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Abstract: Light scattering by non-spherical particles is an important factor influencing atmospheric
radiative transfer. To accurately simulate the scattering properties of non-spherical particles, the
Invariant Imbedded T-matrix method (IIM T-Matrix) is developed by combining the Lorenz–Mie
theory and invariant imbedding technique. In this model, the non-spherical particle is regarded as
an inhomogeneous sphere and discretized into multiple spherical layers in the spherical coordinate
system. The T-matrix of the inscribed sphere is firstly calculated by the Lorenz–Mie theory, and then
taking it as the initial value, the T-matrix is updated layer by layer by using the invariant imbedding
technique. To improve the computational efficiency, the model is further parallelized by the OpenMP
technique. To verify the simulation accuracy of the IIM T-Matrix method, the results of the model are
compared with those of the EBCM (Extended Boundary Condition Method) T-Matrix method, DDA
(Discrete Dipole Approximation) and MRTD (Multi-Resolution Time Domain). The results show that
the scattering phase matrix simulated by the IIM T-Matrix method closely agrees with that of the
well-tested models, indicating that the IIM T-Matrix method is a powerful tool for the light scattering
simulation of non-spherical particles. Since the IIM T-Matrix method is derived from the volume
integral equation, compared to the T-Matrix method which is based on surface integral principles
(i.e., “EBCM” or the “null field method”), it can be applied to the scattering calculations of particle
with arbitrary shapes and inhomogeneous compositions, which can greatly expand the application
scope of the T-Matrix method.

Keywords: light scattering; non-spherical particles; invariant imbedding T-Matrix method;
Lorenz–Mie theory; non-rotationally symmetric particle

1. Introduction

The light scattering and absorption by non-spherical particles (such as ice crystals, dust aerosols,
etc.) plays an important role in the atmospheric radiative transfer [1–4]. However, because of
the irregular shape of these particles, there is still considerable uncertainty in their scattering
characteristics [5–7], which has become an important factor restricting the accuracy of atmospheric
remote sensing [8,9]. For polarized remote sensing, the effect of the “non-spherical effect” is much
more remarkable since the polarization of diffuse light is very sensitive to the particles’ shape [10,11].
Therefore, how to obtain the scattering properties of these non-spherical particles accurately has
become a hot issue in the field of atmospheric radiation [9,12–14].

In order to simulate the light scattering by non-spherical particles, many scattering computational
models were established [15,16]. Typical models include the T-matrix method [17,18], Discrete Dipole
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Approximation (DDA) [19,20], Finite Difference Time Domain (FDTD) [21,22], Pseudo-Spectral Time
Domain (PSTD) [23–25], and Multi-Resolution Time Domain (MRTD) [26,27]. DDA and FDTD can
be applied to the light scattering calculation for particles with arbitrary shape; however, due to the
limitation of their computational stability and complexity, it is a tough job for them to simulate the light
scattering by particles with large sizes [15]. Although PSTD and MRTD can calculate the scattering
properties of large particles, their scattering simulation processes are closely related to particle’s
orientation and incident light (propagation direction and polarization state). Namely, as long as
any of these parameters changes, their scattering processes need to be re-simulated as well [15,16].
Therefore, if the scattering properties of the particles with certain orientation distributions are needed
to be calculated, the computational process should be repeated many times, which will be very
time-consuming (DDA and FDTD also have the same problem). In contrast, the T-matrix method
has a significant advantage over these models. Since the T-matrix is a complete dataset of scattering
information which only depends on the refractive index, size, and shape of the particle, the scattering
properties for arbitrary orientations can be calculated analytically once the T-matrix is obtained [28].
In the traditional T-matrix models, the T-matrix is calculated by the Extended Boundary Condition
Method (EBCM, also known as the “null-field method”) [29,30]. Though these models are very
efficient at calculating light scattering by particles with ideal morphologies, like spheres, spheroids,
and cylinders [18,31,32], they generally have limited applicability to the irregularly shaped aerosol and
ice crystal particles [15]. Besides, with the increase of particle size and refractive index, their calculation
processes will become divergent. In the actual applications, many researchers have also found that
the performance is highly doubtful if the non-spherical aerosol particles are taken as the spherical or
spheroidal ones in a radiative transfer simulation [9,33]. Considering the tremendous advantage of
the T-matrix, many scholars have attempted to calculate the T-matrix by other methods, except the
EBCM. For example, Schulz used the Separation of Variable Method (SVM) to calculate the T-matrix of
spheroidal particles [34]. Mackowski et al. applied the Discrete Dipole Approximation to calculate the
T-matrix of the non-spherical particles [35], while Loke et al. [36] tried to combine the DDA with the
Point Matching Method (PMM) to calculate the T-matrix. However, similar to the DDA, most of these
methods can only be applied to simulate the light scattering by small particles.

In order to obtain the T-matrix of the particles with irregular shapes, Yang and Bi also applied
the Invariant Imbedding (IIM) T-Matrix method to the light scattering calculation [31,37,38]. The IIM
T-Matrix model was first proposed by Johnson [39], but due to the limitation of computing ability at
that time, it has not attracted enough attention. With the development of computer technology, Bi
rewrote the T-matrix model by combining the invariant embedding technique with the separation of
variables method (SOV) and the EBCM method. Now, by using this model, not only can the light
scattering by particles with arbitrary shapes and large sizes be effectively simulated, but also, the
computations can be performed with a high efficiency. In this paper, we also developed an invariant
embedding T-matrix model independently, in which the T-matrix is calculated by combining the
invariant embedding technique with the Lorenz–Mie theory.

