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Abstract: A period-sequential index algorithm with sigma-pi neural network technology, which
is called the (SPNN-PSI) method, is proposed for the prediction of time series datasets. Using the
SPNN-PSI method, the cumulative electricity output (CEO) dataset, Volkswagen sales (VS) dataset,
and electric motors exports (EME) dataset are tested. The results show that, in contrast to the moving
average (MA), exponential smoothing (ES), and autoregressive integrated moving average (ARIMA)
methods, the proposed SPNN-PSI method shows satisfactory forecasting quality due to lower error,
and is more suitable for the prediction of time series datasets. It is also concluded that: There is a
trend that the higher the correlation coefficient value of the reference historical datasets, the higher
the prediction quality of SPNN-PSI method, and a higher value (>0.4) of correlation coefficient for
SPNN-PSI method can help to improve occurrence probability of higher forecasting accuracy, and
produce more accurate forecasts for the big datasets.
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1. Introduction

In the big data era, a large number of time series data are continuously generated in the network
systems, such as stock price, sales volume, production capacity, weather data, ocean engineering,
engineering control, and largely in any system of applied science and engineering which involves
investigations of time-varying parameters [1–3]. In general, the distribution of time series data changes
over time, and is non-stationary [4,5], while some data shows potential periodicity characteristics.
Since the 1950s, time series forecasting has received much interest in prediction science.

Continuously growing numbers of new algorithms have been proposed and studied on time
series forecasting. Firstly, the exponential smoothing (ES) method [5,6] and the moving average (MA)
method [7] are simple and widely used, and performed well in forecasting competitions against more
sophisticated approaches. Secondly, the autoregressive integrated moving average (ARIMA) model
integrates autoregressive models (AR) and moving average models (MA), and is widely used as a linear
time series forecasting method [8,9]. The ARIMA model gives good accuracy in forecasting relatively
stationary time series data, but needs a strong assumption that the values of future data are linearly
dependent on the values of historical data [10]. Thirdly, the artificial neural network (ANN) [11–13]
and adaptive models [14] have also been used to forecast nonlinear time series data, and improve
forecasting accuracy in different time scales. It is also possible to hybrid different methods to improve
overall forecasting accuracy [15].
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However, no traditional forecasting methods can meet all the targets [16–18], while applying
heuristic methods are also worth researching [19]. Here, a period-sequential index algorithm with
a sigma-pi neural network (SPNN-PSI) is proposed and dedicated to the prediction of time series
data. Here a period-sequential index algorithm (PSI) by identifying structures from transformed data,
where there are four indexes carrying implicitly structure information usable for forecasting, the period
index, sequential index, small period index, and super sequential index, is combined with a sigma-pi
neural network algorithm (SPNN) improving the accuracy and robustness of forecasting algorithm.
The SPNN-PSI method has a universal application, and a satisfactory prediction quality improved as
the correlation coefficient value of the reference historical datasets increased.

2. Theoretical Model

2.1. Period-Sequential Index (PSI) Algorithm

Finding index-values implicitly carrying structure information, a period-sequential index (PSI)
algorithm, is proposed to predict the time series data. The index-values cover the complete period,
while the period index and sequential index, as well as small period index and super sequential index,
are introduced to describe the dataset structure information in vertical and horizontal dimensions,
respectively. In this way, for time series data, the following year’s dataset can be predicted using only
two consecutive years of reference historical datasets. Figure 1 shows the schematic diagram of the
PSI algorithm. H−2, H−1 denote reference historical periods, i.e., the year before last and last year. H0

represents the forecasting period. The period for H−2, H−1, and H0 is uniform, and defined as T in this
paper. At historical time of t, PI(t), SI(t), pi(t), and si(t) describe the period index, sequential index,
small period index, and super sequential index, respectively.
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Figure 1. The schematic diagram of the period-sequential index algorithm (PSI) algorithm. 
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We assume that the forecasting value follows the measurement Equation (1),

