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Abstract: Multi-Agent Systems (MASs) are often used to optimize the use of the resources available
in an environment. A flaw during the modelling phase or an unanticipated scenario during their
execution, however, can make the agents behave not as planned. As a consequence, the resources can
be poorly utilized and operate sub-optimized, but it can also bring the resources into an unexpected
state. Such problems can be mitigated if there is a controlled environment to test the agents’ behaviour
before deployment. To this end, a simulated environment provides not only a way to test the agents’
behaviour under different common scenarios but test them as well in adverse and rare state conditions.
With this in mind, we have developed ARPS, an open-source framework that can be used to design
computational agents, evaluate them in a simulated environment modelled after a real one, and then
deploy and manage them seamlessly in the actual environment when the results of their evaluation
are satisfactory.

Keywords: multi-agent systems; discrete event simulator; interoperability; agent and multi-
agent applications

1. Introduction

In environments where resource management is critical, software agents can be employed to
optimize those resources. When the task to accomplish this is too complex to be carried out by a single
agent, multiple interacting agents can be used to achieve effectiveness. The Multi-Agent System (MAS)
approach has been successfully applied in many domains, including: helping controllers in Air Traffic
Control for making decisions based on the aircrafts’ fuel availability, flight plan, weather, and any
other relevant data [1]; optimizing distributed generators in smart grids for energy production, storage,
and distribution [2]; or finding better arrangements for the components in manufacturing plants to
increase the throughput and optimize material usage [3].

Many frameworks and toolkits enable the implementation of a MAS. They are not designed to
provide seamless means of evaluation of the outcome of the agents in the system under certain scenarios
before deployment. A flaw during the design and implementation of the agents, or an unpredicted
state of the environment where they are acting, can not only interfere with the achievement of their
goals, but can also bring the environment into a unexpected situation with unforeseen consequences.

Some work with MASs has made use of simulations to aid deployed agents to update their plans
according to the current state of the environment. This means that the simulation is used as a planner
tool, meant to help the agent to make a decision under a specified near future scenario rather than
using the simulation in the process of designing the agent behaviour before deployment. This strategy
has been applied to the field of multiple Unmanned Aerial Vehicles (UAV) [4], where communication
is required for coordination and failures related to it can make the entities unreachable. The system
simulates possible scenarios where communication is unavailable and an action by the UAV is expected.
Another example is the simulation component used to detect conflicts and inconsistencies of resource
allocation during the high-level planning in a manufacturing plant [5].
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There is no general purpose MAS framework, to the best of our knowledge, that integrates the
process of validation of the agents in a simulated environment before their deployment. To address
this, we have developed ARPS, an open-source framework available at https://gitlab.com/arps/arps/
under MIT LICENSE [6], to seamlessly design, implement, assess the agents, and deploy the MAS
after the results meet established criteria. ARPS stands for some of the core properties of agents:
autonomy, reactivity, proactivity, and social ability. We use the management of resources of a data
centre to illustrate our approach and how it can be used in other domains.

In Section 2 we cover related work. Following this, Section 3 describes the background and
architecture of the framework. The process of the implementation of the MAS to manage an
experimental scenario is shown in Section 4. In Section 5 we discuss the findings, limitations,
and future directions.

2. Related Work

There are multiple toolkits, platforms, and frameworks available for creating a MAS. In this
section, we will describe a few of them. The works here by no means represent the only alternatives
for creating MASs. For other options, refer to surveys on this topic, such as the one presented in [7].

The works reviewed here implement common aspects of a MAS to work in an actual environment,
such as communication, interoperability, storage, security, and resource discovery. Therefore, the users
can focus on the definition of the agents and their behaviour, how they are organized, and how they
interact to solve a problem.

Among the popular MAS frameworks, JADE (also known as Java Agent Development
Framework) [8] was created to address the problem of interoperability and provide an environment
for the development of agents. It has no domain dependent requirement as seen in the other solutions.
According to the authors, such dependencies were obstacles for the adoption of MAS technologies
at the time of its conception. JADE simplifies the implementation of multi-agent systems through a
middleware compliant with the FIPA (Foundation for Intelligent Physical Agents) specifications [9],
a standard proposed for interoperability of agents. The JADE authors argue that is industry-driven and
currently the most known FIPA-compliant agent platform in the academic and industrial community.