This paper is organized as follows: firstly, the concept of T-matrix is briefly introduced, then, the
basic principle and implementation of the IIM T-Matrix method is given. Next, an acceleration scheme
is proposed by combining the Lorenz–Mie theory and the invariant imbedding technique. In Section 3,
the simulation accuracy of the IIM T-Matrix method is validated against the well-tested scattering
models. In Section 4, the modeling efficiency of the IIM T-Matrix code is discussed. Section 5 is a brief
summary of this paper.

2. The Principle of the Invariant Imbedding (IIM) T-Matrix Method

In this Section, the principle of the Invariant Imbedding T-matrix method is introduced in the
following way: firstly, the T-matrix is introduced, then, the basic equations to calculate the T-matrix
are derived from the Helmholtz Volume Integral Equation in Section 2.2. To simplify the calculation
equation of the T-matrix, the invariant imbedding technique to calculate the T-matrix is briefly
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introduced in Section 2.3. Further, the acceleration scheme based on the Lorenz–Mie theory is proposed
in Section 2.4.

2.1. A Brief Introduction of the T-Matrix

The T-matrix is a linear transformation matrix of the expansion coefficients of incident and
scattered fields. In order to obtain the T-matrix, the incident and scattered fields should first be
expanded by vector spherical harmonic functions [16,29], shown as:

Einc(r) =
∞∑

n=1

n∑
m=−n

amnRgMmn(kr,θ,ϕ) + bmnRgNmn(kr,θ,ϕ) (1)

Esca(r) =
∞∑

n=1

n∑
m=−n

pmnMmn(kr,θ,ϕ) + qmnNmn(kr,θ,ϕ), (r > R) (2)

where, R is the radius of the smallest circumscribed sphere of the scatterer centered at the origin
of the laboratory coordinate system. RgMmn(kr,θ,ϕ) and RgNmn(kr,θ,ϕ) are the regular vector
spherical wave functions, Mmn(kr,θ,ϕ) and Nmn(kr,θ,ϕ) are the vector spherical wave functions,pmn

and qmn are the expansion coefficients of the scattering electric field, and amn and bmn are the expansion
coefficients of the incident field. The definition of the vector spherical wave functions can be found in
the Appendix A of this paper.

Since the Maxwell equations are linear, the expansion coefficients of incident light (amn and
bmn) and scattered light (pmn and qmn) can also be converted by a linear transformation. The linear
transformation matrix is just the T-matrix, which can be expressed as:

pmn =
∞∑

n′=1

n′∑
m′=−n′

[
T11

mnm′n′am′n′ + T12
mnm′n′bm′n′

]
(3)

qmn =
∞∑

n′=1

n′∑
m′=−n′

[
T21

mnm′n′am′n′ + T22
mnm′n′bm′n′

]
(4)

In order to express the T-matrix more intuitively and compactly, the two formulas above can be
written into matrix form, given as:



p1

q1

. . .

. . .
plmax

qlmax


= T



a1

b1

. . .

. . .
almax

blmax


=



T11
11 T12

11 . . . . . . T11
1lmax

T12
1lmax

T21
11 T22

11 . . . . . . T21
1lmax

T22
1lmax

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
T11

lmax1 T12
lmax1 . . . . . . T11

lmaxlmax
T12

lmaxlmax

T21
lmax1 T22

lmax1 . . . . . . T21
lmaxlmax

T22
lmaxlmax





a1

b1

. . .

. . .
almax

blmax


(5)

in which, the T-matrix is a 2lmax × 2lmax super-matrix, where, lmax = nmax(nmax + 2) (nmax is the highest
expansion order of the field components).

2.2. Discretization and Vectorization of the Helmholtz Volume Integral Equation

The physical basis of the IIM T-matrix method is the Helmholtz volume integral equation. If we
take the time dependence of the electromagnetic wave as exp(− jωt), then the equation in frequency
domain can be expressed as [40]:

E(r) = Einc(r) +
y

V

G0(r, r′)u(r′)Z(r)E(r′)d3r′ (6)
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in which, E denotes the electric vector, u(r) = k2(εr(r) − 1), k is the wavenumber, r is the position
vector,εr(r) is the relative permittivity of the medium, Einc(r) is the electric vector of incident wave,
G0(r, r′) denotes the free space dyadic Green’s function, and Z(r) is a transformation matrix determined
by the particle’s permittivity, the expressions of G0(r, r′) and Z(r) are shown in Equations (7) and (8).

G0(r, r′) = (I +
1
k2∇⊗∇)

exp(ik|r− r′|)
4π|r− r′|

(7)

Z(r) =
1

εr(r)
r̂⊗ r̂ + θ̂⊗ θ̂+ ϕ̂⊗ ϕ̂ (8)

In the equations above, the operator “⊗” denotes the dyad product, i.e., if a and b are two column
vectors, then a⊗ b = a · bT.

