of the atomic system to the probe field. Correspondingly in calculation, we
apply the strong coupling fields as perturbation to the Hamiltonian of the original atomic system in
master equation, and do the first order perturbation calculation. Following that, we do the second
order perturbation calculation, where we throw in the weak probe field, the effect of which will be
used to deduce the expression of the atomic system’s linear optical susceptibility. We point out that in
the treatment of the perturbation, when including the strong coupling fields and weak probe field as a
whole, the different orders of nonlinear susceptibility can all be looked into; however, the features of
EIT we study only involve the one particular term corresponding to the linear probe susceptibility.

As described above, treating all applied fields as a perturbation to the atomic system, we take the
strong coupling fields as the first order perturbation and the weak probe field as the second order; the
Hamiltonian of the system can be written as

Ĥ = Ĥ0 + λV̂c + λ2V̂p, (1)

where λ is the parameter characterizing the strength of the perturbation, ranging between 0 and 1. Ĥ0

is the Hamiltonian of the free atomic system, V̂c is the interaction energy corresponding to the strong
coupling fields, and V̂p is the interaction energy corresponding to the weak probe field.

We then seek a solution of the density matrix element in the power series of λ up to second order

ρnm = ρ
(0)
nm + λρ

(1)
nm + λ2ρ

(2)
nm. (2)

As discussed before, we expect the lowest order contribution of V̂p to be related to the atomic media’s
optical response to the probe field.

Starting with the general form of master equation

ρ̇nm = − i
h̄
[Ĥ, ρ]nm − γnmρnm, (3)

where γnm is the decay rate of ρnm, we plug in the expression of Ĥ from (1), noting that [Ĥ0, ρ]nm =

(En − Em)ρnm, we then have

ρ̇nm = −iωnmρnm −
i
h̄
[λV̂c + λ2V̂p, ρ]nm − γnmρnm. (4)

In the above we define ωnm = En−Em
h̄ = ωn −ωm as the resonant transition frequency between energy

levels |n〉 and |m〉 of the atom. Then, when only adding in the strong coupling fields in interaction,
from Equation (4) we have

ρ
(1)
nm =

−i
h̄

∫ t

−∞
[V̂c(t′), ρ(0)]nme(iωnm+γnm)(t′−t)dt′ (5)

ρ
(2)
nm =

−i
h̄

∫ t

−∞
[V̂c(t′), ρ(1)]nme(iωnm+γnm)(t′−t)dt′. (6)

On the other hand, in the second round we turn on the weak probe field and only look at the
modification it brings to ρ

(2)
nm, because a modification of probe field to ρ

(1)
nm, which is

−i
h̄

∫ t

−∞
[V̂p(t′), ρ(0)]nme(iωnm+γnm)(t′−t)dt′, (7)
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means the effect of the weak probe field without presence of strong coupling fields, and this is obviously
not the case of EIT we are considering.

The modified ρ
(2)
nm at presence of weak probe field is

ρ
(2)′
nm =

−i
h̄

∫ t

−∞
[V̂c(t′) + V̂p(t′), ρ(1)]nme(iωnm+γnm)(t′−t)dt′, (8)

the difference δρ
(2)
nm = ρ

(2)′
nm − ρ

(2)
nm brought up by the insertion of weak probe field V̂p is

δρ
(2)
nm =

−i
h̄

∫ t

−∞
[V̂p(t′), ρ(1)]nme(iωnm+γnm)(t′−t)dt′, (9)

which is the λ3 order correction to ρ
(2)
nm. This corresponds to the susceptibility induced by weak probe

field in the presence of strong coupling fields. To figure out the expression of δρ
(2)
nm, we first calculate

the first order correction ρ
(1)
nm.

For the strong coupling fields, we suppose V̂c(t′) is in the form

V̂c(t′) = ∑
nm

V̂c(nm)(t
′) = −∑

nm
dnm · Ec(nm)(t

′), (10)

with
Ec(nm)(t

′) = Ec(ω f (nm))e
−iω f (nm)t

′
(11)

being the field at frequency ω f (nm) coupling atomic states |n〉 and |m〉 with relevant dipole moment

dnm. Under the assumption that the unperturbed density matrix element is given by ρ
(0)
nm = 0 for

n 6= m, we have
[V̂c(t′), ρ(0)]nm = −(ρ(0)mm − ρ

(0)
nn )dnm · Ec(ω f (nm))e

−iω f (nm)t
′
, (12)

and we therefore can write down

ρ
(1)
nm =

i
h̄
(ρ

(0)
mm − ρ

(0)
nn )

dnm · Ec(ω f (nm))e
−iω f (nm)t

i(ωnm −ω f (nm)) + γnm
. (13)

