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Abstract: The random finite element method has been increasingly used in the geotechnical
community to investigate the influence of soil spatial variability and to bridge the gap between a
traditional design and a reliability-based design. There are two approaches to calculate the reliability
curves as a function of the traditional/global factor of safety in the literature. However, it is not clear
how these two approaches may be related and why. This paper is devoted to answering this question,
through the aid of an implemented auto-search algorithm within the strength reduction method and
the quantification of the potential sliding volumes in the various possible Monte Carlo realisations of
the soil spatial variability. The equivalences and differences between the two approaches, and thereby
their respective merits and disadvantages, are explained and discussed for the most commonly
used distribution types of soil strength properties, that is, normal and lognormal distribution.
Computational efficiency has also been addressed in the form of pseudocodes, which can be readily
implemented.

Keywords: finite element; probability of failure; reliability; strength reduction method; slope stability;
spatial variability

1. Introduction

Soil properties vary spatially in the ground as a result of the combined action of physical, chemical
and/or biological processes that act at different spatial and/or temporal scales, i.e., they fluctuate over
various distances. Traditionally, this soil spatial variability is ignored by assuming a soil profile with
uniform soil property values that are usually taken to be the mean. However, characterisation and
modelling of spatial variability is essential to achieve a better understanding of the relationships
between soil properties and geotechnical soil–structure performance. Much study of this kind
in geotechnical engineering is available with differing complexity, ranging from a single random
variable approach (e.g., in [1,2]) to many random variable approach (i.e., random field approach,
see, for example, [3–6]). Among the various methods of analysis, the random finite element method
(RFEM) is categorised as a level III method (the most sophisticated of its kind, see [7]), which uses a
random field to represent soil spatial variability and combines with the finite element method under a
Monte Carlo framework to calculate the soil response under various loading conditions. In the case of
slope stability, the method automatically seeks out the most critical failure surface without a priori
assumption. Therefore, this paper is focused on this level III method.
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In this kind of analysis, the reliability of the soil structure is targeted for design purposes.
Reliability is defined as the probability of a structure to perform a required function under the stated
conditions for a specified period of time. It is theoretically defined as the probability of success (i.e.,
reliability = 1 − probability of failure) and plays a key role in the cost-effectiveness of systems, in terms
of minimising costs and designing reliable engineering works. In a RFEM slope stability analysis,
different, but equally likely, random field realisations are generated to gain a probabilistic description
of the distribution of the realised factor of safety FR and failure mechanism. In this case, reliability
can be inferred from the computed histogram of FR (with the probability of failure being found by
integrating the area under the normalised histogram for FR < 1.0) (e.g., [8]). Consequence analysis
provides quantitative information on the risk and potential hazards that may be caused by the failure
of engineering structures (e.g., [9,10]). With this information, it is possible to improve the original
design, incorporate mitigation measures or devise hazard and management strategies to keep the risk
at acceptable levels. In slope engineering, the potential failure volume is an important indicator of
failure consequence, and therefore it can be important to quantify this volume.

Apart from the realised factor of safety (FR, a random variable) based on a Monte Carlo
simulation (that is, the distribution of realised factors of safety obtained by analysing the stability
of a slope for multiple soil strength realisations based on the same soil strength input statistics),
there is one other global factor of safety (Fd) based on the mean undrained shear strength; that is,
the factor of safety obtained by carrying out a (traditional) deterministic analysis based only on
the mean soil strength. There is a different distribution of FR for each traditional deterministic Fd
and, as mentioned above, the reliability may be assessed from the corresponding distribution of
FR. Therefore, each Fd is associated with a particular reliability level, and this provides a way to link
traditional and reliability-based designs (i.e., by determining the reliability associated with a traditional
Fd). A reliability versus Fd curve is often used in the literature to bridge the gap between traditional
design and a reliability-based design, and to allow practitioners to understand the reliability levels
associated with the traditional design for various soil variability conditions.

There are two approaches to obtain the reliability curves within RFEM. One is to get a distribution
of FR for a range of Fd values and analyse the reliability for each Fd [11,12], the other is to analyse the
slope corresponding to a range of Fd with a testing factor of 1.0 to see if it is stable, thus counting the
number of failures N f and obtaining the reliability (i.e., 1− N f /N, where N is the number of Monte
Carlo realisations) [5,13,14]. However, for the first approach, the two factors of safety are sometimes
confusing without clearly defining the two factors. This is especially true when using an efficient
equivalence of the first approach, i.e., when only the distribution of FR corresponding to one base case
Fd is obtained and scaled to that for other Fd values. Therefore, this paper is devoted to explain, in
detail, the equivalence and differences between the two approaches and the underlying reasons.

