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Abstract: The periodic impulse characteristics caused by rolling bearing damage are weak in the
incipient failure stage. Thus, these characteristics are always drowned out by background noise
and other harmonic interference. A novel approach based on multi-resolution singular value
decomposition (MRSVD) is proposed in order to extract the periodic impulse characteristics for
incipient fault detection. With the MRSVD method, the vibration signal is first decomposed to
obtain a group of approximate signals and detailed signals with different resolutions. The first detail
signal is mainly composed of noise and the last approximate signal is mainly composed of harmonic
interference. Combined with the kurtosis index, the hidden periodic impulse signal will be extracted
from the detail signals (in addition to the first detail signal). Thus, the incipient fault detection of a
rolling bearing can be fulfilled according to the envelope demodulation spectrum of the extracted
periodic impulse signal. The effectiveness of the proposed method has been demonstrated with both
simulation and experimental analyses.

Keywords: multi-resolution singular value decomposition; rolling bearing; fault detection;
demodulation analysis; signal to noise ratio

1. Introduction

When a rolling bearing has a local injury in addition to its periodic rotation, the damaged surface
will be in contact with other parts that can produce periodic pulse impact, and thus arouse the natural
frequency vibration of the inner and outer rings [1,2]. The periodic transient shock signal often occurs
in the vibration signal and forms the modulation phenomenon, which is manifested in the frequency
spectrum as a modulated side band with equal intervals on both sides of the natural frequency [1,3].
Therefore, vibration signals collected from rolling bearings always carry the rich information about
machine health conditions [4–6]. Hence, the vibration-based fault detection methods have received
intensive study during the past decades.

In order to extract the fault feature information from vibration signals, various signal processing
methods have been used in the field of fault detection [7,8], such as empirical mode decomposition
(EMD) [9], wavelet transform (WT) [10], and their improved methods [11–14], sparse decomposition [15,16],
manifold learning [17], deep learning [18], spectral kurtosis(SK) [19], and envelope analysis [20–24].
These methods realize fault detection from the time domain, frequency domain, or time–frequency
domain. In addition to the above methods, there is another kind of method that has been universally
used for bearing fault detection to certain success, that is, higher order spectral (HOS) analysis [25–33].
HOS methods such as bispectrum, third order spectrum, etc, were put forward to compensate for the
deficiencies of the FFT(Fast Fourier Transform Algorithm)-based techniques when they process the
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non-stationary and non-Gaussian signals. HOS methods realize fault detection from higher-order
spectral domains. No matter which domain is selected for bearing fault detection, the objective of
the above methods is the detection of the modulation phenomenon formed by the periodic shock
characteristics in the resonance band that is excited by the bearing faults, i.e., the resonant demodulation.
The reasonable selection of the resonance band will promote the fault detection accuracy of the above
methods. However, due to the existence of the background noise and harmonic vibrations in the initial
stage of the failure, it is usually difficult to select the optimal frequency band for resonant demodulation.
Therefore, the effectiveness of the above resonance demodulation methods is undermined.

Some signal processing methods are applied in order to preprocess the raw vibration signals [12,34–36].
Chibani et al. [37] designed a novel filter in the finite frequency range to overcome the conservatism
generated. Chadli et al. [38] proposed a novel fault detection and isolation filter for multi-agent systems.
Based on GKYP(generalised Kalman–Yakubovich–Popov) lemma, Zhu et al. [39] proposed a filter to
detect faults for vehicle active suspension systems. Li et al. [40] developed a weighted diagnostic
observer to optimize the worst case robustness and fault sensitivity simultaneously. The purpose of the
preprocessing is to remove the noise and harmonic interference and extract the periodic shock vibration
components that are related to the fault for demodulation analysis. In essence, these preprocessing
methods decompose the background noise, the harmonic interference, and the periodic shock vibration
into different frequency bands. Therefore, the background noise, the harmonic interference, and the
periodic shock vibration that are contained in the raw vibration signal should be separable in the
frequency domain.