We then assume the weak probe field is applied between the atomic states |k〉 and |l〉, so that

V̂p(t′) = −dkl · Eprobe(t′) = −dkl · Eprobe(ω f (kl))e
−iω f (kl)t

′
, (14)

where Eprobe is the amplitude of the probe field, dkl is the relevant dipole moment between the atom’s
energy levels |k〉 and |l〉, and ω f (kl) is the frequency of the probe field. Then

[V̂p(t′), ρ(1)]kl = ∑
ν

[V̂p(kν)(t
′)ρ

(1)
νl − ρ

(1)
kν V̂p(νl)(t

′)]

= −(dklρ
(1)
ll − ρ

(1)
kk dkl) · Eprobe(t′) (15)

= −(ρ(1)ll − ρ
(1)
kk )dkl · Eprobe(ω f (kl))e

−iω f (kl)t
′
.

Since the above expression is analogous to the one in Equation (12), we can easily deduce from analogy
between Equations (5) and (6) and comparison to Equation (13) that

ρ
(2)
kl =

i
h̄
(ρ

(1)
ll − ρ

(1)
kk )

dkl · Eprobe(ω f (kl))e
−iω f (kl)t

i(ωkl −ω f (kl)) + γkl
, (16)

and this is the δρ
(2)
nm in Equation (9) we are looking for.
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From the above results, we can get the expression of probe susceptibility. Normally, the expectation
value of the probe field-related induced dipole moment 〈d̃(t)〉 = tr(ρ̂(2)probed̂) should be decomposed

into sum of different frequency components as 〈d̃(t)〉 = Σ
p
〈d(ωp)〉e−iωpt. Since in our case there is

only one frequency ω f (kl) existing in the probe field, we have

〈d̃(t)〉 = tr(ρ̂(2)probed̂)

= ρ
(2)
kl dlk (17)

=
i
h̄
(ρ

(1)
ll − ρ

(1)
kk )

dlk[dkl · Eprobe(ω f (kl))]e
−iω f (kl)t

i(ωkl −ω f (kl)) + γkl
.

On the other hand the probe susceptibility can be defined in equation

P(ωp) = N〈d(ωp)〉 = N〈d̃(t)〉 = ε0χ
(2)
kl (ωp) · Eprobe(ωp), (18)

where ωp = ω f (kl) andN is the number density of atoms. It is then straightforward to see that χ
(2)
kl (ωp)

can be expressed as

χ
(2)
kl (ω f (kl)) =

N
ε0h̄

(ρ
(1)
ll − ρ

(1)
kk )

dlkdkl
(ωkl −ω f (kl))− iγkl

. (19)

Please note that the superscript 2 of χ
(2)
kl (ω f (kl)) means the probe field effect only comes up in the

second order perturbation of the system instead of first order, but physically it still indicates the highest
order contribution of the probe field, which is the linear probe susceptibility.

For isotropic atomic media, we can rewrite Equation (19) as the scalar quantity

χ
(2)
kl (ω f (kl)) =

N
ε0h̄

(ρ
(1)
ll − ρ

(1)
kk )

|dlk|2
−∆p − iγkl

, (20)

where we define the probe field frequency detuning as ∆p = ω f (kl) −ωkl , then when we draw a plot

of the real and imaginary parts of χ
(2)
kl (ω f (kl)) as the function of ∆p, assuming ρ

(1)
ll ≈ 1, we find that

the shape of Im(χ
(2)
kl ) just coincide with the dip in the absorption of EIT, and Re(χ(2)

kl ) coincide with
the sharp dispersion window in the refraction of EIT, within the central area |∆p| ∼ 0. However, when
|∆p| gets larger, Equation (20) is not suitable to give the description of EIT profile.

3. Examples: Comparison of Our Model with a Set of Multilevel Structures

To demonstrate our results from the previous section, we use the example of multilevel atomic
structure given by [6], the schematic diagram of which is drawn in Figure 1, to compare the EIT curves
of the most typical special cases of this multilevel structure with the result of Equation (20).