The A-Globe platform [10] is designed for testing experimental scenarios featuring agents’ position
that requires a Geographical Information System (GIS, though agents may suffer from communication
inaccessibility either because of the spatial distance of the agents or by broken links. Because it is a
closed-environment, interoperability is not one of the concerns of this platform. Hence, it is not fully
compliant with the FIPA-specifications on inter-platform communication, albeit it provides compliance
with the Agent Communication Language (ACL), a structure for composing messages exchanged
by agents.

Based on the fulfillment of requirements such as robustness, security, and the ability to ensure
that a partial solution can be executed when an optimized one is not found due to constraints,
DARPA funded a project called Cougaar [11] (Cognitive Agent Architecture). This agent platform
was created to offer specialized support for logistics-related problems. This platform is also not
FIPA-compliant. It aims to facilitate the development of agent-based applications that are complex,
large scale and distributed.

Other solutions offer more components built on top of the existing agent-based platforms.
The Jadex BDI Agent System [12] follows the Belief Desire Intention (BDI) model [13] and
facilitates intelligent agent construction over other middleware such as JADE. It has been used to
build applications in different domains, such as simulation, scheduling, and mobile computing.
The programming model of Jadex allows for designing an application as hierarchical decomposition of
components interacting via services and thus helps to make complexity manageable. These components
can be used in concurrent and dynamic distributed systems. Another example is JaCaMo [14]. It is
an interpreter for an extended version of AgentSpeak, a BDI agent-oriented logic programming
language [15]. It is a platform that integrates three projects with different MAS-related paradigm
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models for development: Jason [16] for agent development; Moise [17] for agent organization;
and CArtAgO [18] for environment-oriented programming.

Lastly, the MadKit [19] offers a modular and scalable multiagent platform. Its central aspect is
the ability to organize agents in groups and roles aiming at the development of artificial societies.
It is closely related to our approach in the sense that has a simulator component. Nonetheless,
the simulation and evaluation are not seamless in the workflow, leaving the responsibility of this
integration to the user.

Previous work has often presented MAS tools that provide a base infrastructure to implement
agents. These approaches also looked to help address other specific problems, such as interoperability
by defining standards, robustness and security. In some cases, the work sought to introduce approaches
to enrich the design process, provide clear definition of how agents are organized and what their roles
are. However, these solutions lack a component that would allow a developer to assess the behaviour
of the agents in a simulated environment before actual deployment. Further, this step should be
as seamless as possible, i.e., it should take no or few modifications to alter agents in the simulated
environment in order to make them run in the actual environment. This is the gap that ARPS fills.

Agent-Based Modelling (ABM)

One of the main solutions available to simulate complex systems is known as Agent-based
modelling (ABM). It is employed in domains such as social sciences, biology, ecology, engineering,
and economics. There are many platforms to implement ABM [20,21]. Among them, we list
a few widely adopted examples. The Swarm package [22] provides object-oriented libraries of
reusable components for building models and analyzing, displaying, and controlling experiments
on those models. NetLogo [23] is a software that provides packages to simulate multi-agent in
environments. It has a significant user community, it is highly documented, and they provide many
demos. MASON [24] is a discrete event multi-agent simulation toolkit. It was designed to serve as the
basis for a wide range of multi-agent simulation tasks ranging from swarm robotics to machine learning
to social complexity environments. The Repast platform, initially developed as a tool to be used in
social sciences, is a family of agent-based modelling and simulation platforms. Currently, not only does
it provide a package to be used in regular environments, such as desktops, and laptops [25], but also
has an advanced version to be used in HPC environments [26] to simulate more demanding scenarios.

The ABM and MAS concepts are closely related to each other since both are agent-based.
The difference is that the modelling in ABM aims to gain insight about emergent properties in complex
adaptive systems while MAS focus on actual agents [27,28].

