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Abstract: The opto-electric servomechanism (OES) plays an important role in obtaining clear and
stable images from airborne infrared detectors. However, the inherent torque disturbance and
the noisy speed signal cause a significant decline in the inertial stability accuracy and low-speed
performances of OESs. Traditional linear control schemes cannot deal with the nonlinear torque
disturbance well, and the speed obtained by the finite difference (FD) method cannot effectively
balance the tradeoff between the noise filtering and phase delay. Therefore, this paper proposes
a strap-down stability control scheme, in the combination of a proportional-integral(PI) controller
and a state-augmented Kalman filter (SAKF), where the PI is used to regulate the linear part of the
servomechanism, and with the SAKF performing torque disturbance observation and speed estimation
simultaneously. The principle and the implementation of the controller are introduced, and the tuning
guidelines for the controller parameters are presented as well. Finally, the experimental verifications
based on OESs with three transmission types (i.e., the direct-driving, the harmonic-driving, and the
rotate vector-driving(RV-driving) OESs) are carried out respectively. The experimental results show
that the proposed control scheme can perform better speed observation and torque disturbance
compensation for various types of OESs, thus effectively improving the low-speed performance and
stability accuracy of the mechanism.

Keywords: OES; inertial stability accuracy; low-speed performance; speed observation; disturbance
observation; state-augmented Kalman filter; composed control scheme

1. Introduction

An opto-electric stable platform (OESP) is an opto-mechatronic device for long-distance
target observation. Through an infrared detector or charge-coupled device (CCD) mounted on
an OESP, the image of the target can be presented to the operator, as can be seen in Figure 1.
OESPs usually work on moving objects such as airplanes or vehicles, and so both optimal low speed
performance and inertial stability accuracy are necessary for OESPs in maintaining image quality.
The opto-electric servomechanism (OES) is the key component of the OESP to achieve accurate motion.
However, the torque disturbance commonly existing in the opto-electric servomechanism (OES) and
the low signal-to-noise ratio(SNR) speed signal differentiated by the encoder make it difficult to achieve
satisfactory servo performances.

Appl. Sci. 2019, 9, 4498; doi:10.3390/app9214498 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/21/4498?type=check_update&version=1
http://dx.doi.org/10.3390/app9214498
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 4498 2 of 16Appl. Sci. 2019, 9, x FOR PEER REVIEW 2 of 16 
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For the purpose of suppressing torque disturbance of an OES, a torque or speed closed loop using
a PI controller is always considered. The principle and implementation of a proportional-integral (PI)
controller are simple. However, since the PI belongs to the linear control scheme, it seems difficult to
effectively deal with the nonlinear torque disturbances, such as friction and torque ripple.

Another well-known approach is to build a torque disturbance observer and perform disturbance
compensation according to the output of the observer. Depending on how the observer is built,
this approach can be divided into two categories. The first category is to establish dynamic models
for each torque disturbance mainly existing in the OES, and to suppress these disturbances one after
another using these models. Obviously, an accurate model can compensate for the corresponding torque
disturbance quite well. However, if there are multiple types of torque disturbances coexisting in the OES,
this method will become complicated; additionally, unless the dynamic model is sufficiently precise,
it will lead to a more serious impact on the motion performances of the OES [1–3]. Therefore, this method
is suitable for servomechanisms under simple working conditions. Another category is to design
a disturbance observer based on the nominal model of the OES. Among all the nominal-model-based
observers, disturbance observer(DOB) is the most widely used [4]. However, the performance of
DOB is subject to the cut-off frequency of its Q filter. If the cut-off frequency is set too high, a severe
chattering may happen, causing the OES to not work properly. Additionally, if the cut-off frequency is
set too low, the disturbance cannot be effectively observed, resulting in an unsatisfactory disturbance
suppression effect. Since the cut-off frequency of the Q filter needs to be determined in reference to
the actual characteristics of the OES, it is difficult for the DOB to obtain an optimal observation for
the servomechanisms whose parameters change drastically, thus it is usually necessary to combine
DOB with other advanced controllers, such as sliding mode controller(SMC) [5], to get a better
motion performance.