In order to realize the discretization of Equation (6), both field components and dyadic Green’s
function G0(r, r′) need to be expanded by vector spherical harmonic functions. Therefore, the expansion
and vectorization of the field components and dyad Green’s function are firstly introduced, and then
the discretization scheme of volume integral equation is further derived.

a. Expansion and vectorization of the field components and dyad Green’s function G0(r, r′).
The expansion expression of the incident field has been given by Equation (1), which can be written
into matrix form, given as:

Einc(r) =
∞∑

n=1

n∑
m=−n

(RgMmn, RgNmn)

(
amn

bmn

)
=
∞∑

n=1

n∑
m=−n

Ymn(θ,ϕ)Jn(kr)
(

amn

bmn

)
(9)

where, Ymn(θ,ϕ) is an angular function matrix, and Jn(kr) is the radial Bessel function matrix, which
can be written as:

Ymn(θ,ϕ) =(−1)m exp(imϕ)
[

2n+1
4πn(n+1)

]1/2

·


0 0

√
n(n + 1)dn

0m(θ)
iπmn(θ) τmn(θ) 0
τmn(θ) iπmn(θ) 0


, Jn(kr) =


Jn(kr) 0

0 1
kr

d
d(kr) (krJn(kr))

0
√

n(n+1)
kr Jn(kr)


where, dn

0m(θ) is the Wigner-d function, while πmn(θ) and τmn(θ) are the angular functions, given by:

πmn(θ) =
m

sinθ
dn

0m(θ); τmn(θ) =
d

dθ
dn

0m(θ) (10)

Similarly, the total field can also be expanded by the vector spherical harmonic functions and
written into matrix form, expressed as:

E(r) =
∞∑

n=1

n∑
m=−n

(Mmn, Nmn)Emn =
∞∑

n=1

n∑
m=−n

Ymn(θ,ϕ)Hn(kr)Emn (11)

where, Emn is the expansion coefficients of the total field, and Hn(kr) is the radial Hankel function

matrix, whose form is similar to Jn(kr), expressed as:

Hn(kr) =


H(1)

n (kr) 0

0 1
kr

d
d(kr)

(
krH(1)

n (kr)
)

0
√

n(n+1)
kr H(1)

n (kr)

 (12)
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Similar to the field components, the dyadic Green’s function G0(r, r′) should also be expanded by
the vector spherical harmonic functions, but in the case that r > r’ and r < r’, their expansion forms are
slightly different, written as:

G0(r, r′) =


ik
∞∑

n=1

n∑
m=−n

(−1)mM−mn(kr,θ,ϕ) ⊗RgMmn(kr′,θ′,ϕ′)
+(−1)mN−mn(kr,θ,ϕ) ⊗RgNmn(kr′,θ′,ϕ′) r > r′

ik
∞∑

n=1

n∑
m=−n

(−1)mRgM−mn(kr,θ,ϕ) ⊗Mmn(kr′,θ′,ϕ′)
+(−1)mRgN−mn(kr,θ,ϕ) ⊗Nmn(kr′,θ′,ϕ′) r < r′

(13)

Because the expansion of the dyadic Green’s function is similar for r > r’ and r < r’ on the whole,
here we only introduce the matrix expansion process of G0(r, r′) for r > r’. From the symmetry of the
dyadic Green’s function, the following equation can be easily derived, given as:

G0(r, r′) = ik
∞∑

n=1

n∑
m=−n

(−1)mMmn(kr,θ,ϕ) ⊗RgM−mn(kr′,θ′,ϕ′)
+(−1)mNmn(kr,θ,ϕ) ⊗RgN−mn(kr′,θ′,ϕ′)

(14)

By using the symmetric relations of the vector spherical harmonic function [16], Equation (13) can
be simplified and rewritten it into the matrix form, expressed as:

G0(r, r′) = Ymn(θ,ϕ)gn(r, r′)
(
Y
∗

mn(θ
′,ϕ′)

)T
(15)

where, gn(r, r′) is a matrix constructed by the Bessel and Hankel functions, written as:

gn(r, r′) = ikHn(kr)J
T

n (kr′) (16)

Similarly, for r < r′, the dyad Green’s function G0(r, r′) can also be written into the matrix form,
similar to Equation (15), written as:

G0(r, r′) = ikYmn(θ,ϕ)Hn(kr)J
T

n (kr′)
(
Y
∗

mn(θ′,ϕ′)
)T

= Ymn(θ,ϕ)gn(r, r′)
(
Y
∗

mn(θ′,ϕ′)
)T (17)

gn(r, r′) = ikJn(kr)H
T

n (kr′) (18)

On the condition that r = r′, the expansion coefficients of G0(r, r′) are taken as the average value
of those for r > r′ and r < r′. In this case, the matrix form of the dyad Green’s function is similar to that
of Equation (15), but the matrix gn(r, r′) should be rewritten as:

gn(r, r′) = ik
(
Jn(kr)Hn(kr′) + Hn(kr)Jn(kr′)

)
/2 (19)

b. The discretization of the volume integral equation. Substitute the expansion equations of the
field components and the dyadic Green’s function into Equation (6), and use the orthogonality of the
vector spherical harmonic function for simplification, then, the following integral formulas can be
obtained for each (m, n), written as:

Em′n′(r,θ,ϕ) = Ym′n′(θ,ϕ)Jn′(kr)

+
∫
V

dr′r′2dΩ′
∞∑

n=1

n∑
m=−n

Ymn(θ,ϕ)gn(r, r′)
(
Y
∗

mn(θ′,ϕ′)
)T

u(r′)Z(r′)Em′n′(r
′)

(20)
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For further simplification, we define the vector amplitude density function Fmnm′n′(r) as:

Fmnm′n′(r) =
∫
Ω

(
Y
∗

mn(θ,ϕ)
)T

u(r)Z(r)Em′n′(r)dΩ (21)

This parameter is related to the electric current density and can be thought of as the source of the
scattered electric wave. Then, by substituting the equation above into Equation (20), we can get:

Em′n′(r,θ,ϕ) = Ym′n′(θ,ϕ)Jn′(kr) +

R∫
0

dr′
∞∑

n=1

n∑
m=−n

Ymn(θ,ϕ)gn(r, r′)Fmnm′n′(r′) (22)

Further, we insert Equation (22) into Equation (21), then the following relation can be obtained
after some simplification, given as:

Fmnm′n′(r) = Umnm′n′(r)Jn′(kr) +

R∫
0

dr′
∞∑

ñ=1

ñ∑
m̃=−ñ

Umnm′n′(r)gñ(r, r′)Fm̃ñm′n′(r
′) (23)

where, Umnm′n′(r) is the surface integral matrix of the spherical shell, written as:

Umnm′n′(r) = r2
∫
Ω

dΩ′
(
Y
∗

mn(θ
′,ϕ′)

)T
u(r′)Z(r′)Ym′n′(θ,ϕ) (24)

From the formula above, we can find that the U-matrix contains the spatial distribution information
of the scatterer, that is, the irregular shape of particles and its material distribution can be manifested
by this matrix, so its calculation accuracy is very important in the IIM T-Matrix model.