The structure of the multilevel system is as follows: There are 1 upper energy level state and N
lower energy level states, coupled by N coherent laser fields between each upper-lower level pair.
For convenience of comparison we label the upper energy state as |k〉, the first lower energy state as |l〉,
and the rest of the lower energy states as |2〉 to |N〉 accordingly. The Rabi frequencies of each coupling
field between |l〉 ↔ |k〉, |2〉 ↔ |k〉, . . . |N〉 ↔ |k〉 are Ωp, Ω2, . . . ΩN , and the corresponding laser field
detunings are ∆p, ∆2, . . . ∆N .

As shown in [6], the linear probe susceptibility χkl of the above multilevel structure can be
expressed as

χkl(∆p) = 4πN |dlk|2
1

∆p + iγkl −
N
∑

n=2

|Ωn |2
∆p−∆n+iγln

, (21)
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which is obtained under the weak probe field limit, and where we have assumed ρll(t) ≈ 1. In this
multilevel structure all the γln (n ≥ 2) are set to be zero. For the case study, we now look at the
structures of n = 2 and n = 3. When n = 2, the multilevel system is the Λ type configuration, and
when n = 3, the system turns into the tripod type configuration. As for the parameter setting, we
take the value of γkl as unit and choose Ω2 = 1, Ω3 = 1 as the typical value setting, together with the
assumption ∆2 = 0, ∆3 = 0 (on-resonance strong field coupling). Then dropping the constant part in
both Equation (20) and Equation (21) and adding a minus sign to Equation (20), the imaginary and
real part as a function of ∆p, in cases of Λ type, tripod type, and result of Equation (20), are plotted in
Figure 1a,b.       

|  
|  |2  |  

Figure 1. Schematic diagram of the N + 1 level atomic system. The upper level state is labeled |k〉,
and the lower level states are labeled |l〉, |2〉, . . . |N〉. The energy levels are coupled by N coherent
laser fields on each upper-lower pair. The corresponding Rabi frequencies and field detunings of the
coupling fields are Ωp, Ω2, . . . ΩN and ∆p, ∆2, . . . ∆N .
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Figure 2. The comparison of our estimation from Equation (20) and two special cases from Equation (21)
for linear probe susceptibility χkl as function of probe field detuning ∆p. The Λ type configuration
corresponds to the n = 2 case in Equation (21), and the tripod type corresponds to the n = 3 case in
Equation (21). The parameter settings are ∆2 = 0, ∆3 = 0, Ω2 = 1, Ω3 = 1 in unit of γkl . The results are
separately plotted as: (a) The absorption spectra (imaginary part of χkl) as function of ∆p. Here besides
the minus sign, there is a offset of unit 1 in y direction in the plot of our model. (b) The dispersion
spectra (real part of χkl) as function of ∆p.

As can be seen from Figure 2a,b, when |∆p| is small enough, Equation (20) gives the very close
description of EIT curve to that given by Λ type and tripod type from Equation (21). However,
when |∆p| gets larger, there is obvious deviation of our estimation from the curves of Λ and tripod
configuration. This can be easily understood. Under large detuning the weak probe field is not



Appl. Sci. 2019, 9, 4512 6 of 9

effectively coupled to the system, so Equation (20), which is obtained from treating the probe field as
perturbation to the system is not suitable for this area. Alternatively from the point of view of atomic
physics, Equation (20) describes optical response of the stable atomic media, which means we measure
the optical response some time after the atom-field interaction. In this case the only coupling field
frequency that need to be considered is the on-resonance one, so what survives through Equation (20)
is the probe field satisfying |∆p| ∼ 0.

We can also look at the n = 5 case of Equation (21), which we call five-leg type, and the ladder
type (or Ξ type), which although is different from the Λ type, still shares the same expression of probe
susceptibility under the assumption of on-resonance strong field coupling (∆2 = 0) [3]. The difference
between the ladder type and Λ type in parameter setting is that γl2 6= 0 for ladder type. We set
γl2 = 0.2, Ω4 = 1, Ω5 = 1, ∆4 = 0, ∆5 = 0 and all the other parameters the same as in Figure 2 and get
the results of comparison in Figure 3. As can be seen from the plot, the probe susceptibility curves of
five-leg and ladder configurations do not coincide with our model now, because they are not typical
EIT configurations any more. Equation (21) shows that a five-leg configuration under our parameter
setting is equivalent to a Λ type configuration with doubled Rabi frequency. Also, for the ladder type
configuration, the existence of nonzero decay rate γl2 brings atypical EIT observation.