F(ti) = G(PI(ti − 2T) , PI(ti − T) , SI(ti − 2T) , SI(ti − T) , pi(ti − 2T) , pi(ti − T) , si(ti − 2T) , si(ti − T)), (1)

where F(ti) is the forecasting value at time of ti (i = 1, 2 . . . N) during H0 period. N represents the
number of model forecasting samples. PI(ti − 2T), PI(ti − T), SI(ti − 2T), SI(ti − T), pi(ti − 2T), pi(ti − T),
si(ti − 2T), and si(ti − T), as the eight variables in Equation (1), are described as follows:

(1) Period index

The period index indicates the relationship between the reference historical data and the reference
value which can be explained through Equations (2) and (3),

PI(ti − 2T) =
y(ti − 2T)

K−2
, (2)



Appl. Sci. 2019, 9, 4386 3 of 12

PI(ti − T) =
y(ti − T)

K−1
, (3)

where y(ti − 2T) and y(ti − T) describe the reference historical data at time of ti − 2T and ti − T,
respectively. K−2 and K−1 are reference functions of period index. A standard period average is
originally set to be a reference function of period index, and where it is defined as a constant.

(2) Sequential Index

The sequential index indicates the relationship between two adjacent reference historical data
with the defined time steps. It is calculated through Equations (4) and (5).

SI(ti − 2T) =
y(ti+1 − 2T)

y(ti − 2T)
(4)

SI(ti − T) =
y(ti+1 − T)

y(ti − T)
(5)

(3) Small Period Index

The small period index indicates the relationship between the reference historical data and the
reference value, which can be explained through Equations (6) and (7),

pi(ti − 2T) =
y(ti − 2T)

k−2
, (6)

pi(ti − T) =
y(ti − T)

k−2
, (7)

where k−1 and k−2 are reference functions of a small period index. Here a small period (such as three
months, because of seasonal factors) average, is originally set to be a reference function of small
period index.

(4) Super Sequential Index

The super sequential index indicates the relationship between two interval reference historical
data with the defined steps. It is calculated through Equations (8) and (9).

si(ti − 2T) =
y(ti+2 − 2T)

y(ti − 2T)
(8)

si(ti − T) =
y(ti+2 − T)

y(ti − T)
(9)

Therefore, the forecasting value is given by:

F(ti) = c·PI(ti)·K0 + d·SI(ti−1)·y(ti−1) + e·pi(ti)·k0 + f ·si(ti−2)·y(ti−2), (10)

where,
PI(ti) = 0.5·PI(ti − 2T) + 0.5·PI(ti − T) (11)

SI(ti−1) = 0.5·SI(ti−1 − 2T) + 0.5·SI(ti−1 − T) (12)

pi(ti) = 0.5·pi(ti − 2T) + 0.5·pi(ti − T) (13)

si(ti−2) = 0.5·si(ti−2 − 2T) + 0.5·si(ti−2 − T) (14)

K0 = γ0·K−1 (15)
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k0 = γ0·k−1 (16)

γ0 =

√
median

{
y(t1 − T), y(t2 − T) · · · , y(tN − T)

}
median

{{
y(t1 − 2T), y(t2 − 2T) · · · , y(tN − 2T)

} (17)

where, c, d, e, and f are the weighing factors of forecasting Equation (10). K0 and k0 are the correction
coefficients for period index and small period index, respectively. γ0 is planning factor, which is
defined by median method in Equation (17).

2.2. SPNN-PSI Method

SPNN has been proposed by Lyutikova [20]. The products of the different linear combinations of
the inputs in SPNN are the output of the network. SPNN has simpler structure, less variance, and
faster convergence speed. A high SPNN degree determines the function that defines the relationship
between output and input to depend on more parameters and to have a more complex structure.
This can contribute to better prediction results but can also cause overfitting, which requires more
computation time for the training algorithm. In the study, the architecture of SPNN-PSI with degree 4
and 8 inputs is shown in Figure 2, which can reproduce modeling function of Equation (10). As shown
in Figure 2, PI(ti), K0, SI(ti−1), y(ti−1), pi(ti), k0, si(ti−2), and y(ti−2) are the input parameter of SPNN-PSI;
F(ti) is the predicted output value at time of ti; c, d, e, and f are the weight values of network connection.
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Figure 2. The architecture of the period-sequential index algorithm with sigma-pi neural
network (SPNN-PSI).