Since the scattering field usually refers to the electromagnetic field at infinite distance, in this

case, matrix gn has the form of gn(r, r′) = ikH(kr)Jn
T
n (kr′), since r is larger than r’ in the far field. Then,

substitute matrix gn into Equation (26), and we can obtain:

Em′n′(r,θ,ϕ) = Ym′n′(θ,ϕ)Jn′(kr) +

R∫
0

dr′
∞∑

n=1

n∑
m=−n

Ymn(θ,ϕ)Hn(kr)Tmnm′n′ (25)

where, Tmnm′n′ is the T-matrix introduced in Section 2.1, which can be calculated by:

Tmnm′n′ = ik

R∫
0

J
T

n (kr′)Fmnm′n′(r′)dr′ (26)

Equations (23), (25), and (26) constitute the basic equation set for the calculation of the T-matrix.
By solving these equations, the T-matrix can be obtained directly, and the scattering parameters can
also be calculated based on the T-matrix elements.

In order to solve the equations above, the radial integrals in Equations (25) and (26) should be
discretized by Gaussian quadrature, which yields:

Fmnm′n′(ri)= Umnm′n′(ri)Jn′(kri)

+
N∑

j=1
ω j
∞∑̃

n=1

ñ∑
m̃=−ñ

Umnm′n′(ri)gñ(ri, r j)Fm̃ñm′n′(r j)
(27)
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Tmnm′n′ = ik
N∑

j=1

ω jJ
T

n (kr j)Fmnm′n′(r j) (28)

where, r j( j = 1, 2 . . . , N) are the Gaussian quadrature points, and ω j is the weight factor for each
Gaussian point. Further, the above two formulas can be written into the matrix form, expressed as:

F(ri) = U(ri)J(kri) +
N∑

j=1

ω jU(ri)g(ri, r j)F(r j) (29)

T = ik
N∑

j=1

ω jJ
T
(kr j)F(r j) (30)

where, J(kri) and g(ri, r j) are the super-matrices with Jn′(kri) and gn(r, r′) as the element, and
=
F(ri)

and U(ri) are the super-matrices comprised by Fmnm′n′ and Umnm′n′ . The expression of T matrix is
shown in Equation (5).

2.3. T-Matrix Computation Based on the Invariant Embedding Technique

In principle, Equation (29) is essentially a linear equation system, and can be solved by standard
numerical methods, such as the Gaussian elimination method, the conjugate gradient method, etc., after

F(ri) is obtained, and then, the T-matrix can be obtained easily by substituting F(ri) into Equation (30).
However, because the matrices involved in this model are all super-matrices, the implementation of this
scheme is very difficult, especially for large particles. Therefore, in order to improve the computational
efficiency of the T-matrix, Johnson [33] first introduced the invariant embedding technique into the
light scattering simulation (this technique was originally developed to solve quantum mechanical
scattering problems). This method not only has the advantage of high computational efficiency, but

can also calculate the T-matrix directly without calculating the matrix F(ri), so it can greatly reduce
computational time and memory consumption.

According to Equations (29) and (30), the non-spherical particle should be discretized along the
radial direction, which is equivalent to dividing the particle into multiple inhomogeneous spherical
layers in the spherical coordinate system, as shown in Figure 1. In this way, the non-spherical particle
can be viewed as an inhomogeneous sphere, i.e., a portion of the sphere has the dielectric properties of
the scattering particle and the rest is regarded as a vacuum.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 22 
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Assuming n is an integer in (1, N) (N is the number of the Gaussian integral points), then according

to Equations (29) and (30), we define the matrix function F(n|ri) and T(rn), which satisfies the following
equations:

F(n|ri) = U(ri)J(ri) +
n∑

j=1

ω jU(ri)g(ri, r j)F(n|r j) (31)

T(rn) = ik
n∑

j=1

ω jJ
T
(r j)F(n|r j) (32)

where, F(n|ri) and T(rn) can be visually regarded as the vector amplitude density function and T-matrix
of the sphere with nth spherical shell. From the Equations (31) and (32), it can be found that except for
the fact that N is replaced by n, these equations are identical to Equations (29) and (30). Therefore, if

we let N = n, we can obtain F(ri) = F(N|ri) and T = T(rN).

Then, separate the nth term in the summation of Equation (31), and define Q(rn) and q as follows:

Q(rn) = ωn

[
I−ωnU(rn)g(rn, rn)

]−1
U(rn) (33)

q = ik
n−1∑
j=1

ω jJ

T

(rn, r j)F(n|r j) (34)

Then, Equation (31) can be simplified as:

F(n|rn) = ωn
−1Q(rn)

[
J(krn) + H(krn)q

]
(35)

where, H(kr) is a diagonal super-matrix with its element defined by Equation (12), ωn is the weight
factor of the nth Gaussian point. Because rn is larger than rj in Equation (35), gn(r, r′) has the expression

of gn(r, r′) = ikH(kr)J
T
(kr′).