Different types of signals have different singular value characteristics after the singular value
decomposition (SVD). Therefore, SVD-based signal processing methods have been proposed, either for
noise reduction or classification recognition. The SVD based methods have been also widely used for
bearings and rotor-related fault detection to certain success [41–45]. The background noise, the harmonic
interference, and the periodic shock vibration have different singular value characteristics after the
singular value decomposition (SVD). In contrast to the above frequency-separation-based methods,
a new SVD-based preprocessing method, that is, multi-resolution singular value decomposition
(MRSVD) [46], is introduced in this study with the objective of extracting the periodic shock vibration
from the raw vibration signal which is acquired at the incipient failure stage of a rolling bearing.

Multi-resolution singular value decomposition (MRSVD) is a new signal decomposition method
that has been proposed in recent years. Inspired by the multi-resolution analysis idea of wavelet
analysis and the construction principle of matrix dichotomy recursion, MRSVD decomposes the
analytic signal into a number of approximate and detail signals with different resolutions via the SVD
method. As shown in the theoretical analysis in Section 3.1, in the MRSVD decomposition results of
a mixed-signal that contains strong background noise, harmonic disturbances, and a periodic shock
vibration, the first detail signal is mainly composed of noise, and the last approximate signal is mainly
composed of harmonic disturbances. Therefore, the MRSVD method is used to preprocess the rolling
bearing vibration signal to remove the background noise signal and the harmonic interference signal.
The simulation analysis and the application examples show that the MRSVD method can effectively
extract the periodic impact components caused by a bearing fault, even under the influence of strong
background noise and harmonic disturbances. Furthermore, the proposed method does not require
any prior knowledge about the resonance band. Hence, the MRSVD method has a good application
prospect for the initial fault detection of a rolling bearing.

2. Overview of the Method of Multi-Resolution Singular Value Decomposition

2.1. Decomposition Process of MRSVD

Inspired by the multi-resolution analysis idea of wavelet analysis and the construction principle
of matrix dichotomy recursion, a new SVD-based method that is MRSVD is proposed [46]. The specific
steps of the algorithm are as follows and the decomposition process is shown in Figure 1.
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Figure 1. The multi-resolution singular value decomposition (MRSVD) process of a given signal. 
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Step 2. An SVD is performed on the matrix H0, and on the two obtained singular values that are 
denoted as σa1 and σd1, with σa1>σd1. Two signal components can be obtained from σa1 and σd1 via the 
principle of the SVD matrix’s dichotomy recursive algorithm (see the section 1.2), and these two 
signal components are denoted as A1 and D1. In terms of the contribution to the original signal, A1 
and D1 have different weights. The A1 signal has a larger contribution to the original signal. It is the 
main component of the original signal and it reflects the main profile obtained from the original signal 
during the current signal decomposition. Similar to the approximate signal in wavelet analysis, the 
A1 signal is called as SVD approximate signal. In addition, the D1 signal reflects the details obtained 
from the original signal during the current signal decomposition. The D1 signal is similar to the detail 
signal in the wavelet analysis, so it is called the SVD detail signal. 

Step 3. The detail signal D1 is preserved, and the construction of the 2-row Hankel matrix H1 is 
continued for the A1 approximate signal in order to obtain the next level singular value 
decomposition. Consequently, a series of SVD detail signals and approximate signals can be obtained 
using the recursion decomposition layer by layer. 
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Figure 1. The multi-resolution singular value decomposition (MRSVD) process of a given signal.

Step 1. A Hankel matrix H0 is constructed with two rows for a given signal A0 = (x1, x2, . . . xN),

i.e., H0 =

(
x1, x2, · · · , xN−1

x2, x3, · · · , xN

)
.

Step 2. An SVD is performed on the matrix H0, and on the two obtained singular values that are
denoted as σa1 and σd1, with σa1 > σd1. Two signal components can be obtained from σa1 and σd1 via
the principle of the SVD matrix’s dichotomy recursive algorithm (see the Section 2.2), and these two
signal components are denoted as A1 and D1. In terms of the contribution to the original signal, A1

and D1 have different weights. The A1 signal has a larger contribution to the original signal. It is the
main component of the original signal and it reflects the main profile obtained from the original signal
during the current signal decomposition. Similar to the approximate signal in wavelet analysis, the A1

signal is called as SVD approximate signal. In addition, the D1 signal reflects the details obtained from
the original signal during the current signal decomposition. The D1 signal is similar to the detail signal
in the wavelet analysis, so it is called the SVD detail signal.