Our framework aims to provide an environment to combine ABM properties, such as the ability to
model agents in a simulated environment and observe their behaviour, with MAS’s ability to implement
and deploy the agents evaluated during the simulation in the action environment. The integration
of both approaches can yield positive results. The framework in [29], features this combination.
It enables mobile agents to work simultaneously both in the actual and virtualized agent platform
to enable large-scale simulation to observe unknown emergence behaviour. This is accomplished by
having the agents in the actual environment collecting data in real-time, and improving the simulation,
which in turn can have its outcome used in decision making. In our case, we need a separate simulator
component to enable the study of the agents’ behaviour without disrupting the environment before
their deployment. This then enables a developer to leverage the construction of reliable physical agents
by evaluating their interactions and the effects of their actions. Because simulation can involve the
compression of time, it is possible to simulate many different scenarios efficiently. Also, during the
simulation, it is possible to create unexpected scenarios to see how the agents perform. This can be
desirable in areas that already employ ABM for resource management during a disaster, such as [30],
that could be extended to have software agents that could direct resources where it is necessary. We are
aiming to combine the characteristics of both simulation and development to offer an alternative for
creating solutions in resource management using MAS.
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Figure 1 illustrates our workflow to achieve this integration. A user/admin can create the
environment, its resources, and the agents’ models, and define how they are organized. The MAS
environment is generated, and the user can simulate a scenario. After analyzing the simulation
results, the user can decide to refine the models or apply the agents’ models to the actual environment.
The output of this environment can also be used as feedback to improve the existing models and create
a more reliable simulation.

As we have discussed, none of the previoius MAS frameworks have a simulator component that
allows this workflow without having to reimplement the concepts defined during the simulation into
the actual environment.

Figure 1. Workflow for MAS conception, evaluation, and deployment.

3. Our Approach

Below we describe the background of the framework, our design choices, and present
the architecture.

3.1. Background

Data centres present complex dynamic environments where many resources are allocated to
provide guaranteed, reliable services. These resources are not only related directly to the computer
systems, such as processing power, storage capacity, and network, but also to the supporting equipment
and environmental control. Data centre administrators face a daunting task in trying to manage them
optimally. There are impacts when these resources are misconfigured or overallocated on the total cost
of ownership because of excess power consumption or idle resources. Data centre operators can also
incur financial penalties due to the broken guarantees related to service delivery.

One proposed way to tackle this problem is the adoption of autonomic computing architectures
and strategies. An autonomic approach aims to embody the idea of self-management, which in
turn can be realized by decomposing it into other sub-properties, such as self-configuration,
self-healing, self-optimization, and self-protection [31]. This separation of concerns can be managed
by decentralized autonomous agents that may interact with each other, optimizing local resources
to achieve global optimization, as exemplified in [32], where a MAS manages the number of hosts
available to process workloads depending on the demand.

One problem faced in the employment of MASs in data centres is the impracticality of having
an actual data centre available to evaluate the effectiveness of the policies governing agents due to
costs and security concerns. In some cases, data centre simulators, such as that described in [33],
have been developed to evaluate the possible impacts of the autonomic agents policies in the data
centre before implementing and deploying them in the real environment. Even so, there is a gap,
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however, in the development between the simulation step and the implementation and deployment of
the actual agents. To address this problem, a framework was developed using initially the concepts of
the aforementioned simulator with the additional feature of employing the assessed policies during
the simulation to drive the software agents that will manage the actual resources in the environment.

Contrary to most of the works related to MAS platforms presented in the previous sections,
our approach was first developed to solve a domain-specific problem focused on self-management of
resources. During the development, the generic components were extracted to allow more flexibility
during the implementation and the test of the proposed solutions. This resulted in the general purpose
ARPS framework to enable MAS.

The generalization of the scenarios where our MAS framework can apply, although it is not
limited by, is illustrated in Figure 2. As can be seen, there is a complex system with resources (Rn),
grouped by environments (Environmentm), that are affected by external events (E). The events occur
at a variable or fixed interval in this system. Without any management, these resources can be in a
suboptimal state. To overcome this problem, agents (Ai), driven by policies, are employed to monitor
resources or modify them using available touchpoints. The agents can be reactive, proactive. They can
act in isolation, or they can communicate with each other for cooperation, coordination, or negotiation.

Figure 2. Scenario for resources being modified by external events while agents manage them.

The framework is being currently developed in Python 3, a high-level multiplatform language that
can be deployed in myriad host platforms, including Internet of Things (IoT) devices [34,35]. The users
can install the framework from source code or as a Python package, available at https://pypi.org/
project/arps/. This means that, when implementing the agents for a specific domain, the user needs
to implement all the components using Python. Albeit there is no single programming language that
can be applied in every domain effectively, Python has been suggested as an alternative for a general
programming language to be adopted by the scientific community and it has been used by researchers
in areas not related to technology or engineering, such as psychology and astronomy [36,37].