The paper starts by introducing the shear strength reduction method used in the finite
element method to determine the factor of safety and an implementation of an auto-search
algorithm; the random finite element method is then followed to explain how the framework works.
A consequence analysis framework in terms of potential failure volumes is then proposed for risk
assessment, and it is then used as an aid to explain the differences between the two approaches,
before some conclusions are drawn.

2. Finite Element Strength Reduction Analysis

As the strength reduction method comprises an integral part of the RFEM, it is now briefly
introduced to facilitate the understanding of the following auto-search algorithms and the later
comparison of the two approaches to slope reliability. In the strength reduction method [15], the factor
of safety (FOS) of the slope is defined as the proportion by which tan φ and c must be reduced to cause
failure with the gravity loading held constant. Gravity loads are generated first and applied to the
slope in a single increment. A trial strength reduction factor (SRF) loop gradually scales down the soil
strength until the algorithm fails to converge within a given iteration limit (e.g., 500). Each entry of
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this loop implements a different strength reduction factor SRF (usually increasing). The factored soil
strength parameters that go into the elasto-plastic analysis are obtained from

φ f = arctan(tan φ/SRF) (1a)

c f = c/SRF (1b)

where c is the cohesion and φ is the friction angle. Progressively larger values of the SRF factor are
attempted until the algorithm hits the iteration ceiling (which also indicates a sudden increase in the
nodal displacement, as shown in Figure 1), at which point the SRF is then interpreted as the factor of
safety FOS, therefore FOS = SRFlimit.

An automatic search routine (called AutoFOS) was written to find this limiting SRF to an accuracy
of 0.01, taking advantage of the pattern of progression of the iteration count with SRF [16]. The AutoFOS
search routine is initialised by first defining a starting SRF, SRFinitial and the step size to the next trial
SRF value, ∆initial

SRF (where superscript initial refers to the initial step). Three other artificial iteration cut
values (Cut1, Cut2 and Cut3) are used when the iteration counts are close to failure, at which point
∆SRF is truncated in a prescribed manner (i.e., a larger step was taken for smaller counts and a smaller
step size for larger counts, as shown in Figure 1).
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Figure 1. Strength reduction factor versus maximum displacement and iteration numbers for a 45◦

slope with an undrained shear strength of 20 kPa.

The pseudocode for the AutoFOS procedure is as follows (I and C are the actual and
maximum-allowed/ceiling plastic iteration counts):

******************************block 0****************************
10 Generate a slope and shear strength profile with mean, µc

20 Do While (I j−1<C), j is loop number:
30 If (j = 1) then SRFj−1 = SRFinitial , ∆j

SRF = 0

40 Else If (j = 2) then ∆j
SRF = ∆initial

SRF
50 Else If (j ≥ 3) then

60 If (I j−1<Cut1) then ∆j
SRF = ∆initial

SRF −
(

∆initial
SRF

√
I j−1

C

)
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70 Else If (I j−1>Cut1) then ∆j
SRF = 0.05

80 Else If (I j−1>Cut2) then ∆j
SRF = 0.02

90 Else If (I j−1>Cut3) then ∆j
SRF = 0.01

100 Else If (I j−1>C) then Slope failed, finish
110 End If

120 End If
130 Calculate new SRF: SRFj = SRFj−1 + ∆j

SRF
140 Reduce the shear strength: µj = µ

SRFj

150 Finite element plastic analysis of the slope, recording the number of iterations (I j) taken
to converge

160 End Do
******************************block 0****************************
In the above and in the following, µc represents, in general, the mean of c and φ. For an undrained

analysis, it represents the mean of the undrained shear strength µSu .

3. The Random Finite Element Method

The random finite element method (RFEM) is often used to compute geotechnical structure
(e.g., slope) response (e.g., factor of safety and displacements) within a Monte Carlo framework [7].
The procedure is as follows.

1. Generate random property fields, for example, using the local average subdivision (LAS) method
[17], based on some soil property statistics, e.g., a distribution type such as normal or lognormal
characterised by the mean and standard deviation; spatial correlation structure (type of correlation
function; and horizontal and vertical scales of fluctuation, θh and θv, respectively).

2. Map random field cell values onto the Gauss points within the finite element mesh modelling the
given problem (in this case, a slope stability problem).

3. Carry out a traditional finite element (e.g., slope stability) analysis [15].
4. Repeat the above steps for multiple realisations in a Monte Carlo analysis, until the output

statistics (e.g., the mean and standard deviation of the factor of safety) converge.