When |∆p| deviates from zero, the existence of a weak probe field can be ignored, and the
measurement of probe susceptibility between energy levels |k〉 and |l〉 is equivalently performed on
the system with only all the strong coupling fields existing. The entire EIT curve can therefore be
looked on as the combination of two parts: the profile determined by the presence of strong coupling
fields, and the steep change imposed on the central area of |∆p| = 0 by the weak probe field. The latter
has been described by Equation (20), then how do we figure out the shape of the former? In addition,
why there is a minus sign needed when Equation (20) is used to describe the central area of EIT
phenomena? We may not be able to answer these questions in the most general cases; however,
when the polarization of all the applied fields are of the same direction, these two questions can be
answered together.

Here is the imaginary operation that we perform. Suppose all the applied fields are of the
same polarization direction ε̂, and all the strong coupling fields from Equation (10) are of the similar
magnitude Ec, i.e. |Ec(nm)| ∼ Ec, then we know there is also |Eprobe| � Ec for the weak probe
field. We now apply a set of adjusting electric fields Eadjust(nm)(t) = −Ec(nm)(t), where Ec(nm)(t) =

Ec(ω f (nm))e
−iω f (nm)t as defined in Equation (11), coupled to the corresponding energy levels |n〉 and

|m〉, can also be approximately written as Ec ε̂e−iω f (nm)t. We then have

Eadjust(nm)(t) = −Ec ε̂e−iω f (nm)t. (22)

For the probe field coupling energy levels |k〉 and |l〉, we apply

Eadjust(probe)(t) = −Ec ε̂e−iω f (kl)t

= −
Eprobe(ω f (kl))

|Eprobe(ω f (kl))|
Ece−iω f (kl)t (23)

which is in reverse direction of Eprobe(t), but with a much larger amplitude Ec. Comparing Equation (22)
and Equation (23), we see that from the outside point of view, the entire atomic structure involved
with applied fields (both strong coupling fields and weak probe field) is uniformly covered by a “coat”
of reverse electric field of magnitude ∼Ec. We now assume the induced energy shift of all the involved
energy levels are also of similar magnitude and are small enough to be ignored, then it is safe to say
that the atomic structure is not altered by the reverse electric field “coat”, neither is the intrinsic feature
of the optical response of the atomic media. The change brought on by the reverse “coat” is that it
cancels out all the strong coupling fields, while replacing the initial weak probe field with a strong and
reverse one. We are now in the simple case of Lorentz oscillator model, which gives the profile shape
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of EIT curve outside the central area. Due to the reversed direction of the “new” strong probe field
compared to the “old” weak one, there must be a minus sign emerging in front of Equation (20) in
adding up the on-resonance dip and the off-resonance profile, as long as the labels of the involved
energy level states are unchanged. Thus, the shape of the entire EIT curve has been explained.
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Figure 3. The comparison of our estimation from Equation (20) with five-leg type and ladder type
in probe susceptibility χkl as function of probe field detuning ∆p. The five-leg type is the n = 5 case
in Equation (21). The ladder type shares the same expression with Λ type from Equation (21), under
assumption that the strong field (Ω2) coupling is on-resonance. The parameter settings are as follows:
Ω2 = Ω3 = Ω4 = Ω5 = 1, ∆2 = ∆3 = ∆4 = ∆5 = 0 in unit of γkl . Also, γl2 = 0.2 for ladder type,
γln = 0 (n > 2) for five-leg type. The results are separately plotted as: (a) The absorption spectra
(imaginary part of χkl) as function of ∆p. Here besides the minus sign, there is a offset of unit 1 in y
direction in the plot of our model. (b) The dispersion spectra (real part of χkl) as function of ∆p.

4. Conclusions

In summary, we have used the perturbative method in a master equation, by treating the applied
fields as first and second order perturbation to the atomic system, to get the analytical expression of
probe susceptibility regardless of the details of atomic configuration, which demonstrates the features
of EIT phenomena. Our work can also be used to explain the widely existing EIT analogs and EIT-like
phenomena, as long as the description of the system’s dynamics comes down to the simplified form of
master equation.
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The following abbreviation are used in this manuscript:

EIT electromagnatically induced transparency
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