3.2. Architecture

The ARPS framework is composed of four main components: agent manager, agents, discovery
service/yellow pages service and Discrete Event Simulator (DES). The architecture and relationship of
the first three are illustrated in Figure 3. The agent manager has three main aspects: the management
of the availability of resources and policies related to an environment, agent life-cycle, and simulation

https://pypi.org/project/arps/
https://pypi.org/project/arps/
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when it is running for this purpose. It acts as a container for the agents. This container groups resources
logically by some criteria, like resource similarity, or accessibility. Agent managers can be distributed
across systems. The agent is an entity driven by policies that will manage one or more resources. It can
interact with all other agents available by the discovery service. Since each agent manager can be
deployed in distributed manner, the discovery service is a directory where its agents are registered
when created and their location is made available to be discovered by other requesters, so the agent
from one agent manager can exchange messages with agents from others agent managers. Lastly,
the DES is a component available for the evaluation of the agents, and its integration with the others
will be explained in the following sections.

Figure 3. Architecture of the ARPS framework.

3.2.1. Interoperability

The agent manager, agents, and discovery service implement the RESTful architecture style for
interoperability. This is done using HTTP methods, and the payload is in JSON format. This RESTful
API employs uniform resource access using the format http://hostname:port/resource/, where the
hostname:port are the host name and listening port to access the API respectively, and the resource is
a web resource. The HTTP methods (GET, POST, PUT, and DELETE) are available for the clients.
The payload of the POST and PUT methods, as well as the possible HTTP response codes, were omitted
for simplification purposes. Their descriptions are available at https://gitlab.com/arps/arps/wikis/
home. Below we present the API to perform the requisitions.

The agent manager API is intended to fulfill requests by the user. The summary in Table 1 shows
how the policies that can be used to drive agents’ behaviour can be listed, the agents that are currently
running in its environment, the touchpoints that agents can monitor/control, and, when there are
agents created just for the purpose of monitoring resources, a timestamped log containing the state of
the resources can be retrieved.

The life-cycle of the agents is controlled by creation, modification, inspection, and termination
methods, as seen in Table 2.

http://hostname:port/resource/
https://gitlab.com/arps/arps/wikis/home
https://gitlab.com/arps/arps/wikis/home
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Table 1. REST API for environment.

HTTP Method URI Description

GET /list_agents show agents in the environment
GET /list_policies show policies available for agent

creation/modification
GET /list_touchpoints show sensors and actuators available in the

system for monitoring
GET /monitor_logs retrieve the state of the sensor and

actuators monitored by the agents created to
this end

Table 2. Agent Manager API for agent life-cycle.

HTTP Method URI Description

POST /agents Creates an agent; policies and the
fixed interval is specified in the
JSON body of the message

PUT /agents/[agent_id] Modify the agent’s policies or relationship
with other agents

GET /agents/[agent_id]?[params=values] Retrieve the internal state of the agent;
parameters are used to specify the type
of the content returned

DELETE /agents/[agent_id] Terminate the agent

Lastly, the REST API is available only when the agent manager is created to run the simulator is
seen in Table 3.

Table 3. Agent Manager API in simulator mode.

HTTP Method URI Description

GET /sim/run Run simulation
GET /sim/stop Stop simulation
GET /sim/status Retrieve current status
GET /sim/result Retrieve result of the simulation in CSV format
GET /sim/save Retrieve the organization of the system

The agents have their API described in Table 4. It is not only accessed with the intent of message
exchange among the agents, but it can also be called by users or other applications.

Table 4. Agent API.

HTTP Method URI Description

PUT /policy Add or remove a policy accordingly to the
content of the message body

PUT /meta_agent Establishes or removes the relationship
between two agents

PUT /action Requests a user defined action to be executed by
the agent accordingly to the content
of the message body

GET /info Request information regarding the agent, such
as current policies, touchpoints, and
relationships

GET /sensors Request current state of the sensors
available to the agent

GET /actuators Request current state of the actuators
available to the agent

The API provided by the discovery service, shown in Table 5, is used to register, unregister,
and list the running agents in the system.
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Table 5. Discovery Service.