Step 3. The detail signal D1 is preserved, and the construction of the 2-row Hankel matrix H1 is
continued for the A1 approximate signal in order to obtain the next level singular value decomposition.
Consequently, a series of SVD detail signals and approximate signals can be obtained using the
recursion decomposition layer by layer.

2.2. Principle of the SVD Matrix’s Dichotomy Recursive Algorithm

Presuming that the (j−1)th MRSVD decomposition of the given signal A0 = (x1, x2, . . . xN)
has been carried out, the (j−1)th SVD approximate signal will have also been obtained and
denoted as Aj−1 = (aj−1,1, aj−1,2, . . . n aj−1,N). A 2-row Hankel matrix Hj can be constructed, i.e.,

H j =

(
a j−1,1, a j−1,2, · · · , a j−1,N−1

x j−1,2, x j−1,3, · · · , x j−1,N

)
.

The SVD result of the matrix Hj can be expressed as

Hj = Uj SjVj (1)

where Uj = (uj1, uj2), Uj ∈ R2×2, Vj = (vj1, vj2, . . . , vj(N−1)), Vj ∈ R(N−1)×(N−1), and Uj and Vj are the left
and right orthogonal matrices obtained by the jth decomposition. Sj = (diag(σaj, σdj), 0), Sj ∈ R2×(N−1),
and σaj and σdj are the approximate singular value and the detail singular value obtained using the jth
decomposition.

In order to obtain the SVD approximate signal Aj and the detail signal Dj for the jth decomposition,
Hj in the formula (1) can be expressed as the following form.

H j = σaju j1vT
j1 + σdju j2vT

j2 (2)

where uj1 ∈ R2×1, vj1 ∈ R(N−1)×1, and i = 1,2. Denoting Haj = σaju j1vT
j1, then Haj ∈ R2×(N−1) and Haj

corresponds to the larger singular value σaj, which reflects the body of the original signal, so it is called
the approximation matrix. In addition, Hd j = σdju j2vT

j2, Hdj ∈ R2×(N−1), and Hdj corresponds to the
smaller singular value σd, which reflects the detail of the original signal, so it is called the detail matrix.
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The SVD approximate signal Aj and the detail signal Dj are obtained from Haj and Hdj, respectively,
and the specific process is described as follows.

Both of the matrixes, Haj and Hdj, can be expressed in the form of row vectors, i.e.,

Haj =

 σaju j1,1vT
j1

σaju j1,2vT
j1

 and Hdj =

 σdju j2,1vT
j2

σdju j2,2vT
j2

. The specific row vector forms of the Haj and

Hdj matrixes are displayed in Figure 2a,b.
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Observably, both La,1 and La,2, as shown in Figure 2a, represent the data points aj,1, aj,2, . . . , aj,N−1

of the SVD approximate signal Aj. However, La,1 is not equal to La,2. In this study, all of the elements
in matrix Haj that represent the same data in signal Aj, are averaged and the acquired mean value of
the corresponding data of Aj is used. Therefore, the SVD approximate signal Aj is obtained using
Formula (3).

Aj = (aj,1, (La,1 + La,2)/2, aj,N) (3)

In a similar manner to the above description, the SVD detail signal Dj is obtained using Formula (4).

Dj = (dj,1, (Ld,1 + Ld,2)/2, dj,N) (4)

3. Application of the MRSVD Method in the Incipient Fault Detection of the Rolling Bearings

3.1. Study of the Principle of the Noise Cancellation and Anti-Harmonic Interference of the MRSVD Method

The rolling bearing vibration signal usually contains three signal components, including the
periodic shock component caused by the fault, the harmonic component generated by the vibration of
the equipment or the harmonic current, and the background noise component. Supposing that the
gathered vibration signal of the rolling bearing is x(i), then x(i) can be expressed as Formula (5).

x(i) = s(i) + n(i) + h(i) i = 1, 2, · · · , N (5)

In Formula (5), s(i) is the periodic shock signal, n(i) is the background noise signal, h(i) is the
harmonic signal, and N is the length of the signal.