Due to the limited size and mass of the platform, the OES rarely configures a tachometer for axial
speed measurement. Instead, the axial speed is mainly obtained by finite-differentiating the angular
data from the encoder mounted on the output side of the OES. However, due to the limited resolution
of the encoder, there is a significant quantization error in the obtained speed signal. In order to deal
with this problem, a low-pass filter (LPF) is commonly used to handle the differential signal of the
encoder [6]. However, the linear LPF brings a severe phase lag and decreases the stability margin
while suppressing the noise. Janabi–Sharifi et al. proposed a first-order adaptive windowing method
(FOAW), which achieves a tradeoff between the noise suppression and the output rapidity by adaptively
adjusting the differential step size of encoder data [7,8]. Jin et al. proposed a parabolic sliding mode
filter (PSMF) as well as the adaptive tuning methods for PSMF parameters [9–14]. Compared with the
Butterworth filter, the PSMF has a larger amplitude-frequency gain as well as a smaller phase lag, so it
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can achieve a better speed estimation. However, the accuracy of PSMF will be affected when the SNR
of the speed signal is low [15]. Moreover, the complicated structure of the PSMF results in a difficult
realization, and increases the computational costs of personal computers(PCs) evidently.

In order to get a better estimation of the torque disturbance as well as the rotational speed,
this paper proposes a strap-down stability control scheme in combination of a PI controller and
a state-augmented Kalman filter (SAKF). In this scheme, the PI is taken to regulate the linear part of
the OES and the SAKF performs torque disturbance observation and speed estimation. Through the
controller parameters tuning method provided in the paper, the OES achieves the satisfactory inertial
stability accuracy and low-speed performance.

The sections of this paper are organized as follows: Section 2 gives the dynamic model of the
OES, which provides the basis for the design of the control scheme. Section 3 introduces the principle
of the control algorithm and the structure of the main functional modules. Considering the fact that
the control algorithm runs in a digital signal processor (DSP), the discretization representation of the
algorithm is solved in Section 4, and the implementation steps of the algorithm are also provided in
this section. In Section 5, this algorithm is evaluated based on OESs with different reducers, and in the
last section, Section 6, the conclusions of this paper are presented.

2. Dynamic Model

The dynamic model of the OES can be derived from the Newton’s second law as:

Kt · i−Mf = J · dωm
dt

um = Lm ·
di
dt + R · i + Ke ·ωm

Mf = B ·ωm + Tc

um = Kc ·Kg · (u−Ka · i)
v = Kr ·ωm

θ =
∫

v · dt,

(1)

where Kt (N·m/A) is the torque coefficient of the motor, i (A) is the current of the motor, J (kg·m2) is
the equivalent moment of inertia on the motor side, ωm (rad/s) is the motor speed, um (V) is the input
voltage of the motor, Lm (H) is the inductance of the armature, and R (Ω) is the armature resistance.
Ke (V/rad·s−1) is the back-electromotive force(back-EMF) coefficient, Mf (N·m) is the friction torque,
Tc (N·m) is the Coulomb friction torque, B (Nm/rad·s−1) is the viscous friction coefficient, Kc is the
gain of the current loop controller, u (V) is the reference input of the current loop, and Ka (V/A) is the
current feedback coefficient. v (rad/s) is the speed on the load side, Kr is the transmission ratio, and θ
(rad) is the angular position of the load side.

According to Equation (1), a block diagram representing the speed open-loop OES can be
constructed, as shown in Figure 2a, and the transfer function is:

U(s) =
Lms + KaKc + R

KcKt
Tc +

Lm Js2 + (KaKc J + RJ + BLm)s + KaKcB + RB + KeKt

KrKcKt
V(s) (2)

where V (s) is the s-domain representation of v.
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Figure 2. Transfer function block diagram of (a) the complete speed open-loop system, and (b) the 
simplified speed open-loop system. 