HTTP Method URI Description

GET /agents List all agents
PUT /agents/[agent_id] Register the agent
GET /agents/[agent_id] Retrieve the location of the agent: hostname and port

DELETE /agents/[agent_id] Unregister the agent

We are aware of the existence of FIPA-HTTP to make compliant FIPA agents using HTTP [38].
This standard, however, only supports the POST method with the semantics of the message embedded
in a multi-part content sent in the body of the message. This defeats the purpose of the semantics
presented by the HTTP methods, and the already available HTTP status codes related to each HTTP
method. Some studies that support this view of interoperability in MAS, using Resource Oriented
Architecture (ROA), can be found in [39–41],

There are many advantages of using RESTful architecture style for interoperability. The system is
open, so applications that the system designers did not take into account a priori can be integrated
into the existing system since the web resources are accessed uniformly. Secure communication
can be implemented over HTTPS. A cache can be used to save bandwidth and to optimize system
communication. Visualization through different devices can be easily implemented by third-party
entities across different devices. The support of the MAS for the REST API can also be used to extend
the API and make it compliant with FIPA-HTTP if required.

3.2.2. Agent Model

The intelligent agent model, as described by Russel & Norvig [42], is used to define the agent.
Thus, besides the conventional definition of the agent, as an entity perceiving the environment through
sensors and modifying it through actuators, it has also the components to achieve reasoning. To this
end, the agent’s behaviour is driven by a set of policies that are executed by its control loop. A policy
can be activated either by interaction with other agents, or internally by a fixed interval. Each policy
has access to the touchpoints available in the environment provided by the agent during its creation.
Another characteristic is that policies can be dynamically added or removed.

The policies can be reactive or proactive. The reactive policy follows the Event Condition Action
(ECA) rule. This model is used to create simple reflex agents. Thus, the agent monitors the environment,
and, when the current state matches a condition, a predefined action is performed. Alternatively,
the agents can optimize the environment continuously. In this case, their behaviour can be defined in
terms of proactive policies. To this end, the user can extend the interface to implement goal-based or
utility-based policies.

Another characteristic is related to how agents are organized. The framework defines that an
agent has a unidirectional relationship with other agents. This relationship is also dynamic and
can be created or removed during the agent lifetime. Since this model does not impose any form
of organization and agents communicate using a peer-to-peer architecture, they can be organized
hierarchically, or horizontally. Agents can have a relationship established with any other agent
available through the yellow pages service. Currently, there is no support to enforce groups or roles.

3.2.3. Simulation

During the simulation, only a single instance of an agent manager is necessary since it will act
as the gateway to all other virtual agent managers that would be available in the system, as seen
in Figure 4a. Similarly to the actual environment, the format used by the API is http://hostname:
port/agent_manager/resource/, where agent_manager antecedes resource to identify the virtual agent
manager that will perform the requisition.

In the actual environment, the transport system used to exchange messages between agents
is implemented using the HTTP protocol, as seen previously. It relies on the physical network to

http://hostname:port/agent_manager/resource/
http://hostname:port/agent_manager/resource/
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function. During the simulation, however, this protocol is substituted by a global bus that will serve
as a discovery service and communication layer at the same time. The content sent from one agent
is put directly into the queue of messages of the receiver agent. The difference between real and
simulated communication is seen in Figure 4b. This has the advantage of removing the overhead
of communication. Additionally, it gives the freedom to the user to apply models into this layer to
improve the reliability of the agents to evaluate them under intermittent communication, increased
latency, or corrupted messages.

The resource is another component that has to be overridden by the models that describe how
they behave in the real environment. For example, in our case, we can model the behaviour of the
computational resources to have a certain load accordingly to the task that arrived in the system.
As well, our model supports resources that affect other resources indirectly. Revisiting the previous
example, we can create a model that increases the energy consumption based on the load in the system
when the computational resources are utilized.

The main component of the DES is the events generator. It supports both deterministic and
stochastic models. The former uses a log file containing the events—when the last event is completed
the simulation is terminated—while the latter uses a stochastic generator implemented by the user—the
termination needs to be invoked explicitly. Each event has two actions. The main action that is
executed every step while the event is still unfinished, and a post-action, when the event exits the
system. Figure 4c showing the resource being modified by an event during the simulation and in
Figure 4d showing the queue of deterministic events illustrates the DES component working along
with the agents

Figure 4. Agent Manager in Simulator Mode.