The input vector zi is given by

zi =


PI(ti) ·K0

SI(ti−1) · y(ti−1)

pi(ti) · k0

si(ti−2) · y(ti−2)

. (18)

The weight matrix w is defined as follows

w =
[

c d e f
]
. (19)
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In order to obtain the optimized weight values of c, d, e, and f, the output vector is defined as the
observation data y(ti − T) during H−1 period.

yi = y(ti − T) = w · zi (20)

In this study, multiple inputs and outputs are combined into the following equation:

Y = w ·Z (21)

where Y and Z are a matrix of multiple outputs and matrix of multiple inputs, respectively.

Y = [y(t1)y(t2) . . . y(ti−1)y(ti − T) . . . y(tN − T)] (22)

Z =



PI(t1) ·K0 PI(t2) ·K0 PI(t3) ·K0 . . . PI(ti) ·K0 PI(ti+1) ·K0 . . . PI(tN ) ·K0

SI(tN − T) · y(tN − T) SI(t1) · y(t1) SI(t2) · y(t2) . . . SI(ti−1) · y(ti−1) SI(ti) · (γ0 · y(ti − T)) . . . SI(tN−1) · (γ0 · y(tN−1 − T))

pi(t1) · k0 pi(t2) · k0 pi(t3) · k0 . . . pi(ti) · k0 pi(ti+1) · k0 . . . pi(tN ) · k0

si(tN−1 − T) · y(tN−1 − T) si(tN − T) · y(tN − T) si(t1) · y(t1) . . . si(ti−2) · y(ti−2) si(ti−1) · y(ti−1) . . . si(tN−2) · (γ0 · y(tN−2 − T))


(23)

Then, based on the measured value Y and input Z, the learning control method of the initial
training neural network is used to get the optimal weight matrix w, which is given:

wT =
(
ZZT

)−1
ZYT. (24)

2.3. Error Evaluation

In order to evaluate the obtained results, the forecasting accuracy was measured with three error
indicators, that are the mean absolute percentage error (MAPE), the root mean squared error (RMSE)
and the mean absolute error (MAE) [20,21]. Calculation equations of error indicators are given in the
below Equations (25)–(27). In addition, the Pearson correlation coefficient (r) in Equation (28) is also
used to quantify the strength and direction of the linear relationship between two sets of data during
the reference historical period [22].

MAPE =
1
N

∑N

i=1

∣∣∣∣∣∣ y(ti) − F(ti)

y(ti)

∣∣∣∣∣∣× 100% (25)

RMSE =

√∑N
i=1(y(ti) − F(ti))

2

N
(26)

MAE =

∑N
i=1

∣∣∣y(ti) − F(ti)
∣∣∣

N
(27)

r =
∑N

i=1 (y(ti − 2T) −K−2) · (y(ti − T) −K−1)√∑N
i=1(y(ti − 2T) −K−2)

2
·

√∑N
i=1(y(ti − T) −K−1)

2
(28)

where y(ti) is the measured value at time of ti during H0; F(ti) is the forecasting value at time of ti
during H0.

3. Steps of Computation

The flow chart of the optimized network model is shown in Figure 3. The specific steps are
as follows:

Step 1: Initialize the reference historical datasets.
Step 2: Training the reference historical two-cycle-years datasets, calculate the parameters Y and Z by

solving Equations (22) and (23).
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Step 3: At the time step of ti, take Y and Z into the Equation (24), and solve it, and get the optimal
weight matrix w.