Considering that the cut-off frequency of the current loop is much larger than the working 
frequency of the OES, the current loop of model (2) can be equivalent to a proportional component. 
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3. Principle of the Proposed Control Algorithm 

The schematic diagram of the control algorithm proposed in this paper is shown in Figure 3. 
The input is the inertial reference speed ωr , and the output is the actual inertia speed ω  of OES. 
The module SAKF represents the state-augmented Kalman filter, and the torque disturbance d is 
observed and compensated based on the voltage u and the rotational speed v differentiated by the 
encoder. Meanwhile, the SAKF also filters the speed v to obtain a speed estimation result v̂  with a 
higher SNR for feedback control. The Cv(s) module is a feedback controller. The above control 
modules SAKF and Cv(s) constitute a speed tracking unit, as shown in the red dashed box in Figure 
3. The gyro is then mounted on a carrier with its sensitive axis parallel to the rotational axis for 
sensing the inertial rotation of the carrier. If the actual speed of the carrier in the inertial space is dω  
and the output of the gyroscope is gω , then d g=ω ω . In this case, the difference between the 
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Figure 2. Transfer function block diagram of (a) the complete speed open-loop system, and (b) the
simplified speed open-loop system.

Considering that the cut-off frequency of the current loop is much larger than the working
frequency of the OES, the current loop of model (2) can be equivalent to a proportional component.
Then, convert the Coulomb friction torque Tc to the input portion, i.e., d = Ka

Kt
Tc, and a simplified

speed open-loop dynamic model can be obtained, as is shown in Figure 2b. The corresponding transfer
function is:

Guθ(s) =
Θ(s)
U(s)

=
K

(p + s) · s
(3)

Guv(s) =
V(s)
U(s)

=
K

p + s
(4)

where p = B
J , K = KrKt

Ka J , Θ(s), U(s) are the s-domain representations of θ and u respectively.

3. Principle of the Proposed Control Algorithm

The schematic diagram of the control algorithm proposed in this paper is shown in Figure 3.
The input is the inertial reference speed ωr, and the output is the actual inertia speed ω of OES.
The module SAKF represents the state-augmented Kalman filter, and the torque disturbance d is
observed and compensated based on the voltage u and the rotational speed v differentiated by the
encoder. Meanwhile, the SAKF also filters the speed v to obtain a speed estimation result v̂ with
a higher SNR for feedback control. The Cv(s) module is a feedback controller. The above control
modules SAKF and Cv(s) constitute a speed tracking unit, as shown in the red dashed box in Figure 3.
The gyro is then mounted on a carrier with its sensitive axis parallel to the rotational axis for sensing the
inertial rotation of the carrier. If the actual speed of the carrier in the inertial space is ωd and the output
of the gyroscope is ωg, then ωd = ωg. In this case, the difference between the reference speed ωr and
ωg is used as the reference speed vr of the speed tracking unit, and then the stable pointing of the OES
in the inertial space can be realized. So in this controller, the voltage u is the manipulation variation,
rotational speed v is the controlled variation, and the reference speed vr is the setpoint variation.
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4. Design of the Control Algorithm

According to the control algorithm principle introduced in Section 3, the SAKF module, and the
feedback controller Cv(s) are the three functional modules of the algorithm. Therefore, this section will
introduce the design process of the three modules in detail.

4.1. SAKF

The SAKF module is designed based on the state space model of the OES, which can be transformed
from the OES transfer function (4) as { .

x = Ax + B(u− d)
y = Cx

(5)

where x =

[
θ
v

]
, A =

[
0 1
0 −p

]
, B =

[
0
K

]
and C =

[
0 1

]
.

Since the actual algorithm always runs in a digital signal processor (DSP), the state space model
(5) needs to be discretized according to the sampling period Ts. Meanwhile, considering that the SAKF
is designed to observe and compensate the disturbance torque, the torque disturbance d is extended to
the state variable x of (5) as:

[
x(k + 1)
d(k + 1)

]
= Aa ·

[
x(k)
d(k)

]
+ Ba · u(k) + G ·

[
n(k)
ωn(k)

]
y(k) = Ca ·

[
x(k)
d(k)

]
+ nm(k)

(6)

where Aa =

[
Ad −Bd
0 I1×1

]
, Ad = eATs , Bd =

∫ Ts

0 eATs Bdt, x(k) =
[
θ(k)
v(k)

]
, I1×1 is a 1×1 unit matrix;

Ba =

[
Bd
0

]
, G =

[
Bd 0
0 I1×1

]
, Ca =

[
C 0

]
, V = I1×1. ωn is the difference between d(k + 1) and

d(k), which can be regarded as a white noise; meanwhile, nm(k) is the measurement noise of the speed
obtained from encoder, and n(k) is the process noise of the state variable x(k).