For a given set of statistics, a probability distribution of the factor of safety can be obtained.
Moreover, the potential consequences (e.g., failure volume in the case of slope stability) may also be
quantified for each realised factor of safety.

An existing LAS program, implemented in [18] and improved in [19], has been used in this paper.
The implementation uses the following covariance function,

C (τ1,τ2) = σ2 exp

−
√(

2τ1

θ1

)2
+

(
2τ2

θ2

)2
 (2)

where τ and θ are the lag distance and scale of fluctuation, respectively; subscripts 1–2 denote the
lateral and vertical coordinate directions, respectively; and σ2 is the variance of the relevant soil
property. However, because the subdivision algorithm itself is incapable of preserving anisotropy
[20], in this implementation, an isotropic random field is initially generated, and this field is then
postprocessed to give the target anisotropic random field; that is, by squashing and/or stretching the
field in the vertical and/or horizontal directions, respectively.
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Figures 2–4 show three possible ways of postprocessing an isotropic random field to produce an
anisotropic field ready for mapping to a finite element mesh. In each figure, the starting point is an
isotropic random field comprising 512 × 512 cells (i.e., as has been generated by nine LAS subdivision
stages).

Figure 2 shows an example of squashing the starting isotropic random field vertically. In this
example, the target square domain size is D = 5.0 m, the vertical scale of fluctuation is θv = 0.5 m,
and the anisotropy of the heterogeneity is ξ = θh/θv = 6, i.e., the horizontal scale of fluctuation is
θh = 3.0 m. The final cell size is dc = 0.1 m, and therefore 50 cells are needed in the horizontal
direction and 50 × 6 = 300 cells (before squashing) in the vertical direction, as these are to be
squashed and replaced by 50 new square cells. The starting isotropic field has a scale of fluctuation
of θiso = 3.0 m, to ensure that the final target field has the required horizontal and vertical SOFs.
Note that, by squashing vertically (and averaging each group of 6 cells to form a single new cell of 0.1
m dimension), the vertical scale of fluctuation is scaled down to the target 0.5 m.

Figure 2. Postprocessing an isotropic random field to produce an anisotropic field by squashing (ξ = 6).

Figure 3. Postprocessing an isotropic random field to produce an anisotropic field by stretching (ξ = 6)
(52 cells after Crop2 to be able to interpolate between the last two columns of cells).
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Figure 4. Postprocessing an isotropic random field to produce an anisotropic field by squashing and
stretching (ξ = 6) (52 cells after Crop2 to be able to interpolate between the last two columns of cells).

The same target field can also be produced by stretching an isotropic random field with θiso =

θv = 0.5 m, as illustrated in Figure 3. In this example, the horizontal SOF is scaled up to 3.0 m and so
each of the original square cells needs to be replaced by six new square cells (each with their own cell
value). The extra cell values can be assigned by linear interpolation between neighbouring columns of
cells in the original field [16], as illustrated in Figure 3. Note that the original field before cropping is
exactly the same as the original field from Figure 2, due to the different random field cell sizes. Here,
the cell size is dc = 1/60 m, i.e., by keeping the ratio θiso/dc = 30 the same as in Figure 2, to ensure the
same amount of variance reduction at the “point” level.

Squashing and stretching may also be combined to give the target field. For example, the same
target field as shown in Figures 2 and 3 can be produced by first squashing by a factor of 2 from an
isotropic field having θiso = 2× θv = 1.0 m (Figure 4). After squashing, the intermediate field has a
vertical SOF of θv = 0.5 m and a horizontal SOF of θh = 1.0 m. Therefore, by stretching the squashed
field horizontally by a factor of 3, the resultant field will have a horizontal SOF of θh = 3.0 m. Note
that, to make the variance reduction in the final field consistent with the above figures, the cell size
here is set to dc = 1/30 m, so that θiso/dc is the same as above.

4. Quantitative Consequence Assessment of Slope Failures

Radiating Scan Method

As the sliding volumes will be used later to explain the differences of the two approaches,
a procedure called the radiating scan method is proposed and briefly introduced here. To quantify the
failure volume, an estimation of slip area (A) has to be made for the problem. This is done by locating
the rupture surface first, then smoothing this surface and at last, finding the arc length (La) and A
by integration.