Step 4: Update the optimal values of c, d, e, and f in Equation (10), solve Equation (10), and get the
forecasting value F(ti).

Step 5: If the time steps of the stop condition (ti+1 > tN) are satisfied, the search stops, and output
parameters of MAPE, RMSE, MAE, and r; Otherwise, the time step is added, and the procedure
returns Step 2.
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4. Results and Discussion

Three groups of actual time series datasets [23–25] are shown in Table 1. In these three samples,
two-cycle-years datasets from January 2016 to December 2017 are used as reference historical data to
forecast the data of 2018. In order to evaluate the confidence of the period-sequential index algorithm
with sigma-pi neural network (SPNN-PSI), the correlation coefficients of datasets for 2016 and 2017 are
further computed, and listed in Table 1. Then, a comparison analysis of the prediction value and the
real value was implemented by using the SPNN-PSI, MA, ES, and ARIMA methods, so as to show a
more direct observation of the prediction.

Table 1. Time series datasets used in the experiments.

Dataset Names
Reference Historical Data Forecasting Data

Month/Year Correlation Coefficient Month/Year

Electric motors exports (EME)
[23] dataset

January 2016–
December 2017 0.9388 January 2018–

December 2018

Volkswagen sales (VS) dataset
[24] dataset

January 2016–
December 2017 0.8392 January 2018–

December 2018

Cumulative electricity output
(CEO) [25] dataset

January 2016–
December 2017 1.0000 January 2018–

December 2018
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4.1. Periodic Recognition and Prediction on Electric Motors Exports (EME) Dataset

For the EME datasets, the electric motors exports in China between January 1995 and June 2019 is
used as an example [23] to show the correlation coefficient detection and prediction results. Using the
reference historical two-cycle-years dataset from January 2016 to December 2017, the monthly electric
motors exports from January to December of 2018 are predicted by using the SPNN-PSI, MA, ES, and
ARIMA methods, as shown in Figure 4. It can be seen from Figure 4 that, compared with MA, ES, and
ARIMA methods, the SPNN-PSI method demonstrates a better prediction trend with good volatility
and following quality.
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Table 2 presents a more visual view of prediction errors of each model. According to the results
obtained in Table 2, the corresponding error of MAPE is 5.34%, 6.79%, 8.11%, and 6.97% for the PSI,
MA, ES, and ARIMA methods, respectively. It also can be noticed that the four errors are within a
reasonable range, but the developed SPNN-PSI algorithm is more suitable for the prediction of the
EME dataset used in this paper due to lower MAPE, RMSE, and MAE, as compared to the other three
prediction methods. In addition, the correlation coefficient of its historical reference data is shown in
Table 1. The example shows that the proposed SPNN-PSI algorithm achieves satisfactory accuracy
in time series prediction on the EME dataset whose historical reference data has a relatively higher
correlation coefficient value of 0.9388.

Table 2. Error indicators of each prediction model on the EME dataset.

Model
Error Indicators

MAPE (%) RMSE (104 Sets) MAE (104 Sets)