According to (5) and (6), a relationship between Ad, Bd and p, K can be derived as:
Ad =

 1 1−e−pTs

p
0 e−pTs


Bd = K

p2

[
pTs + e−pTs − 1

p− pe−pTs

] . (7)
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Therefore, the estimation result of the state variable [x(k),d(k)]T can be obtained according to:[
x̂(k + 1)
d̂(k + 1)

]
= Aa

[
x̂(k)
d̂(k)

]
+ Bau(k) + L(y(k) −Cax̂(k)). (8)

Here, the gain coefficient matrix L in (8) can be obtained by solving

L = AaMCT
a (Rr + CaMCT

a )
−1

(9)

and the Riccati equation

AaMAT
a −AaMCT

a

[
Rr + CaMCT

a

]−1
CaMAT

a −M + Rw = 0 (10)

where Rw is the noise covariance matrix of u(k), and Rr is the noise covariance matrix of the process
variable [x(k),d(k)]T.

4.2. Feedback Control Module

The feedback controller belongs to the classical linear regulator. In order to ensure the stability of
the OES, the order of the feedback controller should not be high. For this reason, a PI controller is
usually adopted, and it can be expressed as

Cv(s) =
KPs + KI

s
(11)

where Kp and KI represents the proportional gain and integral gain, respectively.
The input of the controller (11) is derived from the error between the reference speed vr and the

speed v̂ observed from the SAKF, then, the output uC can be obtained using a Tustin transformation
with the sampling period Ts as:

uC(k + 1) = uC(k) + KP(vr(k + 1) − v̂(k + 1)) + KITs(vr(k) − v̂(k)). (12)

5. Implementation of the Proposed Control Algorithm

Since the SAKF and PI are related to each other, they have a strict logical sequence in implementation.
Meanwhile, reasonable configuration of the parameters is essential for a satisfactory motion performance.
Therefore, this section introduces the implementation and parameter setting methods for this
control algorithm.

5.1. Implementation Procedure

The implementation procedure of the control algorithm are as follows:

1. Initial state setting for the control algorithm:

The initial state of the proposed controller includes the pole p and gain K of Guv, the gain coefficient
matrix L, the initial state of (6), namely θ̂(0), v̂(0), d̂(0), and the initial output of the PI module,
i.e., uC(0). Among them, p and K can be easily obtained through experiment identification. L can
be calculated according to (6) to (10), and θ̂(0), v̂(0), d̂(0) and uC(0) should be set to 0.

2. Observation calculation of speed and torque disturbances:

By substituting (6) and (7) into (8), the recursive value of v̂(k) and d̂(k) can be obtained as:

d̂(k + 1) = d̂(k) + L3(v(k) − v̂(k)) (13)
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v̂(k + 1) =
(
e−pTs − L2

)
v̂(k) + L2 · v(k) −

K
(
1− e−pTs

)
p

(u(k) − d(k)). (14)

3. Output calculation of the feedback controller:

The recursive output value of the PI, i.e., uC(k), can be obtained by calculating (12).
4. Sum the output value of the SAKF and PI:

The output of the SAKF and PI are summed to obtain a complete controller output as:

u(k) = d̂(k) + uC(k). (15)

5. Update the state variable of the system: After step 1 to step 4 are finished, then the output value
u(1) can be calculated, and the state observations θ̂(k), v̂(k), d̂(k) and the controller output value
uC(k) need to be updated according to:

θ̂(k + 1) = θ̂(k)
v̂(k + 1) = v̂(k)
d̂(k + 1) = d̂(k)

uC(k + 1) = uC(k)

. (16)

Then, each subsequent iteration calculation should be performed in the order of step 2 to step 5.

5.2. Parameter Settings for SAKF

For model (6), assume that its process noise covariance matrix Rw = diag[σθ, σv, σd], measurement
noise covariance matrix Rr = diag[σθ, σv]. Therefore, in order to obtain Rw and Rr, it is necessary to
obtain σθ, σv, σd.