When finished, the results of the simulation are made available in the CSV format. We have
chosen this format since it is supported by a myriad of statistical tools, such as Pandas (https://
pandas.pydata.org/), R (https://www.r-project.org/), or spreadsheet-like apps such as LibreOffice
(https://www.libreoffice.org/). We believe these third-party tools are better equipped to fulfill the
needs of the user.

4. Demonstration of the Framework

In this section, we will illustrate how the ARPS framework can be used to solve the problem of
resource management. In the next section, we describe the components needed to be implement to
enable the MAS. Following this, we present an example in a specific domain: management of resources
in data centres.

https://pandas.pydata.org/
https://pandas.pydata.org/
https://www.r-project.org/
https://www.libreoffice.org/
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4.1. ARPS Framework Usage

The modelling of the MAS for resource management can be accomplished by following the steps:

1. Collect data about the resources in the environment using the available sensors.
2. Create a model of the environment, construct the resources behaviour, their relationship with

each other.
3. Create the actuators and the policies to drive the agents based on the available resources.
4. Create a model of the events that will modify the environment.
5. Run the simulation, take a snapshot of the environment containing the agents deployed along

with their policies, and collect the results in the CSV format.
6. Use more suitable external tools to evaluate the results.
7. Use a snapshot to deploy the agent managers and their agents in the real environment.
8. Modify the environment model, the policies, or the events and re-run step 4 to improve the agents

in the actual environment.

The usage of the framework can be summarized as the implementation of some interfaces, and the
creation of the configuration files needed by the agent managers and agents.

We have created the abstraction of the resources that provides the touchpoints to be accessed by
sensors and actuators, seen in Figure 5.

Starting with the sensors and a minimal set of the configuration files (files that will be described
in detail later in this section), it is possible to execute the agents in the actual environment to collect
data since a set of monitoring policies related to the implemented resources are made available
automatically. Therefore, it is possible to initially create agents with the only the purpose of gathering
data periodically. This data provides insight about the actual resources . This will be essential during
the modelling of the environment used by the simulator. This model can be later updated when
comparing the simulated environment with the actual environment.

Figure 5. Resources, Sensors, and Actuators structure diagrams.

Once the resources and sensors are implemented, the next step is the implementation of the
actuators. The actuators are used by the policies that drive the behaviour of the agents. These policies
can be created by implementing the Policy interface, illustrated by a reflex policy in Figure 6.
Since our approach is based on autonomic computing concepts [43], other types of policies, employing
utility functions, or goal-based approaches can be implemented. The method condition(event) can
be implemented to use optimization algorithms, defined by the user, that will compute the ideal
parameters and then use the results to modify the resources through their actuators. Goal-based
approaches would require the user to model the states and use the method condition(event) to search
for the best action to perform to achieve a better state. Both policies would be executed as periodic
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policies, so the event is just a time event indicating that it is time for the policy to evaluate the current
state and executes its actions based on the perceived environment.

Figure 6. Policy structure diagram.

Since the policies encapsulate the perception and modification of the resources, and these resources
can be modified by external events, the next step is the modelling of the these events. The events arrival
in the system can be stochastic or deterministic and it can be created by implementing the interface
EventQueueLoader. The events are encapsulated in the SimEvent class, which in turn contains the
SimTask that will be executed during the simulation. The SimTask main method should provide the
behaviour that will modify a resource, while the pos method will contain all the finalization process
to be executed, like resource release, after the task is finished. The relationship between the DES
components is illustrated in Figure 7.

Figure 7. Simulator structure diagram.

Given the structure present in Figure 8, the final step before running the MAS in the actual
or simulated environment is the creation of the configuration files, in JSON format, containing the
implemented files previously described in this section. Both configuration files are similar in their
structure. The file simulation.conf contains the paths of the files related to the fake resources, and the
DES component classes, while the file real.conf contains only the actual resources. The remaining
classes, like policies, sensors, and actuators, remain the same for both configuration files. Therefore, the
transition of the agents from the simulated environment to the real environment can be done seamlessly.

After the instantiation of the agent manager in simulation mode, using the simulation.conf
configuration file, the REST API presented in the previous section can be used to create the agents,
organize them, and run, stop, and collect the result of the simulation.