According to Formula (5), The Hankerl matrix H constructed by the signal x(i) can be expressed
as Formula (6).

H = Hs + Hn + Hh (6)

where, Hs, Hn, and Hh are the Hankerl matrixes constructed by the signals s(i), n(i), and h(i), respectively.
For the MRSVD method, the number of rows in the Hankerl matrix is 2. In this type of matrix, the
current row vector lags only one data point behind the previous row vector. The SVD of the 2-row
Hankerl matrix for these three types of signals was analyzed as follows:

(1) For the harmonic signal h(i), the 2-row Hankerl matrix Hh was highly correlated, so the rank of
the matrix was 1. It was assumed that the two singular values obtained using the SVD of Hh were σs

and ξ, i.e., σ(Hs) = (σs, ξ), so ξ was a small positive number and σs � ξ. The energy of the harmonic
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signal h(i) was mainly distributed to the first singular value, and only a tiny fraction was distributed to
the second singular value.

(2) For the noise signal n(i), its auto-correlation function was Rn(τ) = d2δ(τ), d was the standard
deviation of the signal n(i), and δ(τ) was the unit impulse function. For the 2-row Hankerl matrix Hn,
although its two adjacent row vectors were only one bit behind each other, they were uncorrelated, so
the rank of the matrix was 2. Therefore, the correlation of the 2-row Hankerl matrix Hn was nearly
equal, which was denoted as σn, i.e., σ(Hn) = (σn, σn).

(3) For the periodic shock signal s(i), the 2-row Hankerl matrix Hs had a certain correlation.
However, compared to the correlation of the 2-row Hankerl matrix Hh, the correlation of the 2-row
Hankerl matrix Hs was lower. The correlations of the 2-row Hankerl matrix Hs were denoted as σhb
and σhs, i.e., σ(Hh) = (σhb, σhs), and σhb > σhs.

Based on the above analysis, the singular value matrix H constructed by the signal x(i) satisfied
Formula (7).

σ(H) ≤ σ(Hs) + σ(Hn) + σ(Hh)

= (σs + σn + σhb, ξ+ σn + σhs)
(7)

In fact, since the number of rows of the singular value matrix H was only 2, thus σ(H)≈ (σs+σn+σhb,
ξ+σn+σhs). The energies of the approximate signal and the detail signal were proportional to the
square of the singular value. From Formula (7), it can be seen that the singular value corresponding to
the detailed signal D1 can be represented as ξ+σn+σhs. The main components of the detailed signal
D1 were the noise signal and a small amount of the periodic shock signals. The total energy of the
noise signal contained in the detailed signal D1 accounted for half of the total noise energy contained
in the signal x(i). From Formula (7), it also can be seen that the singular value corresponding to the
approximate signal A1 can be represented as σs+σn+σhb. Similar to the signal x(i), the approximate
signal A1 also contained noise components, harmonic components, and periodic shock components.
Continuing to the next level of decomposition of the MRSVD, the detailed signal D2 was obtained.
Similar to signal D1, the signal D2 also contained the noise signal and a small part of the periodic
impact signal. The total energy of the noise signal contained in D2 accounted for half of the total
energy of the noise contained in A1. With the increase of the number of decomposition layers, the
energy of the noise was halved. The total energy of the noise contained in Dj was half the amount of
energy contained in Dj−1. As the noise decreased, the periodic shock components were highlighted.
Nevertheless, for the harmonic signal h(i), only a very small amount of energy (ξ2/(σs+ξ)2

→ 0) was
decomposed into the detail signal in each decomposition level of the MRSVD. Therefore, most of the
energy of the harmonic signal h(i) was retained in the last layer of the approximation signal.

Based on the above analysis, for a rolling bearing signal that is affected by strong background noise
and harmonic interference, the first detailed signal D1 obtained by its decomposition will be mainly a
noise signal, and its kurtosis value will be near 3. With the increase of the number of decomposition
layers, the noise components will reduce layer by layer, and the periodic impact composition will
increase layer by layer. Therefore, the kurtosis value will increase with the increase of the number
of decomposition layers. When the kurtosis value reaches a certain maximum, it will decrease with
the increase of the number of decomposition layers. This is because the periodic impact components
contained in the residual approximation signal also decrease layer by layer, which will be confirmed in
the simulation analysis.