Equation (32) can be reshaped in a similar way. The nth term in the summation is firstly separated,
together with Equation (35), then it can be simplified as:

T(rn) = q + Q11(rn) + Q12(rn)q (36)

where, matrix Q11(rn) and Q12(rn) are two auxiliary matrices, defined as:

Q11(rn) = J
T
(rn)Q(rn)J(rn) (37)

Q12(rn) = J
T
(rn)Q(rn)H(rn) (38)

From the equations above, the relationship between matrix F(n|rn), T(rn) and q is established.

However, q is still a super-matrix, therefore, we should further try to eliminate the matrix F(n|rn) and

q to establish the iterative equation only containing the T(rn) matrix. First, from Equation (32), we can
know that:

T(rn−1) = ik
n−1∑
j=1

ω jJ
T
(r j)F(n− 1|r j) (39)
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Assuming that F(n|r j) = F(n − 1|r j)(I + p) (p is a matrix), then from Equation (34), it can
rewritten as:

T(rn−1)(I + p) = q (40)

At the same time, we insert F(n|r j) = F(n− 1|r j)(I + p) and gn(ri, rn) = ikJ(kri)H
T
(krn) (ri < rn)

into Equation (31), a simplified expression between p and q can be obtained, written as:

p = Q21(rn) + Q22(rn)q (41)

where, Q21(rn) and Q22(rn) are another two auxiliary matrices, which are defined as follows:

Q21(rn) = H
T
(rn)Q(rn)J(rn) (42)

Q22(rn) = H
T
(rn)Q(rn)H(rn) (43)

Then, by inserting Equation (41) into Equation (40), we can obtain:

T(rn−1)(I + Q21(rn) + Q22(rn)q) = q (44)

The equation above can be regarded as a linear matrix equation of q, through which the matrix q
can be solved, written as:

q =
[
I−T(rn−1)Q22(rn)

]
T(rn−1)

[
I + Q21(rn)

]
(45)

At last, by substituting Equation (45) into Equation (36), the invariant imbedding iterative equation
for the T-matrix can be obtained, given as:

T(rn) = Q11(rn) + (I + Q12(rn))
[
I−T(rn−1)Q22(rn)

]−1
T(rn−1)

[
I + Q21(rn)

]
(46)

From this equation, It can be seen that if the T-matrix T(rn−1) of the sphere with (n − 1) layers is
known, then the T-matrix T(rn) of the sphere of nth spherical layers can be modified on the basis of
T(rn−1), and the correction terms mainly depend on the optical properties of the nth spherical layer
(through the matrix Qij (i, j = 1,2)).

2.4. Iterative Acceleration Based on the Lorenz–Mie Theory

According to Equation (46), during the implementation of the invariant embedding T-matrix
method, the non-spherical particles are needed to be regarded as an inhomogeneous sphere and divided
into a series of spherical shells. In this process, the optical matrices of spherical shells (including U, Q
and Qij (i, j = 1, 2)) should be calculated first, then, the T-matrix of the sphere with n layers can be
calculated based on the T-matrix of the smaller one with n − 1 layers.

In the calculation of the T-matrix, if we do the iteration directly from the origin of the sphere (r = 0)
to the circumscribed spherical shell (r = R), the computational amount will be very large, which will
limit the calculation efficiency of the model. In order to solve this problem, the scattering calculation
region of particles is divided into two parts (as shown in Figure 2): one is the spherical core region
with a radius of R0 (R0 is the radius of the particle’s inscribed sphere), the other is the spherical mantle
region in R0 < r < R (the region between the inscribed and circumscribed sphere). The spherical core
region is a homogeneous sphere, and its T-matrix can be calculated by the Lorenz–Mie theory. While
in the spherical mantle region, the invariant embedding technique is applied to solve the T-matrix,
and its initial iteration value is set as the T-matrix of the spherical core. In this way, the unnecessary
iteration process can be reduced, and the computational efficiency can be improved as well.
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Figure 2. A schematic diagram of the division of the calculation region of the non-spherical scatterer.
In this figure, R0 is the radius of the inscribed sphere, while R is the radius of the circumscribed sphere.

A specific interface is needed to convert the Mie coefficients into the T-matrix of the inscribed
sphere. For spheres, its T-matrix is a diagonal matrix, which satisfies Ti j

mnm′n′ = δm,m′δn,n′ ·T
i j
mnm′n′ , so

the relationship between the T and Mie coefficients (i.e., an and bn) can be expressed as:

T11
mnm′n′ = −δm,m′δn,n′ · bn (47)

T22
mnm′n′ = −δm,m′δn,n′ · an (48)

in which, an and bn can be calculated by:

an =
mψn(mx)ψ′n(x) −ψn(x)ψ′n(mx)
mξn(mx)ψ′n(x) − ξn(x)ψ′n(mx)

(49)

bn =
mψn(x)ψ′n(mx) −ψn(mx)ψ′n(x)
mξn(x)ψ′n(mx) − ξn(mx)ψ′n(x)

(50)

where, x is the size parameter of the inscribed sphere, and ψn(x) and ξn(x) are the
Riccati–Bessel functions.

Based on the principle introduced above, the implementation of the IIM T-Matrix method can be
concluded as follows:

Step 1: Determine the inscribed and circumscribed sphere of the non-spherical particle, and
calculate the T-matrix of the inscribed sphere with the Lorenz–Mie Theory by using Equations (47)–(50).