Based on the result, only the policies classes need to be modified. Then, using the real.conf
configuration file, the agents can be deployed in the actual environment. According to the behaviour
observed in the actual environment, improvements can be made in models used by the simulated
environment. Thus, it is only necessary to modify existing fake resources, simulation tasks and policies.
Incrementally, new resources, touchpoints, and policies can be added into the MAS to improve
the system.
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Figure 8. The minimal structure required.

4.2. Example: Data Centre Management

As previously discussed in Section 3, we are researching ways to address the problems in trying
to optimize energy efficiency in the data centre while ensuring that other performance metrics are met
using MAS. To illustrate this, we provide a minimal example to cover the basic setup of the ARPS
framework. The source code is available at https://gitlab.com/arps/arps/tree/main/arps/examples/
computational_resources_management.

This example by no means provides an in-depth analysis of resource management in data centres
and only serves to illustrate how the MAS can be realized. To keep this example simple, we will
manage only two resources from a single host: the CPU and the Energy Monitor. Additional resources,
such as temperature sensors of the environment, cooling system, and multiple hosts, can be added
iteratively as the need for better understanding the system arises.

The CPU provides means to both read its current utilization or modify its frequency. It is driven by
two governors: performance and powersave. This enables dynamic frequency scaling. The maximum
frequency is 2.9 GHz in each one of its four cores and when in performance mode, the frequency is
adjusted dynamically. Conversely, in powersave mode, the frequency stays closer to the minimum
frequency available. The Energy Monitor only provides an interface to read the estimated power
consumption in watts using the tool PowerTOP [44]. This tool was developed by Intel, and provides
estimates on power consumption.

To understand how energy consumption is affected when the CPU has a certain workload,
we collected the data using the sensors. As described in the previous section, when a resource is
implemented, a monitor policy related to it is made available by the Agent Manager. In this case,
it is possible to create agents executing the CPUMonitorPolicy and EnergyMonitorPolicy policies
periodically. The collected data were summarized into two charts, where the Y-axis represents
the normalized value of the CPU workload and the estimated power. The X-axis is the time in
seconds. In Figure 9, the CPU is using a performance governor, while in Figure 10 the CPU is using
powersave governor. As expected, there is a correlation between workload and energy consumption
in performance mode since the CPU adjusts its frequency during the execution. The same does not
apply in the powersave mode, where the energy consumption almost never goes over a certain value.

https://gitlab.com/arps/arps/tree/main/arps/examples/computational_resources_management
https://gitlab.com/arps/arps/tree/main/arps/examples/computational_resources_management
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Figure 9. Correlation of energy consumption and CPU workload using performance governor.

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance

CPU (0-100%) Estimated Power (W)

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Powersave

CPU (0-100%) Estimated Power (W)

Figure 10. Correlation of energy consumption and CPU workload using powersave governor.

To reduce energy consumption, for example, we can use reactive policies implementing the
method condition(event) of the Policy interface to evaluate the workload in the CPU. The action
performed by the policy can be the adjustment of the CPU’s frequency to a lower level. In this
example, we considered two different strategies for saving energy. The strategies involve three policies;
these policies are presented in Figure 11. The first adjusts the CPU to powersave mode when the
utilization is over 80% while in the second sets the CPU to powersave mode when the utilization is over
50%. The third returns the CPU to performance mode when the utilization is under 50. The first strategy
is composed of policies PowersaveDynamicScalingPolicy1 and PerformanceDynamicScalingPolicy;
strategy two uses PowersaveDynamicScalingPolicy2.

We have chosen batch jobs to represent the external tasks that modify the environment to evaluate
how the agents will manage energy consumption. In this case, we opted to use the deterministic model
of the job arrival using an external file of events, where each row represents one event arriving in the
system containing the arrival time, duration of the task, and workload. The SimTask main method,
seen in Figure 12, allocates the CPU resource, and consequently causes additional power consumption
proportionately to the workload when the CPU is performance mode and more steady when the CPU
is in powersave mode, as mentioned previously. The SimTask pos method would release the resource
as soon as the task is completed.
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class PowersaveDynamicScal ingPol icy1 ( Po l i cy ) :
def cond i t i on ( s e l f , event ) :