The technique used in [21] has been adopted to define the rupture surface based on the shear
strain invariant,

γ̄ =

√
2
3
(ε2

x − εxεy + ε2
y) +

1
2

γ2
xy (3)

in which εx, εy and γxy are the normal strains in the x and y directions and shear strain, respectively.
First, the maximum shear strain invariant was found along the line just below the toe and the

line just below the slope face. Next, an imaginary point in space, above the centre of the slope face,
was chosen. Then, a series of lines radiating out from this point (across the slope mesh, clockwise)
was considered (the first radiating line is the line connecting the point located in the first step and the
imaginary point). The maximum value of shear strain invariant along each line (i.e., clockwise) was
detected and, by connecting the locus of maxima from all the lines, the rupture surface was defined.
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This is shown in Figure 5 schematically. Note that the shear strain invariant within an element is
interpolated using the shape functions.

o

Figure 5. A Schematic illustration of the radiating scan method for locating the failure path in 2D.
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Figure 6. Polynomial curve fitting of the scanned rupture path in 2D.

However, no precise information about the length of the rupture surface is available by adopting
the above-mentioned Radiation Scan method only. A procedure is implemented to smooth the curve
by polynomial curve fitting; that is, by finding the coefficients of a polynomial p(x) of degree n that
fits the data, p(x(i)) to z(i), in a least squares sense, ((x(i), z(i)) are the coordinate pair defining the
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rupture surface). By doing so, the rippled curve shown in Figure 6 is smoothed to the curve shown in
red. Next, the arc length is found by numerically integrating dLa between 0.5 and 10:

dLa =

√
1 +

(
dp
dx

)2
dx (4)

Figure 6 shows that the slip area is found by computing the integral of p with respect to x, using
repeated trapezium integration and then subtracting the area of the triangle above the slope face.
For the present slope geometry and failure mechanism, the integrated length of the rupture surface is
La = 12.0 m and the slip area is A = 23.0 m2.

5. Slope Reliability Assessment—The Two Approaches

5.1. Definitions of Factor of Safety

There are two definitions for the factor of safety: The first uses as a ratio of absolute strength
(structural capacity) to actual applied load; this is a measure of a particular design (i.e., for a particular
realisation from a Monte Carlo simulation). The other uses of factor of safety, which is a constant value
imposed by law, standard/code, specification, contract or custom to which a structure must conform
or exceed. As the definition is sometimes confusing, it is important to be aware of which definition(s)
are being used.

• Realized factor of safety, FR: This is a calculated value from a specific realisation of a Monte Carlo
simulation. For different realisations from the same set of statistics (µ, σ, θv, θh), this value may be
different as per realisation. Typically, there is a range of values following some distributions for
this type of FOS.

• Traditional factor of safety, Fd, based on the mean property value: This is the factor of safety (a
required value) as a design factor. This FOS is traditionally defined in a deterministic point of
view, i.e., in traditional mechanics, as the ratio of mean strength to mean applied load.

In a RFEM analysis, each traditional Fd is associated with some reliability level (FR ≤ 1 indicates
failure, and stable otherwise). In other words, there may be a range of realised FR for each target
traditional Fd for which those values of FR may be larger or smaller than Fd, due to different
realisations (which is unknown because of limited site investigation) of the spatial variability of
soil strength properties.

5.2. Approach I

The approach will be explained in the case of an undrained clay slope characterised by the
spatially variable undrained shear strength Su.

The mean (i.e., µ) of Su for Fd = 1.0, based on deterministic finite element analysis (FEA), is found
first. Next, using this value of µ (e.g., µ = 16.3 kPa for the slope analysed in Figure 6) and the
corresponding values of σ and θ, the Su distribution in the slope is generated (note that, due to
the relative positioning of weak and strong zones in the slope, the realised FR could be larger or
smaller than 1.0). The Su values (for the realisation generated in the last step) are then scaled up
by progressively larger values of Fd, and, for each value of Fd, the slope is analysed to see if it is stable
(i.e., the FEA is conducted only for one trial SRF = 1.0, if the plastic iteration count reaches 500, then the
slope fails; that is FR ≤ 1. The algorithm does not try to find the exact FR; it could be any value smaller
than 1.0 if the slope failed). By repeating this process for a large number of realisations (N) while
counting the number of failed slopes (N f ) for each Fd, the reliability of the slope may be computed for
a range of values of Fd, thereby resulting in a reliability versus Fd curve.

Note that if the FEA converges within C = 500 iterations (i.e., less than 500) with a trial SRF = 1.0,
then it means that the realised FR for that realisation must be larger than 1.0 (i.e., an SRF larger than 1.0
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is needed to allow the plastic algorithm to hit the 500 iteration ceiling); that is, the slope is stable for
that Fd that is used to scale up that realisation.