SPNN-PSI 5.34 1480.06 1179.87
MA 6.79 2062.60 1393.56
ES 8.11 2406.33 1667.28

ARIMA 6.97 1873.41 1535.20

4.2. Periodic Recognition and Prediction on Volkswagen Sales (VS) Dataset

For the VS dataset, the Volkswagen sales in China between January 2007 and June 2019 is used
as another example [24] to show the correlation coefficient detection and prediction results. Figure 5
shows the prediction results in 2018 by using the PSI, MA, ES, and ARIMA methods. As shown in
Figure 5, between January 2018 and May 2018, the predicted VS using the PSI method can be almost
identical with actual VS, comparing to the MA, ES, and ARIMA methods, and a lower MAPE of 4.48%
is also achieved by Equation (18). Meanwhile, it can be seen that, the trend of the predicted values
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between June 2018 and December 2018 is similar to that of the actual values when using PSI method,
but the difference between them at each time point is larger than that of using the MA, ES, and ARIMA
methods, achieving a value of MAPE at 19.36% for the period between June 2018 and December 2018.
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To clearly show the correlation coefficient value and the prediction results, we show correlation
coefficient detection results from January 2016 to December 2017 (shown in Table 1), and Table 3
presents the further prediction errors of each model. Compared with the EME dataset, the time series
dataset of VS has a lower correlation coefficient value (=0.8392) of reference historical dataset. However,
a higher MAPE value of 9.94% for the VS dataset in 2018 can be achieved in Table 3. Therefore, the
example shows that the prediction accuracy and quality of the proposed SPNN-PSI algorithm can be
decreased due to the decreasing correlation coefficient value of reference historical dataset (shown in
Table 1), as compared to that of the EME dataset.

Table 3. Error indicators of each prediction model on the VS dataset.

Prediction Model
Error Indicators

MAPE (%) RMSE (Sets) MAE (Sets)

SPNN-PSI 9.94 32,148 24,970
MA 12.33 41,610 29,998
ES 14.38 46,810 33,500

ARIMA 15.13 48,211 35,702

To sum up, the MAPE, RMSE, and MAE values by SPNN-PSI method in Table 3 are all lower than
that by MA, ES, and ARIMA methods. Thus, the forecasting quality of SPNN-PSI method is better, and
the developed SPNN-PSI algorithm is still suitable for the prediction of VS dataset used in this paper.

4.3. Periodic Recognition and Prediction on Cumulative Electricity Output (CEO) Dataset

For the CEO dataset, a time series subset of cumulative electricity output in China [25] is used as
an example to show the correlation coefficient detection and prediction results. For the large-scale
reference historical time series dataset from January 2016 to December 2017, there is an obvious
similarity periodicity in the CEO dataset with a length of 12 months (one year), and shows an upward
trend from January to December. Based on the detected periodic model from January 2016 to December
2017, we predict the CEO for the next periodic (the whole year of 2018), as shown on the right side
of Figure 6. We can see that the predicted values are very close to the actual values when using PSI
method, while there are large deviations when using other methods, especially in January 2018.
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Then, we evaluate the forecasting accuracy of the SPNN-PSI method by comparing the actual
values and the predicted values, shown in Table 4. Because the correlation coefficient for reference
historical dataset achieves a very high value (equal to 1.0, shown in Table 1), the MAPE, RMSE, and
MAE by SPNN-PSI method are lower and equal 5.23%, 2912.23 × 108, and 2374.38 KWH, which
indicates a smaller difference between the prediction value and actual value. By contrast, the higher
MAPE, RMSE, and MAE by other forecasting methods are also given in Table 4. Their MAPE values
are all more than 50%, which indicates a relatively large fluctuation of prediction error.

Table 4. Error indicators of each prediction model on the CEO dataset.

Prediction Model
Error Indicators

MAPE (%) RMSE (108 KWH) MAE (108 KWH)

SPNN-PSI 5.23 2912.23 2374.38
MA 79.08 21,870.05 17,608.59
ES 61.14 16,757.26 10,136.89

ARIMA 86.63 23,782.35 13,251.02

In a sum, based on the above error indicators, the proposed SPNN-PSI algorithm achieves very
high accuracy and quality in time series prediction on the CEO dataset with its very high correlation
coefficient value of 1.0.

4.4. Accuracy Analysis of SPNN-PSI Algorithm

After receiving the forecasting results of the above three groups of time series datasets, the
forecasting accuracy (FA) was also calculated by using Equation (29). If the FA is close to 100% and the
MAPE is close to 0, the model is considered to have excellent forecasting accuracy. Then, the FA of the
VS, EME, and CEO datasets (in Table 1) were further analyzed and shown in Table 5. It can be seen
that the FA can increase when the correlation coefficient (r) of the reference historical data increases.
Thus, we think that there may be a positive correlation between r and FA.

Table 5. Comparison of forecasting accuracy for the VS, EME, and CEO datasets.