Assuming that the resolution of the encoder is δθ and the encoder’s output value for the actual
angle θ is θ, then the difference is ∆θ = θ− θ ∈ (− 1

2δθ, 1
2δθ). Considering that the quantization error

∆θ is evenly distributed over the interval (− 1
2δθ, 1

2δθ), so the angle variance is:

σθ = var(∆θ) =
∫ δθ

2

−
δθ
2

1
δθ

∆θ2d(∆θ) =
1
12
δθ2. (17)

Similarly, if the speed resolution is δv, then the speed variance should be:

σv =
1
12
δv2 (18)

As the disturbance is not easy to measure and model, the disturbance covariance σd depends
on experimental tuning. If σd is set improperly large, the disturbance observation response will be
faster and the suppression effect will be better. However, the observation result will be sensitive to the
measurement noise, and the stability margin will decrease dramatically. Considering that most of the
disturbances are originated by speed, it is reasonable to set the initial value of σd as:

σd = B · σv (19)

where B is the viscous friction coefficient, and then gradually increase σd until the servo performance
and stability margin are both satisfactory.

5.3. Parameter Settings for PI

After the SAKF is properly configured, a rotational speed of high quality can be estimated, and the
torque disturbance can be effectively compensated. Therefore, the dynamics of the OES with the SAKF
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is close to the ideal linear model (4). In this case, the tuning steps of KP and KI can be based on the
linear model (4).

As the forward transfer function Go(s) = Guv(s)Cv(s), where Cv(s) =
KPs+KI

s and Guv(s) = K
s+p , so

Go(s) =
K(KPs + KI)

s(s + p)
. (20)

Then, let
∣∣∣Go(jω)

∣∣∣≈ 1 , so one can have

KP
2 +

( KI

ωc

)2
=

(
p2 +ωc

2

K

)2

, (21)

and the open-loop phase angle can be simultaneously obtained as

arg(Go(jωc)) = arctan
(

KP

KI
ωc

)
− arctan

(
−

p
ωc

)
. (22)

Thus the phase margin

θp = π+ arg(Go( jωc))= π+ arctan
(

KP

KI
ωc

)
+ arctan

( p
ωc

)
. (23)

If λ = λ(θp) =
∣∣∣∣ 1
ωc

tan
(
θp − π− arctan( p

ωc
)
)∣∣∣∣ and ωc = 2π fc, then the relationship between KP, KI,

ωc and θp can be obtained according to (20) and (22) as: KP = λωc
K

√
p2+ωc2

1+λ2ωc2

KI =
ωc
K

√
p2+ωc2

1+λ2ωc2

. (24)

Denote the resonant frequency of the OES as f R, and the damping coefficient at the resonant
frequency as ξR, then the closed-loop bandwidth fB ≤ 2 fRξR [16]. As ξR ranges between 0.1 to 0.35,
it is reasonable to set ξR = 0.25, and therefore:

fB ≤ 0.5 fR (25)

Considering that there is a relationship between the closed-loop bandwidth f B and the open-loop
cut-off frequency f C as:

fB = 2 fC. (26)

Then a relationship between f C and f R can be obtained as:

fC ≤ 0.25 fR. (27)

Here, let fC = 0.25 fR, then the relationship between KP, KI, and f R can be obtained by
Equation (24) as: 

KP =
λπ fR

2K

√
4p2+π2 fR2

4+λ2π2 fR2

KI =
π fR
2K

√
4p2+π2 fR2

4+λ2π2 fR2

. (28)

Therefore, after determining the resonance frequency fR and the phase margin θp of the OES,
the satisfactory PI controller parameters can be obtained according to Equation (28).
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According to Equations (20) and (28), the open-loop transfer function of the system, Go(s), can be
derived as:

Go(s) =
λπ fR

2

√
4p2 + π2 fR2

4 + λ2π2 fR2 ·
1

s(s + p)
· (s +

1
λ
). (29)

Thus the pole of Go(s) is −p. As p = B
J ∈ (0,+∞), so the pole of Go(s) keeps staying in the left

half plane of the zero-pole diagram. Meanwhile, as a feedforward controller, the SAKF module does
not play a role in the system stability. So the system remains stable.