The pseudocode for approach I is as follows (Iterp is the plastic iteration count):
******************************block 1****************************
10 Initialisation: N f (j) = 0 and input µFd=1.0

20 For N realisations (loop i):
30 Generate a slope and shear strength profile (Su) with µFd=1.0, σ, θ;
40 For a series of values of Fd

(e.g., Fd = 0.9, 1.0, 1.1, 1.2, 1.3, 1.4 with ∆Fd = 0.1) (loop j):
50 Scale up Su profile by Fd
60 Carry out FEA, let SRF = 1.0, if Iterp ≥ 500, then N f (j) = N f (j) + 1

70 Output: N f for each Fd
******************************block 1****************************
or alternatively,
******************************block 2****************************
10 Initialisation: N f (j) = 0 and input µFd=1.0

20 For a series of values of Fd
(e.g., Fd = 0.9, 1.0, 1.1, 1.2, 1.3, 1.4 with ∆Fd = 0.1) (loop j):

30 For N realisations (loop i):
40 Generate a slope and shear strength profile (Su) with µFd=1.0, σ, θ;
50 Scale up Su profile by Fd
60 Carry out FEA, let SRF = 1.0, if Iterp ≥ 500, then N f (j) = N f (j) + 1

70 Output: N f for each Fd
******************************block 2****************************
The algorithm presented in block 2 is not efficient compared to that shown in block 1 as line 30

needs to be regenerated for each Fd considered.
The probability of failure, p f , for a given Fd, is

p f =
N1

f

N
(5)

in which N is the total number of realisations and N1
f (in which superscript 1 denotes the approach I)

is the number of realisations in which slope failure has occurred (i.e., FR ≤ 1.0).

5.3. Approach II

The Su (i.e., undrained shear strength) distribution in the slope is generated, based on the statistics
(i.e., mean µ, variance σ2 and scales of fluctuation θ) of Su. The factor of safety for each realisation of
the slope is then found by scaling down the values of Su by progressively larger values of strength
reduction factor (SRF), until the limiting value of SRF (i.e., the realised FR) is obtained. This process is
repeated for a large number of realisations, to obtain a distribution of FR.

The pseudocode for approach II is as follows:
******************************block 3****************************
10 Input statistics corresponding to Fi

d
20 For N realisations (loop k):

30 Generate a slope and shear strength profile (Su) with µFi
d
, σ, θ;

40 Carry out FEA using progressively larger SRF, if Iterp = 500, then Fk
R = SRFk

50 Output: a distribution of Fi
R

******************************block 3****************************
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Note the similarity of block 3 to block 2; block 3 has one input Fd and tries to find the whole
distribution of FR for all realisations, whereas block 2 works on a series values of Fd and does not try to
find the exact FR for all realisations (only to see if it is stable or not).

Now, define a unified factor Fi as

Fi =
Fi

d
Fi

R
=

α1F1
d

α1F1
R
=

α2F2
d

α2F2
R

(6)

Note that, for a particular realisation, if Fi
d is proportional to F1

d (or any other value F2
d ) by a

factor of α1 (or α2), the realised Fi
R is also propotional to F1

R (or F2
R) by the same factor. This is because,

whether one starts the strength reduction process (to get the realised factor of safety for that realisation)
from a high mean shear strength (high Fd) or a low mean shear strength (low Fd), in both cases the
slope falls down when the mean strength along the failure surface reaches the same critical value (for
the same spatial variation of soil properties). For example, if F1

d = 1.4 and F1
R = 1.3 for a particular

realisation (the critical value of strength is then µcritical = f (1.4× (s1
u, s2

u, . . . , sn
u)µFd=1.0 /1.3), where

si
u(i = 1, . . . , n) is the random cell values along the failure path, generated based on µFd=1.0, and f is

a function that determines the mean strength along the failure path); then, for the case of Fi
d = 1.8,

to reach the same critical value, the realised Fi
R must be 1.3× (1.8/1.4). In this case, α1 = 1.8/1.4.

For multiple realisations, the same holds.
The probability of failure, p f , at a given Fi

d, is

p f =
N2

f

N
(7)

in which N is the total number of realisations and N2
f (in which superscript 2 denotes the approach II)

is the number of realisations in which slope failure has occurred (i.e., Fi ≥ Fi
d).

The failure is defined as a slope failed at Fi
R ≤ 1.0 for any Fi

d, e.g., Fi
d = 1.3. Upon transformation

to Fi (Equation (6)), the definition of slope failure is preserved by defining Fi ≥ Fi
d as failure (i.e., when

Fi
R ≤ 1.0 in Equation (6), Fi ≥ Fi

d).
As shown in Figure 7, an analysis based on µ = 40 kPa and σ = 12 kPa (Fd = 2.46) gives virtually

the same results as the analysis based on µ = 20 kPa and σ = 6 kPa (Fd = 1.23), where R = 1− p f .
The slight difference is due to the different settings (initial FOS, initial FOS step and the three cut
values of plastic iteration counts) for the AutoFOS implementation.