3.2. Determination of the Number of Decomposition Layers of MRSVD

According to the analysis in Section 3.1, if the number of decomposition layers of the MRSVD is
too small, the detailed signal obtained will contain more noise interference. If there are a large number
of decomposition layers, the multiple decomposition layers will lead a larger calculation, which is
inconsistent with the real-time requirement of the fault detection of a rolling bearing. However, if the
number of decomposition layers is too large, the decomposed results will generate spurious signals.
Therefore, the number of decomposition layers of the MRSVD in this study is adaptively obtained in
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the decomposition process when the kurtosis value of the detail signal reached a maximum. Therefore,
if the current approximate signal continued to decompose, the kurtosis value of the next layer of detail
signals would show a downward trend, so the number of decomposed layers was determined to be
the current number of decomposed layers plus five.

4. Simulation Studies

In order to verify the effectiveness of the MRSVD in the aspects of rolling bearing incipient fault
detection, the mathematical model shown in Formula (8) was used to simulate the early fault vibration
signal of a rolling bearing

x(t) = s(t) + n(t) + h(t)

=
M∑

m=−M
Ame−β(t−mTp−

∑m
i=−M τi) sin

(
ωr(t−mTp −

M∑
i=−M

τi)

)
u(t−mTp −

m∑
i=−M

τi)

+n(t) + h(t)

(8)

where n(t) is the noise signal added by the MATLAB function awgn.m,the signal-to-noise ratio (SNR)
is set to −6, and h(t) is the harmonic interference signal that contains N harmonic signals, which can be
expressed as h(t) =

∑N
j=1 B j sin(2π fit), i.e., using the amplitude and the frequency of the jth harmonic

signal, which are Bj and fj, respectively. The periodic shock signal caused by the fault contains 2M+1
impulses. In Formula (8), Am is the amplitude of the mth shock, β is the decay coefficient caused by the
structural damping, Tp is the time period corresponding to the fault characteristic frequency, i.e., the
fault feature frequency, fc = 1/Tp. u(t) is the unit impulse function, ωr is the excited frequency, and τi is
the random variable whose mean value is zero and whose variance is between (0.01Tp, 0.02Tp), which
is the effect of the random slippage of the rollers.

The parameters of the simulated signal are displayed in Table 1. The noise was directly added to
the simulated periodic impulse signal before the harmonic interference signals were added. Therefore,
the signal-to-noise ratio (SNR) in Table 1 is relative to the simulated periodic signal. The simulation
signal was sampled at 20,000 samples s−1, and the number of sampling points was set to 20,000. After
sampling, the simulated signal, along with the noise, the harmonic interference signals, and their
Hilbert demodulation spectrums, are plotted in Figure 3. Due to the influences of the noise and the
harmonic interference, it is impossible to judge the fault of rolling bearing from Figure 3a. In Figure 3b,
the frequency differences of the harmonic components contained in the harmonic signal are mistakenly
identified as the demodulation frequencies. However, the actual fault characteristic frequencies are not
highlighted in Figure 3b.

Table 1. Parameters of the simulated signal. Signal-to-noise ratio (SNR).

Am TP M β ωr SNR B1 f 1 B2 f 2 B3 F3

1 0.008s 250 1500
Hz

2048
Hz –6 1.35 60Hz 1.4 230

Hz 1.5 800
Hz
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The 2-row Hankerl matrixes were constructed for the simulation signal and their periodic impact,
noise, and resonance components are denoted as H, Hs, Hn, and Hh, respectively. The result singular
values of the SVD of the matrix H, Hs, Hn, and Hh are displayed in Table 2. The numerical results
shown in Table 2 are consistent with the singular value analysis of the three kinds of signals (the
periodic shock signal, the noise signal, and the harmonic signal) in Section 3.1 of this manuscript.
To be specific, the two singular values obtained by the decomposition of the harmonic signals are quite
different from each other, the two singular values obtained by the decomposition of noise signals are
nearly equal, and the singular values obtained by the decomposition of periodic shock waves are
different. However, the difference between them is neither too large nor close to zero.