6. Experimental Verification

6.1. Introduction of the Experimental Setup

In order to verify the effectiveness of the control algorithm, an experimental setup comprised
of a ds1104 [17], a power supply equipment, a swing table, a gyroscope, and three transmission
components is built, as shown in Figures 4 and 5. The swing table is controlled by the ds1104
to simulate the flight of aircraft. Meanwhile, the transmission components (i.e., a direct-driving
component, a harmonic-driving component, and a RV-driving component) and the gyro are mounted
on this swing table. Each component consists of a motor, an encoder or a tachometer, and a reducer.
The main attributes of these components are listed in Table 1. Meanwhile, both the system and
controller parameters of the components are listed in Table 2.
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Figure 4. The appearance of the experimental setup for motion performance validation of opto-electric
servomechanisms (OESs).
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Table 1. Main parameters of the experimental setup.

Category Device Type Parameter Value

Inertial sensor Gyroscope STIM210 Resolution (◦/sec)
Range/((◦)·s−1)

4.768 × 10−5

±400
Direct-driving

component
Motor 130LCX-2 Rated voltage/V 24

Tachometer - Speed coefficient (r·min−1) ±300

Harmonic-driving
component

Motor 12CDT-003 Rated voltage/V 24
Harmonic reducer XBS80-100 Transmission ratio 100
Absolute encoder BCE90K40-17 Resolution/(◦) 0.0027

RV-driving
component

Motor 80BL110S50430 Rated voltage/V 24
RV reducer RV-201 Transmission ratio 161

Incremental encoder EW100049A Lines 4000

Table 2. System and controller parameters of the components.

Direct-Driving
Component

Harmonic-Driving
Component

RV-Driving
Component Unit

J 3.2 × 10−5 3.44 × 10−5 3.6 × 10−5 Kg m2

B 1.0 × 10−1 1.1 × 10−1 1.2 × 10−1 Nm/(rad s−1)
Kp 4.78 × 10−2 5.26 × 10−2 5.75 × 10−2 Nm/(rad s−1)
KI 6.9 7.5864 8.2722 Nm/rad
σθ 0 1.85 × 10−14 7.93 × 10−12 rad2

σv 4.86 × 10−2 1.85 × 10−8 7.93 × 10−6 (rad/s)2

σd 4.90 × 10−3 2.04 × 10−9 9.8 × 10−7 (Nm)2

6.2. Performance Test Method

6.2.1. Low-Speed Motion Performance

In order to effectively evaluate the performance of low-speed motion with the different control
methods, the angular fluctuation rate ε can be defined to quantify the low-speed-motion performance as:

ε =
∆θpp

θre f
(30)

where θre f represents the variation of the ramp position, and ∆θpp is the peak-to-peak value of the
tracking error [16], as is shown in Figure 6. Obviously, for the same displacement θre f , if the speed
fluctuates more obviously, ∆θpp will be larger, and then ε will increase. Ideally, when the component
rotates in a constant speed, then ∆θpp = 0 and ε = 0 exactly.
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6.2.2. Inertial Stability Accuracy

Since the OES is used to isolate the motion of the carrier so that the infrared detector can stably
point to a fixed direction in the inertial space, the tracking error magnitude between the motion angle of
the carrier and the motion angle of OES, denoted as e, can reflect the inertia stability accuracy of the OES.
When the carrier moves in a sinusoidal function of 1◦ and 1 Hz, the obtained error magnitude e is used
as the criterion for evaluating the stability accuracy, as is shown in Figure 7 [16]. Obviously, the smaller
e is, the higher inertial stability accuracy of the OES will be.
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6.3. Comparison of Experimental Results

6.3.1. Speed Observation

In order to compare the speed observation performance of the SAKF and the LPF, make the
RV-driving component run in torque mode. Set the reference torque to a sine function with amplitude
0.5 Nm and frequency 1 Hz, and use the ds1104 to sample the speed signal by the SAKF and LPF
simultaneously. The bandwidth of the 2-order Butterworth LPFs are set equal to the bandwidth of the
SAKF, 25 Hz. The result is shown in Figure 8, where the magenta line is the original speed differentiated
by encoder, the red line is the speed filtered by the Butterworth LPF, and the blue line is the speed
estimated by the SAKF.
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Figure 8. Comparison of speed observation by LPF and SAKF.

As can be seen from Figure 8, the noise from the original speed signal is evidently reduced by
both the SAKF and LPF. However, the speed from the LPF has a significant delay, while the delay of
the speed estimated by the SAKF is almost negligible. Therefore, comparing with the LPF, the SAKF
has a better speed observation performance.