Note that it does not matter whether the input statistics are µ = 40 kPa and σ = 12kPa (Fd = 2.46)
or µ = 20kPa and σ = 6kPa (Fd = 1.23). Therefore, for COV = 0.3, the transformed outputs Fi (the
subscript i denotes “identical”) are the same, based on Equation (6), if the initial seed for generating
the random field is identical (thereby the relative strong and weak spatial distribution of soil properties
in the individual realisation of random field is the same for the two cases, only the random field cell
values differ by a factor of 2).

This is clearly shown in Figure 8, where an analysis based on 40 kPa and 12 kPa gives the same
failure volumes as those for an analysis based on 20 kPa and 6 kPa, as indicated by the points sitting in
the centre of the circles.

The results of analyses based on Approach I with different sets of inputs (Table 1) are also shown
in Figure 7. They are in good agreement with the results of Approach II. For each set of input, if the
analysis were done in the same way as Approach II to get the whole distribution of FR, the fitted curve
would be similar to those shown in Figure 9 (not necessarily the same, because those curves are based
on hypothetically generated random numbers).

Figure 9 shows the changing of probability of failure as Fd increases, as represented by the areas
under the corresponding pdf curves to the left of 1.0 (the probability of failure can also be read directly
from the cdf curves shown in Figure 10). Those curves represent the fitted curves of the realised FR.
The curve corresponding to Fd = 1.0 is hypothetically created based on a mean of 0.9 and a standard
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deviation of 0.2 (that is, µFR = 0.9 and σFR = 0.2; note that the value of µFR = 0.9 is assumed here to
represent a smaller mean FR than Fd = 1.0 that was observed in a typical RFEM analysis), and those
corresponding to 1.1, 1.2, 1.3, 1.4 and 1.5 are created by scaling up the FR for Fd = 1.0 by factors of
α1 = 1.1, α2 = 1.2, α3 = 1.3, α4 = 1.4 and α5 = 1.5, respectively (cf. Equation (6)). By doing so, µFR and
σFR , for various Fd, are also scaled up by the same factors. Therefore, the relative position of µFR and Fd
does not change; this is in accordance with Equation (6) .
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Figure 9. pdf of realised FR showing the decrease of probability of failure as Fd increases.
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Figure 10. cdf of realised FR showing the decrease of probability of failure as Fd increases.

Table 1. Input datasets for Approach I.

Fd Statistics

Fd = 1.0 µ = 16.3× 1.0 kPa, σ = 4.9× 1.0 kPa
Fd = 1.1 µ = 16.3× 1.1 kPa, σ = 4.9× 1.1 kPa
Fd = 1.2 µ = 16.3× 1.2 kPa, σ = 4.9× 1.2 kPa
Fd = 1.3 µ = 16.3× 1.3 kPa, σ = 4.9× 1.3 kPa
Fd = 1.4 µ = 16.3× 1.4 kPa, σ = 4.9× 1.4 kPa
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5.4. Equivalence and Differences between the Two Approaches

In essence, these two methods are equivalent to each other. Approach II is a unified approach,
regardless of the specific input provided that COV is constant. This can be explained by Equation (6).
In fact, once a distribution of FR is obtained from a base case, for example, Fd = 1.3, the distributions
of FR for other values (i.e., any value) of Fd can be inferred. This is shown in Figure 11. Not only the
distribution can be inferred, but also the probability of failure p f for any Fd. As shown in Figure 11,
the shaded area below the pdf to the left side of 1.0, for a given Fd = 1.8, is equal to the shaded area
below the pdf to the left side of Fbase

d /Fany given
d = 1.3/1.8. The reason behind this lies in the following

expression of the cumulative distribution function of a normal distribution,

Φ(FR) =
1
2
[1 + erf(

FR − µFR

σFR

√
2

)] (8)

where erf() is the error function.

Figure 11. pdf with equal shaded area showing that p f for other Fd (e.g., 1.8) can be inferred from one
single set of inputs based on Fd = 1.3 (µFR = 0.9× 1.3 and σFR = 0.2× 1.3).

Based on the above equation, and by setting FR = 1.0 and changing the values of µFR and σFR for
any given series of values of Fd (which is proportional to the value of µFR and σFR for the base case Fd),
the reliability versus Fd curve can be obtained; this is essentially Approach I.