Step 2: Taking the T-matrix of the inscribed sphere as the initial value, then the T-matrix of
non-spherical particles is updated layer by layer by using Equation (46). The computational flowchart
of the optical matrix of the spherical shell is presented in Figure 3. Firstly, the U-matrix is calculated by
Equation (24), and then, the Q-matrix is directly calculated from the U-matrix by Equation (33). After
the Q-matrix is obtained, Q11, Q12, Q21, and Q22 can be computed by Equations (37), (38), (42) and (43).

Step 3: After the T-matrix of the non-spherical particles is obtained, then the cross-sections can be
directly linked to the elements of the T-matrix, and the phase matrix elements can also be obtained by
combining the generalized spherical functions and T-matrix elements, readers can see Reference [16]
for the details.
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3. Model Validation and Results Analysis

The invariant imbedded T-matrix model is implemented in Fortran95, and to improve the modeling
efficiency, the model is further parallelized by the OpenMP technique (OpenMP is a multi-threading
implementation technique that allows the compiler to generate code for task and data parallelism).
To validate the simulation accuracy of this model, the scattering parameters calculated by the IIM
T-Matrix method are compared with those calculated by EBCM and DDASCAT (which have been well
tested and are usually taken as a benchmark). The non-spherical particles simulated in this paper
include spheroid with different sizes, cylinder, spheroid with a spherical core (inhomogeneous particle),
and hexagonal prism (particles with non-rotationally geometry).

3.1. Small Spheroidal Particle Case

In this simulation, the incident light wavelength is taken as λ = 0.5 µm (the typical wavelength
in the visible band), the refractive index is set as m = 1.60 − 0.008i (the typical value of mineral dust
aerosol), the half-length of the horizontal and rotational axis are taken as a = 1.0 µm and b = 0.5 µm,
and the scattering phase matrix of the spheroid is simulated by the IIM T-Matrix method and the
EBCM T-Matrix method, respectively. The results are shown in Figure 4.

As shown in the figure, the results obtained by the two models are in good agreement, which
verifies the simulation accuracy of the IIM T-Matrix model for the non-spherical particles with small
size. For the phase function F11, the relative errors are less than 5% in forward scattering directions.
Though the calculation errors are relatively large near 180◦, they are still smaller than 12%. For F12/F11,
the calculation errors of the IIM T-Matrix model are all within 0.1, while the simulation errors of F34/F11

and F44/F11 are less than 0.1 in most scattering angles. From the spatial distribution of simulation
errors, it can be found that the simulation accuracy of the IIM T-Matrix model in the forward scattering
direction is obviously higher than that in large scattering angles. The reason is that, in the IIM T-Matrix
model, the particle is discretized in a spherical coordinate system, and similar to PSTD and MRTD,
there are also stepped approximation errors in shape construction. Further, because the scattering
phase matrix is more sensitive to the particle’s shape in backscattering directions, larger simulation
errors will be caused in large scattering angles correspondingly.



Appl. Sci. 2019, 9, 4423 12 of 22

Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 22 

and the scattering phase matrix of the spheroid is simulated by the IIM T-Matrix method and the 

EBCM T-Matrix method, respectively. The results are shown in Figure 4. 

 

 

 

 

Figure 4. The scattering phase matrix obtained by the IIM and Extended Boundary Condition Method 

(EBCM) T-Matrix methods for small spheroid particles. The simulation errors of F11 are denoted by 

relative errors. For F12, F34, and F44, they are firstly normalized by F11, and their simulation errors are 

evaluated by the absolute errors. 

Figure 4. The scattering phase matrix obtained by the IIM and Extended Boundary Condition Method
(EBCM) T-Matrix methods for small spheroid particles. The simulation errors of F11 are denoted by
relative errors. For F12, F34, and F44, they are firstly normalized by F11, and their simulation errors are
evaluated by the absolute errors.
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To further validate the simulation accuracy of the IIM T-Matrix method, the integral
scattering parameters (including extinction cross-section Cext, absorption cross-section Cabs, scattering
cross-section Csca, and single scattering albedoω) are also compared with those obtained by EBCM,
the results are shown in Table 1. It can be found that the relative simulation errors of the integral
scattering parameters are generally smaller than 1%, indicating that the integral scattering parameters
can be calculated by the IIM T-Matrix method with a high accuracy.

Table 1. The integral scattering parameters calculated by the IIM and EBCM T-Matrix methods for the
small spheroidal particle.

Model Type Cext/µm2 Cabs/µm2 Csca/µm2 ω

EBCM 4.889 0.0953 4.793 0.98036
IIM T-Matrix 4.872 0.0957 4.776 0.98029
Difference/% 0.3489 −0.4179 0.3559 0.00698

3.2. Large Spheroidal Particle Case

To validate the calculation precision of the IIM T-Matrix method for particles with large sizes, light
scattering by a large spheroid particle is simulated by the IIM T-Matrix method and EBCM, respectively,
and the result is shown in Figure 5. In this simulation, the light wavelength is set as λ = 0.6 µm, the
refractive index of the particle is taken to be m = 1.60 − 0.0008i, and the length of the horizontal and
rotational axes are set as a = 4.5 µm and b = 6.0 µm, respectively. The region between the inscribed and
circumscribed spheres is divided into 50 layers along the radial direction.