return s e l f . cpu . read ( ) > 80

def ac t i on ( s e l f ) :
s e l f . cpu f r eq . set ( governor=’ powersave ’ , max frequency=0.9)

class PowersaveDynamicScal ingPol icy2 ( Po l i cy ) :
def cond i t i on ( s e l f , event ) :

return s e l f . cpu . read ( ) > 50

def ac t i on ( s e l f ) :
s e l f . cpu f r eq . set ( governor=’ powersave ’ , max frequency=0.9)

class PerformanceDynamicScal ingPol icy ( Po l i cy ) :
def cond i t i on ( s e l f , event ) :

return s e l f . cpu . read ( ) <= 50

def ac t i on ( ) :
s e l f . cpu f r eq . set ( governor=’ performance ’ , max frequency=2.9)

Figure 11. Example of implementation of a reactive policy.

class CPUTask( SimTask ) :
def main ( s e l f ) :

i f not s e l f . acqu i red :
s e l f . acqu i red = True
s e l f . cpu . va lue += s e l f . wordload

i f s e l f . cpu . f requency == ’ powersave ’ :
e s t imate = s e l f . powersave est imate ( s e l f . cpu . va lue )

e l i f s e l f . cpu . f requency == ’ performance ’ :
e s t imate = s e l f . per fo rmance es t imate ( s e l f . cpu . va lue )

s e l f . energy monitor . va lue = est imate

def pos ( s e l f ) :
s e l f . cpu . va lue −= s e l f . wordload

Figure 12. Example implementation of a task to update the energy monitor based on CPU workload.

The first analysis suggests that the average energy consumption with the first strategy is 9 Watts
while for the second one it is 7.57 Watts. Without taking any other resources correlated to energy
consumption and CPU, we can infer that the second one is better. However, other resources or metrics,
such as a metric on Quality of Service (QoS), can be affected by the CPU dynamic frequency scaling of
strategy two; these could be included in the model for further investigation.

When comparing the policies in the real environment, a similar behaviour is observed.
The average energy consumption in the first policy is 13.75 Watts while in the second one is 12.34 Watts.
These results come from a very limited set of experiments and comparisons and so no significance can
be determined. Again, this was meant as example to illustrate how the ARPS framework can be used.

5. Discussion

We presented ARPS, a framework to enable evaluation of a MAS before deployment in an actual
environment. This framework is the result of a general purpose MAS solution developed to be as
flexible as possible to provide management of a data centre. It has proven useful in a specific domain,
and we believe that others in the MAS community can benefit from this additional option when
developing solutions to their problems. To this end, we illustrated how it could be applied using our
specific case.

Due to the decision of using the RESTful architecture style, agents can be deployed manually by
a user in an environment that would contain a single agent, without the need of an agent manager.
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This unintended feature is possible because agents are self-contained and all the operations are made
available through the API. The interaction can be done using web clients widely available on the
Internet. The only requirement is that the platform can run Python applications. Thus, a user can
instantiate an agent to control an autonomous robot developed in a platform such as a RaspberryPI,
or it can deploy an agent in devices of an IoT environment.

We have identified other features that could enrich this framework. The inclusion of a Policy
Management Tool can ease the process of creating new policies dynamically using a high-level language.
Also, new resources and their touchpoints could be made available on the fly or dynamically removing
unavailable resources. This could improve the integration of simulation and deployment even more.
We plan to add a learning component to make agents more robust to complex adaptive environments.
Further, reliability characteristics, such as fault tolerance, and security concerns, are being addressed
and will be included in future versions.

Currently, the framework has some limitations related to features that were set aside due to low
priorities. The framework does not come with a visualization component. Thus, it is not possible
to visualize the running agents both during the simulation or within the real environment. Also,
because we were aiming to have actual agents, we did not evaluate the usage of this framework
applied to problems entailing only agent-based modelling simulation (ABMS). Since ABMS and MAS
concepts overlaps, this MAS framework could be adapted to be used as ABMS tool. We do not know,
however, how it performs when millions of agents are deployed in the environment. The framework
does include statistical tools to analyze the results of the simulation or to assess the system in the
actual environment since we believe that each user has their own needs and preference for tools.
As mentioned, all the data gathered via the framework is made available in CSV format and so other
applications that can provide more suitable tools can be used to extract insightful information from
the data. Lastly, the framework is not FIPA compliant yet.
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