Table 2. Result singular values of the singular value decomposition SVD of matrix H, Hs, Hn, and Hh.

σ

Hankerl Matrix
H Hs Hn Hh

σa 354.8617 44.5982 69.4838 346.2494

σd 73.3264 14.2705 66.8183 17.5887

The simulated signal shown in Figure 3 was decomposed using the MRSVD method, and the
number of decomposed layers was set to 15. The singular values and the kurtosis coefficients
corresponding to the obtained detail signals of each layer are shown in Figure 4a,b.
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It can be seen from Figure 4a that the singular values of the first several detail signals decreased
rapidly because the noise was removed relatively quickly at the beginning. Then the singular values of
the detail signals decreased gradually with the increase of the number of layers. To be specific, the
noise removal became slow with the increase of the number of decomposed layers.

As shown in Figure 4b, because the first detail signal contained a large amount of noise, its kurtosis
coefficient was nearly equal to 3. As the number of decomposed layers increased, the kurtosis value
also increased, because the noise component contained in the detail signal decreased layer by layer
and the periodic impact component increased layer by layer. When the number of decomposed layers
was 5, the kurtosis value of the detail signal reached a maximum, and the kurtosis value decreased
with the increase of the decomposed layer because the periodic shock component contained in the
residual approximate signal decreased layer by layer. Therefore, the conclusions pertaining to the
kurtosis value analysis of the detail signals in Section 3.1 are verified in Figure 4b.

Figure 5 shows the time domain and frequency domain waveforms of the first detail signal
obtained by the decomposition of the simulated signal via the MRSVD method. The main component
of the signal in Figure 5 is the noise signal. Therefore, there is no highlighted frequency in the frequency
spectrum of Figure 5. The time-domain and frequency-domain waveforms of the last layer of the
approximate signal obtained by the decomposition of the simulated signal via the MRSVD method
are plotted in Figure 6a,b. As stated in Section 3.1, most of the energy of the harmonic signal was
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retained in the last layer of the approximation signal, so the highlighted frequencies in Figure 6b are
the harmonic frequencies f 1, f 2 and f 3. 
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Figure 5. The time and frequency waveform of the first detail signal. (a ) The waveform of the first 

detail signal in the time-domain. (b) The waveform of the first detail signal in the frequency-
domain. 
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Figure 7. Time and Hilbert envelope demodulation spectrum of the extracted periodic impulse signal.
(a) The waveform of the extracted periodic impulse signal in the time-domain. (b) The Hilbert envelope
demodulation spectrum of the extracted periodic impulse signal.

In the above simulation analysis, the number of decomposed layers of the MRSVD method was
set to 15 (Figure 4b). The corresponding sequence number of the detail signal with the maximum
kurtosis value is 5. Therefore, when combined with the description of the decomposition layer number
settings in Section 3.2, the number of decomposed layers of the MRSVD method only needed to be set
to 10.
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5. Experiment Studies

In order to verify the effectiveness of the MRSVD method in practical application, vibration signals
of the outer race fault rolling bearing were collected from the experimental setup shown in Figure 8.
The signal from the sensor (ICPR accelerometer, model 623C01) is fed to an NI data acquisition module
(NI USB-6212 BNC) and is recorded by the computer with the LABVIEW software. The sampling
frequency is 20 kHz and acquired data length is 40 k. The fault characteristics of incipient failure are not
obvious; the periodic shock vibration associated with faults is often drowned in the background noise
and the harmonic interference. Therefore, a more challenging condition is created at the experiment;
the sensor signal conditioner is removed. Hence, the raw signal from sensor is not altered and not
amplified. Obviously, the signal collected in this way is less clean and is considered more realistic.
In the raw data, the interference, such as the power line frequency around 60 Hz, cannot be ignored.
The background noise will be more obvious. For example, the noise caused by casualization error
of the NI data acquisition module is inevitable and becomes relatively stronger when the raw signal
voltage of the accelerometer output is very low.
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The ER16K ball bearings, manufactured by Rexnord Industries, are used throughout the experiments.
The bearing parameters are shown in Table 3. The outer race fault is in the top position, see Figure 9.
In Table 3, the BPFO and f r terms represent the characteristic frequency of outer race failure and the
rotation frequency of the rotating shaft, respectively. To be specific, the frequency of the rotary shaft
rotation frequency f r is the resonance harmonic signal caused by the imbalance of the rotary table.