The same results can be obtained by only looking at the distribution of FR for the base case. That is,
in Equation (8), let µFR and σFR be the values based on the base case, and change the value of FR to be
FR = Fbase

d /Fany given
d . This way, the reliability versus Fd curve can also be obtained; this is essentially

Approach II.
Note that the series of Fd values can be any prescribed values, for example, Fd =

1.0, 1.1, 1.2, 1.3, 1.4, 1.5. In a typical RFEM simulation, one can either prescribe a series of Fd values or
by simply taking the values of FR from the base case and using them as the series of Fd values (or take
the values of Fi (Equation (6)) as the prescribed Fd).

The results from the base case of Fd = 1.3 (µFR = 0.9× 1.3 and σFR = 0.2× 1.3) is shown in
Figure 12 for the two cases: (1) when prescribing Fd = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 (the discrete points in the
figure); (2) when prescribing Fd = FR (i.e., the series of values of FR from the base case).
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Figure 12. Reliability curves obtained from Approach I and Approach II.

For approach I, if the slope fails for a trial factor (SRF) of 1.0, the realised FR could be some value
smaller than 1.0. For instance, if the plastic iteration count reaches the limit for SRF = 1.0, it might have
reached the limit for SRF = 0.9, or some value that is smaller than 1.0. However, it did not really get the
FR for those realisations that fail (FR ≤ 1.0). They were assumed to be 1.0, consequently, Fi was assumed
to be Fd (Equation (6)). Actually, this is better illustrated in Figure 8. With Approach I, the figure is
plotted by pulling back these points sitting to the right of the vertical lines of Fd = 1.3, Fd = 1.2, Fd = 1.1
and Fd = 1.0. The calculated reliability is identical for the two approaches. That is, for each given
Fd, the probability of failure is the ratio of the number of points (realisations) sitting to the right of
this, Fd, to the total number of points (realisations) in Figure 8. Note that the points in any vertical
line comprise all the projective points (from the base case in Approach II) sitting to the right of that
line. So, if the increment of Fd is fine enough, e.g., ∆Fd = 0.01 or ∆Fd = 0.001, instead of the previously
used ∆Fd = 0.1, the figure plotted using Approach I (that is, in terms of vertical lines, excluding the
realisations or points that have already failed for larger Fd under consideration, and only including
these new failed realisations or points) would be the same as that produced by Approach II.

The linear trend for failure volumes shown in Figure 8 indicates that the volumes are smaller
for higher Fd [21]. As Fd increases or the probability of failure decreases (Figure 7), the potential slide
volumes becomes smaller. In other words, the risk associated with a higher global factor of safety (Fd)
may be relatively low, due to the low probability of failure and a decreased likelihood of large slide
volumes (or an increased trend of small slide volumes). However, it will be shown that Approach I may
result in underestimated sliding volumes at low failure probability levels and thereby underestimated
risk (i.e., unconservative).

Note that with Approach I, the slopes that have failed for larger Fd will definitely fail for small
Fd (the possibility of improving the code efficiency arises for code blocks 1 and 2, i.e., by letting
the series of values of Fd starts with a larger value and gradually decreases by some step size, this
way those realisations that have failed for a larger Fd would not be needed to be analysed for any
smaller Fd). Because of this, the failure mechanisms for the same realisations will be more thoroughly
formed for small Fd compared to those for larger Fd, and tend to be deeper. Thus, larger volumes
are usually detected, as illustrated in Figure 8 by the up-shifted points that should be projected
horizontally to the line to their left side (the arrows in dotted lines show the positions that the relevant
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points should be projected to, and the solid arrows show the actual positions to which these points
are projected). However, the effect of these up-shifted volumes on the distribution and range of
possible failure volumes are unknown and difficult to clarify. This effect tends to increase the number
of shifted volumes as Fd decreases. The worst consequence would be that part of the linear trend
could possibly be attributed to the up-shifting when adopting Approach I (see the deviated trend in
Figure 8). After scrutiny, it was found that most of the realisations have the same rupture surfaces
as those detected for larger Fd. As shown in Figure 8, for Fd = 1.0, which is the worst case, only
eight realisations have had significantly different slide volumes compared to those for Fd = 1.1 (those
realisations are 7, 20, 57, 60, 71, 76, 84, 97). This was thought to be due to the nested failure mechanisms
for those realisations. Anyway, this is an integral part of the implementation of Approach I (i.e., for
those slopes failed for the largest Fd considered, SRF = 1.0 is the trial factor; these slopes will definitely
fail for smaller Fd under consideration, the trial factor is still 1.0, whereas a trial factor of, say, 0.9 would
give the same failure extent). No effort was taken to improve this, as more time would be demanded
to locate the actual limiting SRF (some value less than 1.0) for those known failures.