6.3.2. Low-Speed Motion Performance

The PI control method and the proposed composed control method respectively perform speed
closed-loop control on the direct drive component, the harmonic drive component, and the RV drive
component. Keep the swing table still and set the reference speed vr to 0.01◦/s, then collect the encoder
data and plot the angular position value. The typical curve is shown in Figure 9. In Figure 9a,c,e,
the red slash represents the motion trajectory envelope when using PI, the blue slash represents the
motion trajectory envelope when using the PI + SAKF. Meanwhile, the solid red line represents the
actual trajectory by the PI, the solid blue line represents the actual trajectory by the PI + SAKF, and the
green line represents the ideal trajectory without any tracking errors. Figure 9b,d,f show the tracking
error of the three components when using the PI and the PI + SAKF as the control scheme respectively.
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Figure 9. Measured angular position of the (a) direct-driving component, (c) harmonic-driving
component, and (e) RV-driving component, and the calculated angular error of (b) the direct-driving
component, (d) harmonic-driving component, and (f) RV-driving component by the PI and the
PI + SAKF with the reference speed vr = 0.01◦/s.

By measuring the fluctuation amplitudes of the respective curves in Figure 9, the low-speed
motion performance by the two control schemes can be listed in Table 3.

Table 3. Comparison of low-speed motion performance.

No. Category PI PI + SAKF

1 Direct-driving
component 0.61 0.23

2 Harmonic-driving
component 0.09 0.03

3 RV-driving component 0.09 0.01



Appl. Sci. 2019, 9, 4498 14 of 16

By analyzing the data in Table 3, it can be seen that when the control method proposed in this
paper is adopted, all three components can obtain better low-speed motion performance, which means
that the proposed control scheme can be applied in various types of OESs and can compensate torque
disturbance effectively.

6.3.3. Inertial Stability Accuracy

In order to compare the inertial stability accuracy of the three components by PI and PI + SAKF,
make the swing table rotate in a sinusoid reference angle with an amplitude of 1◦ and a frequency of
1 Hz. Meanwhile, set the inertial reference speed ωr to 0 for all three components. Then subtract the
swing table angle from each component angle to obtain the residual motion of the OESs.

The residual angle of the OESs by two control methods, and the angle of the swing table are
shown in Figure 10.
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No. Category PI PI + SAKF 

1 Direct-driving component 58% 3% 
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Figure 10. Measured angular position of (a) the direct drive component, (c) harmonic driving
component, and (e) RV driving component, and residual motion angle of (b) the direct drive component,
(d) harmonic driving component, and (f) RV driving component by PI and PI +SAKF, with the swing
table rotating at sinusoidal 1◦/1 Hz and the inertial reference speedωr = 0.

The comparison results of the stability accuracy by PI and PI + SAKF are shown in Table 4. It can
be seen from Table 4 that, comparing with the PI method, the PI + SAKF can significantly reduce
the error magnitude of all three OESs under the same disturbance conditions, which indicates that
the proposed control scheme can achieve effective improvement of stability accuracy in a wide range
of OESs.
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Table 4. Comparison of stabilization accuracies.

No. Category PI PI + SAKF

1 Direct-driving component 58% 3%
2 Harmonic-driving component 14% 4%
3 RV-driving component 10% 6%

7. Conclusions

In order to effectively compensate the torque disturbance and improve the speed measurement
performance, a strap-down stability control algorithm based on the PI + SAKF is proposed. The principle,
implementation procedure, and parameter tuning guidelines of the algorithm are given. Then the
performance of the control algorithm is verified for three types of OESs, including the direct-driving
component, the harmonic-driving component, and the RV-driving component. The experimental results
show that a better observation and suppression of torque disturbance can be achieved in all three OESs.
Compared with the PI, this composed control scheme can increase the low-speed-motion performance
by 62.30% (direct-driving), 66.67% (harmonic-driving), and 88.89% (RV-driving), and increase the
stability accuracy by 94.83% (direct-driving), 71.43% (harmonic-driving), and 40.00% (RV-driving),
which provides an effective scheme for achieving high inertial stability performance and low-speed
performance of opto-electric stability servomechanisms.
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