From the figures, it can be found that the scattering phase matrix obtained by the IIM T-Matrix
model shows a high consistency with that obtained by EBCM, indicating that the IIM T-Matrix method
can simulate the large non-spherical particle effectively. For F11, the relative simulation errors are
all less than 10% in the scattering angles ranging from 0◦ to 120◦. Though the simulation errors are
slightly larger in the scattering angles in large scattering angles, its maximum error is smaller than
15%. For F12/F11 and F44/F11, the calculation errors of the IIM-T-matrix model are less than 0.05 in most
scattering directions, especially in scattering angles ranging from 0◦ to 60◦, the modeling accuracy is
much higher than other scattering directions. The simulation accuracy of F34/F11 is slightly lower than
that of F12/F11 and F44/F11, but their simulation errors are still less than 0.1 at most scattering angles.
Similar to the small spheroidal particle, the simulation accuracy is lower in the large scattering angles,
while in the forward scattering directions, the simulation errors are much smaller.
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Similar to Section 3.1, the integral scattering parameters of the large spheroid of our model are
also compared with those of EBCM, the results are presented in Table 2. As can be seen, a good
consistency is achieved between the results obtained by different models. The relative differences of
these parameters are all less than 0.5%, which indicates that the IIM T-Matrix method can simulate the
scattering process of large particles accurately.

Table 2. The integral scattering parameters calculated by the IIM and EBCM T-Matrix methods for the
large spheroidal particle.

Model Type Cext/µm2 Cabs/µm2 Csca/µm2 ω

EBCM 165.918 13.18 152.739 0.9205
IIM T-Matrix 165.687 13.134 152.553 0.9207
Difference/% 0.1394 0.3502 0.1219 −0.0175
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3.3. Cylindrical Particle Case

The modeling capability of the IIM T-Matrix model is investigated for cylindrical particles. In this
test, the light wavelength is taken as 0.5 µm, the refractive index of the particle is set as m = 1.60 −
0.0008i, and the diameter (D) and length (L) of the cylinder are set as 2 µm. The scattering phase
matrices are calculated by the EBCM and IIM T-Matrix methods, and the results are shown in Figure 6.
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It can be seen that the results calculated by the IIM T-Matrix model show a good agreement with
those of EBCM, indicating that the IIM T-Matrix method can simulate the light scattering process of a
cylinder with a high accuracy. For F11, its relative errors are less than 10% in most scattering directions,
and for F12/F11, F34/F11, and F44/F11, their absolute errors are generally smaller than 0.1. Similar to the
results of spheroidal particles, the spatial distribution of simulation errors is similar to the variation
pattern of the phase matrix elements; namely, in the scattering directions where the curves of the phase
matrix elements change dramatically, their simulation errors will increase as well.

The integral scattering parameters of different models are also calculated, as shown in Table 3.
It can be found that the results of the IIM T-Matrix method show a good agreement with those of
EBCM, which validates the modeling accuracy of the IIM T-Matrix method.

Table 3. The integral scattering parameters calculated by the IIM and EBCM T-Matrix methods for the
cylindrical particle.

Model Type Cext/µm2 Cabs/µm2 Csca/µm2 ω

EBCM 11.4129 0.2791 11.1338 0.9755
IIM T-Matrix 11.3102 0.2735 11.0367 0.9758
Difference/% 0.9080 2.0475 0.8798 −0.0279

3.4. Inhomogeneous Particle Case

To verify the modeling capability of the IIM T-Matrix method for particles with inhomogeneous
compositions, the results obtained by the IIM T-matrix model are compared with the DDASCAT for a
spheroid with a spherical core. In this case, the wavelength of incident light is taken as 0.5 µm, the
horizontal and rotational axis of the outer spheroid are set as a = 1.0 µm and b = 1.5 µm respectively,
and its complex refractive index is set to be m1 = 1.44 − 0.000i. The inner part is a spherical core with a
radius of 1.0 µm, its refractive index is taken as m2 = 1.20 − 0.000i. The region between the inscribed
and circumscribed spheres is divided into 30 layers along the radial direction. The simulation results
are shown in Figure 7.

As can be seen from the figure, the IIM-T-matrix model achieves high calculation accuracy, and the
curves of the scattering phase matrix are almost coincided with those of DDASCAT. For F11, the relative
simulation errors are all less than 10% in scattering angles ranging from 0◦ to 30◦. With the increase of
scattering angle, its simulation accuracy decreases, but the relative errors are within 26%. The spatial
distributions of the simulation errors of F12/F11, F34/F11, and F44/F11 are similar to F11. In the forward
scattering direction, their simulation accuracy is higher and the absolute simulation errors tend to be
0, while as the scattering angle becomes larger, their simulation accuracy is slightly reduced, but it
should be noted that their absolute simulation errors are still within 0.1 in most scattering directions.
From the discussion, it can be found that the IIM T-Matrix method can simulate the light scattering by
inhomogeneous particles with a high accuracy.
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Figure 7. The scattering phase matrix obtained by the IIM T-Matrix method and DDASCAT for the
spheroidal particle with a spherical core. The simulation errors of F11 are denoted by relative errors.
For F12, F34, and F44, they are firstly normalized by F11, and their simulation errors are evaluated by
the absolute errors.
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3.5. Hexagonal Prism Case

To validate the simulation accuracy of the IIM T-Matrix method for non-rotational symmetric
particles (which cannot be effectively simulated by the EBCM T-Matrix method), the results of the IIM
T-Matrix method are further compared with that of the MRTD model developed by our team [27,41].

The MRTD scattering model is established based on the Multi-Resolution Time Domain technique.
By using this model, light scattering by arbitrarily shaped particles or ice crystals can be effectively
simulated. In this model, the plane wave is introduced into the computational space by the TF/SF
(Total Field/Scattering Field) technique, the Convolution Perfectly Matched Layer (CPML) is applied to
truncate the computational domain, and the volume integral method is employed to transform the
near electric field to the far field.