Dataset Names r MAPE (%) FA (%)

VS 0.8392 9.94 90.06
EME 0.9388 5.34 94.66
CEO 1.0000 5.23 94.77
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FA = 1−MAPE (29)

To further illustrate this correlation between the two, it was applied to the first case of the monthly
export volume of specifically chosen 31 different kinds of products from January 1995 to December
2018 [23]. The scatter diagram of FA vs. r is shown in Figure 7a. It can be seen in Figure 7a that, dense
point clouds are located in one area surrounded by red lines, while some individual points scatter in
the other areas. It is evident that, when using SPNN-PSI method in this paper, the higher value of r
(r > 0.4) can help to improve occurrence probability of higher value of FA (FA > 70%), and produce
more accurate forecasts for the datasets of monthly export volume in the first case. Then, it is further
examined empirically by using another case of big data, referring to vibration signal in hydraulic test
rig with a sampling frequency of 1 Hz during 132,300 s [26]. This test rig cyclically repeats constant
load cycles (duration 60 s) and measures process values. Figure 7b gives the scatter diagram of FA vs.
r. It can be seen that Figure 7a,b shows a similar characteristic of scatter distribution, but whether r
is positive or not in Figure 7b, the proposed PSI model can predict high values of FA (between 92%
and 100%) and produces accurate forecasts of vibration. If we consider r is one dominant factor for
forecasting accuracy, in the condition of r > 0.4, higher values of FA > 97% are easier to be applied and
predicted using the proposed PSI algorithm.
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the prediction of time series datasets.

• There is a trend that the higher the correlation coefficient value of the reference historical
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correlation coefficient for the SPNN-PSI method can help to improve the occurrence probability
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Figure 7. Scatter diagram of forecasting accuracy (FA) vs. correlation coefficient (r) r. (a) The monthly
export volume of specifically chosen 31 different kinds of products from January 1995 to December
2018; (b) the vibration data of hydraulic test rig with a sampling frequency of 1 Hz during 132,300 s.

5. Conclusions

• The SPNN-PSI method with four indexes—the period index, sequential index, small period
index, and super sequential index, by finding index-values implicitly carrying usable structure
information, combined with a neural network, is initially proposed for predict the time
series datasets.

• In contrast to the MA, ES, and ARIMA methods, the proposed SPNN-PSI method shows satisfactory
forecasting quality due to lower MAPE, RMSE, and MAE, and is more suitable for the prediction
of time series datasets.

• There is a trend that the higher the correlation coefficient value of the reference historical datasets,
the higher the prediction quality of SPNN-PSI method; a higher value (>0.4) of the correlation
coefficient for the SPNN-PSI method can help to improve the occurrence probability of higher
forecasting accuracy, and produce more accurate forecasts for the big datasets.
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Abbreviations

c, d, e, f weighing factors of forecasting equation
FA forecasting accuracy
F(ti) forecasting value at time of ti during H0 period
G() measurement equation for forecasting value
H−2, H−1 reference historical period
H0 forecasting period
−2, −1, 0 subscripts, and represent during period of H−2, H−1, H0, respectively
k0 correction coefficients for small period index
k−1, k−2 average of measured values during small periods of H−1, H−2
K0 correction coefficients for period index
K−1, K−2 average of measured values during periods of H−1, H−2
MAE mean absolute error
MAPE mean absolute percentage error
N number of forecasting samples
r correlation coefficient
RMSE root mean squared error
pi(t) small period index at time of t
PI(t) period index at time of t
si(t) super sequential index at time of t
SI(t) sequential index at time of t
t time (t = t1 − 2T, t2 − 2T, . . . tN − 2T, t1 − T, t2 − T, . . . tN − T, t1, t2, . . . tN)
T period for H−2, H−1, and H0
y(t) measured value at time of t
yi output vector
Y matrix of multiple outputs
w weight matrix
zi input vector
Z matrix of multiple inputs
γ0 planning factor
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