The rotation speed of the rotation axis was 1440 rpm, so f r = 12 Hz and BPFO = 85.728 Hz.
The time domain waveform and the Hilbert envelope demodulation spectrum of the collected vibration
signal with the noise and the resonance interference are shown in Figure 10a,b. For Figure 10b, the
display interval of the coordinate axis is reduced, and a detailed graph is obtained in order to see the
details shown in Figure 11. The resonant frequency of 24 Hz and the power line frequency of 60 Hz
can be clearly seen in Figure 11. However, the failure characteristic frequency of the bearing outer race
cannot be seen.
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Figure 10. Time domain waveform and Hilbert envelope demodulation spectrum of the collected
vibration signal with noise and resonance interference. (a) The waveform of the collected vibration signal
in the time-domain. (b) The Hilbert envelope demodulation spectrum of the collected vibration signal.
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Figure 11. Details of Figure 9b from zooming out of the display range.

The measured signal shown in Figure 10a is decomposed by MRSVD. The time domain waveform
and the Hilbert envelope demodulation spectrum of the detail signal with the maximum kurtosis value
are displayed in Figure 12a,b. The periodic shock oscillations with single-sided attenuations which
were caused by the bearing failure can be seen in Figure 12a. The characteristic frequency of the outer
race failure (BPFO) and its double are highlighted in Figure 12b.

The five detail signals with maximum kurtosis values obtained using MRSVD decomposition are
plotted in Figure 13d1–d5. Furthermore, their corresponding Hilbert envelope demodulation spectrums
are shown in Figure 13h1–h5. In Figure 13h1–h5, in order to display the fault feature frequency more
clearly, the display scope in the frequency domain is limited to the range of 0 Hz to 800 Hz. The time
domain waveform and the Hilbert envelope demodulation spectrum of the detail signal with the
maximum kurtosis value are also displayed in Figure 13d1,h1 in order to provide a comparison with the
rest of the figures in Figure 13. Similarly to Figure 11, the periodic shock oscillations with single-sided
attenuations caused by the bearing failure can also be seen in Figure 13d1–d5. The characteristic
frequency of the outer race failure (BPFO) and its double are also highlighted in Figure 13h2–h5.
Therefore, it can be determined that outer race fault exists in the roll bearing.
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is mainly composed of harmonic interference. Therefore, the periodic impulse characteristics that are 
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Figure 13. Time domain waveform of the five detail signals with the maximum kurtosis value and
their corresponding Hilbert envelope demodulation spectrum. (d1–d5) The five detail signals with
maximum kurtosis values obtained using MRSVD decomposition. (h1–h5) The corresponding Hilbert
envelope demodulation spectrums of the five detail signals in (d1–d5).

6. Conclusions

In this study, a new technique based on MRSVD has been developed for the initial fault detection
of a rolling bearing. With this method, the raw bearing vibration signal acquired at the incipient
failure stage, which contains the background noise, the harmonic interference, and the periodic
impulse characteristics, can be decomposed to a series of approximate signals and detailed signals with
different resolutions. Thus, the background noise, the harmonic interference, and the periodic impulse
characteristics will correspond to different signal components. Theoretical and experimental analyses
show that the first detail signal is mainly composed of noise and the last approximate signal is mainly
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composed of harmonic interference. Therefore, the periodic impulse characteristics that are related to
the rolling bearing failure can be extracted from the detail signals (in addition to the first detail signal).

The advantages of the introduced approach include the following: (a) in contrast to the resonant
demodulation approaches, this approach extracts the periodic impulse characteristics for demodulation
analysis in order to identify the fault without relying on prior knowledge of the fault-excited resonance
frequency; (2) this approach is computationally efficient, as except for the singular value decomposition
of a two-row matrix, the algorithm only involves addition and subtraction.
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