In this simulation, the light wavelength and refractive index are set as λ = 0.5 µm and
m = 1.20 − 0.0008i, and the length and bottom edge length of hexagonal prism are set as L = 2.0 µm
and a = 1.0 µm, respectively. The results are shown in Figure 8.Appl. Sci. 2019, 9, x FOR PEER REVIEW 18 of 22 
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Domain (MRTD) for hexagonal prism.

As can be seen, a high agreement is achieved between the results of the T-matrix method and
those of the MRTD model, which indicates that both MRTD and IIM-T-matrix models can effectively
simulate the scattering characteristics of a hexagonal prism. Similar to the conclusion drawn above, the
consistency of the two models in forward scattering directions is higher than those at large scattering
angles, where for the scattering phase functions F11, the relative simulation errors tend to be zero in
scattering angles smaller than 30◦, while in scattering directions near 170◦, the simulation accuracy is
relatively lower, and the maximum simulation errors can reach 36.7%.

4. Analysis of Modeling Efficiency

To further validate the effectiveness of the iterative acceleration scheme based on the Lorenz–Mie
theory, the computational efficiency of the improved model is investigated as well. In those simulations,
the light wavelength is set as 0.5 µm, and the scatterers are set as spheroidal particles with different
shapes. All the scattering processes are simulated on the same computer (32 bit 3.1 GHz), and the
computational time of the traditional and improved IIM T-Matrix code is presented in Table 4.
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Table 4. The computational time needed for the IIM T-Matrix model with and without the
Lorenz–Mie theory.

(a, b) Number of
Threads

Computational Time T0
of the Model without
Lorenz–Mie Theory/s

Computational Time T1
of the Model with

Lorenz–Mie Theory/s

(T0 − T1)/
T0 × 100%

(1.5, 2.0) 4 4463 1111 75.10643
(1.0, 2.0) 4 4438 2232 49.70708
(0.7, 2.0) 4 4485 2879 35.80825

As can been seen, after being improved by the iterative acceleration scheme, the computational
efficiency of the IIM T-Matrix method is improved notably, where for the particle with (a, b) = (1.5, 2.0),
the computational time is cut down by 75%. With the increase of the aspect ratio (a/b), the improvement
of the computational efficiency is much more remarkable.

5. Conclusions

The T-matrix is a complete scattering information set that only depends on the particle size,
refractive index, and shape; therefore, once the T-matrix is obtained, the scattering properties of the
particles with arbitrary orientations can be calculated analytically, which is a tremendous advantage
over DDA, FDTD, and other scattering models. In this paper, a T-matrix scattering model was
developed by combining the invariant imbedding iterative technique and the Lorenz–Mie theory.
Compared with the T-Matrix model developed by Mishchenko, it can be applied to the light scattering
simulation of particles with arbitrary shape and inhomogeneous compositions. In this paper, the basic
principle of the IIM T-Matrix method was firstly derived, and then, an iterative acceleration scheme
was proposed based on the Lorenz–Mie theory and the invariant imbedding technique. To improve the
computational efficiency, the model was further parallelized by the OpenMP technique. To validate the
calculation accuracy of the model, the scattering phase matrix computed by the IIM T-Matrix method
was compared with that of EBCM, DDASCAT, and MRTD. The results show that good agreements
were achieved between the results of the IIM T-Matrix method and those well-tested scattering
models, indicating that the IIM T-Matrix method can accurately simulate the scattering properties of
non-spherical particles with different shapes and inhomogeneous compositions. After being improved
by the iterative acceleration scheme based on the Lorenz–Mie theory, the computational efficiency of
the IIM T-Matrix method was improved notably. Owning to its excellent performance, the IIM T-Matrix
model might become a powerful tool for the light scattering simulation of non-spherical particles in
the atmospheric radiation field.
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Appendix A

Vector spherical harmonic functions in the IIM T-Matrix method are obtained by solving the
vector Helmholtz equation by the separation of variables method, and their expressions can be written
as follows [42]:

RgMmn(kr,θ,ϕ) =
(

2n + 1
4πn(n + 1)

)1/2

(−1)m exp(imϕ)
(
θ̂iπmn(θ) − ϕ̂τmn(θ)

)
Jn(kr) (A1)

http://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html
http://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html
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RgNmn(kr,θ,ϕ) =
(

2n+1
4πn(n+1)

)1/2
(−1)m exp(imϕ)

×

[
n(n+1)

kr Jn(kr) · dn
0mr̂ + 1

kr
d

d(kr) (krJn(kr))
(
θ̂τmn(θ) + ϕ̂iπmn(θ)

)] (A2)

Mmn(kr,θ,ϕ) =
(

2n + 1
4πn(n + 1)

)1/2

(−1)m exp(imϕ)
(
θ̂iπmn(θ) − ϕ̂τmn(θ)

)
H(1)

n (kr) (A3)

Nmn(kr,θ,ϕ) =
(

2n+1
4πn(n+1)

)1/2
(−1)m exp(imϕ)

×

[
n(n+1)

kr H(1)
n (kr) · dn

0mr̂ + 1
kr

d
d(kr)

(
krH(1)

n (kr)
)(
θ̂τmn(θ) + ϕ̂iπmn(θ)

)] (A4)

From the equations above, it can be found that the vector spherical harmonic functions can
be divided into 3 parts: the azimuth angle component, the radial component, and the scattering
angle component. The azimuth angle component is denoted as exp(imϕ), the radial component
is a combination of the spherical Bessel functions, where, in RgMmn and RgNmn, the first kind of
Bessel function Jn(kr) is used, while in Mmn and Nmn, the Hankel function of the first kind is applied.
The scattering angle component is a vector, which is constructed by the angular functions, i.e., πmn(θ)
and τmn(θ), and the Wigner-d function dn

0m(θ).
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