Due to the up-shifting effect and the necessity to refine Fd to get a smooth reliability curve,
the implementation of Approach I is thought to be a bad choice, although the calculation time might
be an advantage (i.e., there is no need to search for the whole distribution of realised FR for each
Fd considered. However, if refined, this advantage could be counterbalanced). The implementation
of Approach II is preferable, in that the volumes are distributed over the whole region for each Fd,
a whole distribution of realised FR can be gained and the reliability curve is smoother.

It is noted that the above is presented based on a normal distribution assumption of shear strength
and thus FR (Equation (8)). For a lognormal distribution of shear strength, and thus a lognormal
distribution of FR, the cumulative distribution function of FR is

Φ(FR) =
1
2
[1 + erf(

ln FR − µln FR

σln FR

√
2

)] (9)

where erf() is the error function.
In the case of a lognormal distribution of strength, the target log-normal random field can be

represented by
LN(x) = exp(N(x)) (10)

where N(x) is a normal random field given by

N(x) = µln c + σln cG(x) (11)

where G(x) is a standard normal random field with zero mean and unit variance and µln c and σln c are
given by

σln c = ln
(

1 +
σ2

c
µ2

c

)
(12a)

µln c = ln µc − (1/2)σ2
ln c (12b)

Assume that Fd = 1.3 for a particular µc and a series of FR is obtained based on this µc, this is
referred to as the base case. For a target Fd = 1.8, i.e., any given target value, the µc values need to
be scaled by a factor of 1.8/1.3. For a constant coefficient of variation σc/µc, µ

target
ln c = ln(1.8/1.3) +

µbase
ln c and σ

target
ln c = σbase

ln c , it follows that N(x)target = N(x)base + ln(1.8/1.3). In turn, LN(x)target =

LN(x)base× (1.8/1.3). Therefore, the series of FR for the base case can also be scaled by the same factor
1.8/1.3 to give the FR values for the target Fd = 1.8.
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Similar to the normal case, the probability of failure can be assessed by setting FR = 1.0 in
Equation (9), i.e.,

p f =
1
2
[1 + erf(

ln 1.0− µln FR

σln FR

√
2

)] (13)

By changing µln FR and σln FR for various values of Fd, the reliability (i.e., 1− p f ) can be assessed.
On the other hand,

p f =
1
2
[1 + erf(

ln 1.0− µ
target
ln FR

σ
target
ln FR

√
2

)]

=
1
2
[1 + erf(

ln 1.0− (ln(Ftarget
d /Fbase

d ) + µbase
ln FR

)

σbase
ln FR

√
2

)]

=
1
2
[1 + erf(

ln(Fbase
d /Ftarget

d )− µbase
ln FR

σbase
ln FR

√
2

)]

(14)

where the derivation makes use of the generic form of Equation (12), i.e., for FR.
That is, the reliability (i.e., 1− p f ) can be assessed by letting FR = Fbase

d /Ftarget
d in Equation (9)

and keeping µln FR and σln FR as the values based on the base case. Therefore, the conclusions in this
paper can be considered general for the two most commonly used distribution types, i.e., normal and
lognormal distribution.

6. Conclusions

This paper focuses on the two approaches in RFEM assessments of slope reliability.
A comprehensive analysis was conducted to explain the often confusing methods of analysis. Some
researchers use one approach while others use the other and it is difficult to understand the second
approach (e.g., how the scaling works) and even more so to link to the first approach in some cases.

Based on an auto-search algorithm of the factor of safety in the strength reduction method,
and a radiation scan method to locate the critical sliding surface and to quantify the potential sliding
volume, the paper demonstrates that the two approaches are actually equivalent and bridges the gap
in understanding the two approaches that are usually used by different researchers in isolation.

The merits and disadvantages of each approach are highlighted. The unification where the two
approaches meet is explained. That is, for a sufficiently small step size of the global factor of safety,
the results of approach I are moving close to those of approach II, which are smooth for a sufficiently
large number of realisations. However, when the step size becomes small, the advantage of Approach
I being computationally efficient is compromised. Efficient implementations of both approaches are
provided in the form of pseudocodes, as different combinations of parameters are usually required
such as different coefficients of variation and different site spatial variability scenarios represented by
different scales of fluctuation.

Although the investigations and discussions are presented mainly in the case of a normal
distribution of the realised factor of safety, the applicability of the underlying reasoning is also
extended to a log-normal distribution of the realised factor of safety.

Note that the reason of using a range of global factor of safety, Fd (i.e., corresponding to different
mean soil properties), for the two approaches, is not because the mean soil property is a variable for a
particular site, as it is not. Rather, it is meant for a range of characteristic values to be used for design,
which could vary from designer to designer. That is, different designers may use different Fd to get
their characteristic values.
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